MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομογενείς κατακόρυφους δίσκους \[(1)\, ,\, (2)\] ακτίνων \[R_1\] και \[R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται απ’ το κοινό κέντρο Κ των δύο δίσκων κάθετα στο επίπεδό τους χωρίς τριβές. Μέσω αβαρών νημάτων έχουμε κρεμάσει από την περιφέρεια του δίσκου \[(1)\] σώμα βάρους \[w_1\] και απ’ την περιφέρεια του δίσκου \[(2)\] σώμα βάρους \[w_2=6w_1\]. Για να ισορροπεί το σύστημα διπλή τροχαλία-σώματα πρέπει να ασκώ στο σώμα μάζας \[m_1\] δύναμη \[F\]:
2. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Η ομογενής ράβδος ΑΒ μήκους \[ \ell \] του παρακάτω σχήματος στρέφεται γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη ράβδο και διέρχεται απ’ το σημείο της Γ για το οποίο ισχύει \[ΑΓ=\frac{\ell}{4}\]. Η ράβδος αρχίζει να στρέφεται την \[t=0\] με σταθερή γωνιακή επιτάχυνση.
Α) Για τις αλγεβρικές τιμές \[υ_Α,\, υ_Β\]  των γραμμικών ταχυτήτων την ίδια χρονική στιγμή των άκρων Α, Β ισχύει:
α) \[υ_Α=-υ_Β\],              β) \[υ_Α=υ_Β\],               γ) \[υ_Β=3υ_Α\],                         δ) \[υ_Β=-3υ_Α\].


Β) Για το μέσο Μ της ράβδου τη στιγμή \[t_1\]  που αυτή έχει γωνιακή ταχύτητα μέτρου \[ω_1\]  η επιτρόχια επιτάχυνση του μέσου Μ είναι \[α_{επ_Μ }\]  για την οποία ισχύει:
α) \[α_{επ_Μ}=\frac{\ell ω_1}{t_1}\] ,    
β) \[α_{επ_Μ }=\frac{\ell ω_1}{4t_1 }\],  
γ) \[ α_{επ_Μ }=\frac{\ell ω_1}{2t_1 }\].

4. Δύο στερεά σώματα \[(1)\, , \, (2)\] περιστρέφονται γύρω απ’ τον ίδιο ακλόνητο άξονα με γωνιακές επιταχύνσεις \[α_{γων_1 }\, , \, α_{γων_2 }\] αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή των γωνιακών τους ταχυτήτων σε συνάρτηση με το χρόνο σε κοινό σύστημα αξόνων. Για τον αριθμό των περιστροφών \[Ν_1\, ,\, Ν_2\] αντίστοιχα που διαγράφει το κάθε σώμα απ’ την \[t=0\] ως τη στιγμή \[t_1\] ισχύει:
5. Ο τροχός του παρακάτω σχήματος εκτελεί στροφική κίνηση γύρω από κατακόρυφο άξονα που διέρχεται απ’ το κέντρο του και είναι κάθετος στις βάσεις του τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Ο τροχός του παρακάτω σχήματος περιστρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ το κέντρο του Κ κατά τη φορά των δεικτών του ρολογιού. Η κίνηση του τροχού είναι ομαλά επιταχυνόμενη. Τα σημεία Β, Γ του τροχού απέχουν απ’ τον άξονα περιστροφής του αποστάσεις \[r_B,\, r_Γ\] με \[r_B < r_Γ \]. Να επιλέξετε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Για τα μέτρα των επιτρόχιων επιταχύνσεων \[α_{επ}\], των γραμμικών ταχυτήτων \[υ_{γρ}\] και των κεντρομόλων επιταχύνσεων \[α_κ\] την ίδια στιγμή των σημείων Β, Γ ισχύουν:
7. Να επιλέξετε τη σωστή απάντηση. Το κέντρο μάζας ενός συμμετρικού στερεού σώματος ταυτίζεται με το κέντρο συμμετρίας του:
8. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σύνθετη κίνηση εκτελεί:
9. Ο τροχός του παρακάτω σχήματος στρέφεται γύρω από οριζόντιο άξονα \[x' x\] που είναι κάθετος στη βάση του και περνά απ’ τα κέντρα τους. Ο τροχός στρέφεται κατά τη φορά των δεικτών του ρολογιού με σταθερή γωνιακή ταχύτητα. Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
10. Δύο στερεά σώματα \[(1)\, , \, (2)\] περιστρέφονται γύρω απ’ τον ίδιο ακλόνητο άξονα με γωνιακές επιταχύνσεις \[α_{γων_1 }\, , \, α_{γων_2 }\] αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή των γωνιακών τους ταχυτήτων σε συνάρτηση με το χρόνο σε κοινό σύστημα αξόνων. Για τις γωνιακές επιταχύνσεις τους ισχύει:
11. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γωνία που διαγράφει σε συνάρτηση με το χρόνο δίνεται απ’ τη σχέση \[θ=4t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το κέντρο μάζας ενός στερεού σώματος ταυτίζεται με το κέντρο βάρους του:
13. Ζεύγος δυνάμεων ονομάζεται το σύστημα:
14. Δίσκος στρέφεται γύρω από σταθερό άξονα που διέρχεται απ’ το κέντρο του και είναι κάθετος στο επίπεδό του. Δύο σημεία του δίσκου Β, Γ απέχουν απ’ τον άξονα περιστροφής του αποστάσεις \[r_B,\, r_Γ\] με \[r_Γ=3r_B\].

Α. Αν σε χρόνο \[Δt\] η επιβατική ακτίνα του Β διαγράψει γωνία \[Δθ_Β\], η επιβατική ακτίνα του Γ στον ίδιο χρόνο θα διαγράψει γωνία \[Δθ_Γ\] για την οποία ισχύει:
α) \[Δθ_Β=Δθ_Γ\],                       β) \[Δθ_Β=\frac{Δθ_Γ}{3} \],                 γ) \[ Δθ_Β=3Δθ_Γ\].

Β. Αν σε χρόνο \[Δt\] το σημείο Β διανύσει μήκος τόξου \[Δs_B\]  το σημείο Γ στον ίδιο χρόνο θα διανύσει τόξο \[Δs_Γ\]  για το οποίο ισχύει:
α) \[Δs_Γ=Δs_B\],                        β) \[Δs_Γ=3Δs_B\],          γ) \[Δs_Γ=\frac{Δs_B}{3}\].

Γ) Για τα μέτρα \[α_{κ_Β},\, α_{κ_Γ }\]  των κεντρομόλων επιταχύνσεων την ίδια στιγμή ισχύει:
α) \[ α_{κ_Β }=\frac{  α_{κ_Γ}  } {3}  \],                                 
β) \[ α_{κ_Β }=3α_{κ_Γ }  \],          
γ) \[ α_{κ_Β }=α_{κ_Γ }  \],                        
δ) \[ α_{κ_Β }=α_{κ_Γ }=0\], αν η κίνηση του δίσκου είναι ομαλή στροφική.

