MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στη ράβδο ΟΑ του σχήματος ασκούνται τέσσερις ομοεπίπεδες δυνάμεις του ίδιου μέτρου. Η ράβδος μπορεί να στρέφεται γύρω από άξονα που διέρχεται από το άκρο της Ο και είναι κάθετος στο επίπεδο των δυνάμεων. Η δύναμη που η ροπή της ως προς το Ο έχει μεγαλύτερο μέτρο είναι
2. Να επιλέξετε τις σωστές απαντήσεις. Η ροπή ενός ζεύγους δυνάμεων τετραπλασιάζεται όταν
3. Μια οριζόντια ράβδος έχει τη δυνατότητα να στρέφεται γύρω από κατακόρυφο άξονα \[z'z\] ο οποίος διέρχεται από το ένα άκρο της. Σε ποια από τις περιπτώσεις που περιγράφονται στα παρακάτω σχήματα η ροπή της δύναμης \[\vec{F}\] μπορεί να περιστρέψει τη ράβδο γύρω από τον άξονα \[z’z\];
4. Ο λεπτός ομογενής δίσκος του παρακάτω σχήματος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Μια χρονική στιγμή \[t_1\] το μέτρο της ταχύτητας του δίσκου είναι \[υ_{cm}\] και το σημείο Γ της περιφέρειάς του απέχει \[d= \frac{3R }{2 }\] απ’ το δάπεδο. Τη χρονική στιγμή \[t_1\] το σημείο Γ έχει ταχύτητα μέτρου:
5. Δύο στερεά σώματα \[(1)\, , \, (2)\] περιστρέφονται γύρω απ’ τον ίδιο ακλόνητο άξονα με γωνιακές επιταχύνσεις \[α_{γων_1 }\, , \, α_{γων_2 }\] αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή των γωνιακών τους ταχυτήτων σε συνάρτηση με το χρόνο σε κοινό σύστημα αξόνων. Για τις γωνιακές επιταχύνσεις τους ισχύει:
6. Ράβδος ΟΑ στρέφεται γύρω από σταθερό άξονα που είναι κάθετος σ’ αυτήν και περνά απ’ το άκρο της Ο. Η στροφική κίνηση γίνεται με σταθερή γωνιακή επιτάχυνση. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το μέτρο της επιτρόχιας επιτάχυνσης ενός σημείου Ζ:
7. Ζεύγος δυνάμεων ονομάζεται το σύστημα:
8. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το κέντρο μάζας ενός στερεού σώματος ταυτίζεται με το κέντρο βάρους του:
9. Επιλέξτε ποιες από τις παρακάτω προτάσεις είναι σωστές. Η ροπή μιας δύναμης
10. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γωνία που διαγράφει σε συνάρτηση με το χρόνο δίνεται απ’ τη σχέση \[θ=4t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] το κέντρο μάζας του τροχού έχει διανύσει διάστημα \[x_{cm}\] και ο τροχός έχει στραφεί κατά \[Δθ\], ποια από τις παρακάτω σχέσεις είναι σωστή;
12. Δίσκος εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Η γωνία που διαγράφει ο δίσκος με το χρόνο δίνεται απ’ τη σχέση \[θ=10t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
13. Δύο στερεά σώματα \[(1)\, , \, (2)\] περιστρέφονται γύρω απ’ τον ίδιο ακλόνητο άξονα με γωνιακές επιταχύνσεις \[α_{γων_1 }\, , \, α_{γων_2 }\] αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή των γωνιακών τους ταχυτήτων σε συνάρτηση με το χρόνο σε κοινό σύστημα αξόνων. Για τον αριθμό των περιστροφών \[Ν_1\, ,\, Ν_2\] αντίστοιχα που διαγράφει το κάθε σώμα απ’ την \[t=0\] ως τη στιγμή \[t_1\] ισχύει:
14. Ένας δίσκος εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής ο οποίος διέρχεται από κάποιο σημείο του και είναι κάθετος στο επίπεδο του. Αν η γωνιακή ταχύτητα του σώματος είναι σταθερή, τότε:
15. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας \[υ_{cm}\]. Το σημείο Γ που φαίνεται στο παρακάτω σχήμα έχει ταχύτητα μέτρου:
16. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σύνθετη κίνηση εκτελεί:
17. Στερεό σώμα στρέφεται γύρω από σταθερό άξονα περιστροφής εκτελώντας ομαλά μεταβαλλόμενη κίνηση. Για την κυκλική κίνηση ενός κινούμενου σημείου του στερεού σώματος, ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Μόνο στροφική κίνηση εκτελεί:
19. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομογενείς κατακόρυφους δίσκους \[(1)\, ,\, (2)\] ακτίνων \[R_1\] και \[R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται απ’ το κοινό κέντρο Κ των δύο δίσκων κάθετα στο επίπεδό τους χωρίς τριβές. Μέσω αβαρών νημάτων έχουμε κρεμάσει από την περιφέρεια του δίσκου \[(1)\] σώμα βάρους \[w_1\] και απ’ την περιφέρεια του δίσκου \[(2)\] σώμα βάρους \[w_2=6w_1\]. Για να ισορροπεί το σύστημα διπλή τροχαλία-σώματα πρέπει να ασκώ στο σώμα μάζας \[m_1\] δύναμη \[F\]:
20. Για να ξεβιδώσουμε μια βίδα, διαθέτουμε δυο κλειδιά Α και Β που έχουν μήκη \[\ell_1\] και \[\ell_2\] αντίστοιχα. Αν είναι \[\ell_1 > \ell_2\], ποιο από τα δυο κλειδιά πρέπει να χρησιμοποιήσουμε ώστε να καταβάλουμε μικρότερη δύναμη και γιατί; Να υποθέσετε ότι κάθε φορά ασκούμε την αναγκαία δύναμη στο ελεύθερο άκρο του κλειδιού, κάθετα προς τον κατά μήκος άξονα του.
21. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και έχει σταθερή γωνιακή ταχύτητα \[ω\]. Η στροφική κίνηση του τροχού έχει φορά αντίθετη της φοράς των δεικτών του ρολογιού. Το σημείο Ζ του τροχού απέχει \[\frac{R}{2}\] απ’ το κέντρο του τροχού. Η ταχύτητα του Ζ όταν αυτό περνά απ’ την κατακόρυφη διάμετρο του τροχού και βρίσκεται πάνω απ’ το κέντρο μάζας του Κ:
22. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομόκεντρους ομογενείς ομογενείς δίσκους \[(1)\, , \, (2)\] ακτίνων \[R_1\, ,\, R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κοινό κέντρο Κ των δύο δίσκων και είναι κάθετος στο επίπεδό τους. Απ’ την περιφέρεια του κάθε δίσκου έχουμε κρεμάσει μέσω αβαρών νημάτων ένα σώμα μάζας \[m_1\] απ’ την περιφέρεια του δίσκου \[(1)\] και ένα σώμα μάζας \[m_2\] απ’ την περιφέρεια του δίσκου \[(2)\]. Για να ισορροπεί το σύστημα διπλή τροχαλία-σώματα πρέπει ο λόγος των βαρών \[\frac{w_1 }{ w_2 }\] να ισούται με:
23. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Στερεό σώμα είναι:
24. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Ο τροχός του παρακάτω σχήματος περιστρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ το κέντρο του Κ κατά τη φορά των δεικτών του ρολογιού. Η κίνηση του τροχού είναι ομαλά επιταχυνόμενη. Τα σημεία Β, Γ του τροχού απέχουν απ’ τον άξονα περιστροφής του αποστάσεις \[r_B,\, r_Γ\] με \[r_B < r_Γ \]. Να επιλέξετε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Για τα μέτρα των επιτρόχιων επιταχύνσεων \[α_{επ}\], των γραμμικών ταχυτήτων \[υ_{γρ}\] και των κεντρομόλων επιταχύνσεων \[α_κ\] την ίδια στιγμή των σημείων Β, Γ ισχύουν:
27. Τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής που είναι κάθετος στις βάσεις του και η γωνιακή του ταχύτητα μεταβάλλεται με σταθερό ρυθμό. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η \[\vec{α}_{γων}\] του τροχού:
28. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος με σταθερή γωνιακή ταχύτητα \[ω\]. Ένα σημείο του τροχού που δεν ανήκει στην περιφέρειά του έχει σε μια θέση μέγιστη κατά μέτρο ταχύτητα \[υ_{max}\] και σε μια άλλη θέση ελάχιστη κατά μέτρο ταχύτητα \[υ_{min}\]. Το άθροισμα των μέτρων \[υ_{max}+υ_{min}\] είναι ίσο με:
29. Ο λεπτός ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Σημείο Γ του τροχού απέχει απόσταση \[r\] από το κέντρο μάζας του τροχού. Η μέγιστη και η ελάχιστη κατά μέτρο ταχύτητα του σημείου Γ του τροχού είναι \[\frac{υ_{max}}{υ_{min}} =4\]. Ο λόγος \[\frac{r}{R}\] είναι:
30. Η ομογενής ράβδος ΑΒ μήκους \[ \ell \] του παρακάτω σχήματος στρέφεται γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη ράβδο και διέρχεται απ’ το σημείο της Γ για το οποίο ισχύει \[ΑΓ=\frac{\ell}{4}\]. Η ράβδος αρχίζει να στρέφεται την \[t=0\] με σταθερή γωνιακή επιτάχυνση.
Α) Για τις αλγεβρικές τιμές \[υ_Α,\, υ_Β\]  των γραμμικών ταχυτήτων την ίδια χρονική στιγμή των άκρων Α, Β ισχύει:
α) \[υ_Α=-υ_Β\],              β) \[υ_Α=υ_Β\],               γ) \[υ_Β=3υ_Α\],                         δ) \[υ_Β=-3υ_Α\].


Β) Για το μέσο Μ της ράβδου τη στιγμή \[t_1\]  που αυτή έχει γωνιακή ταχύτητα μέτρου \[ω_1\]  η επιτρόχια επιτάχυνση του μέσου Μ είναι \[α_{επ_Μ }\]  για την οποία ισχύει:
α) \[α_{επ_Μ}=\frac{\ell ω_1}{t_1}\] ,    
β) \[α_{επ_Μ }=\frac{\ell ω_1}{4t_1 }\],  
γ) \[ α_{επ_Μ }=\frac{\ell ω_1}{2t_1 }\].


    +30

    CONTACT US
    CALL US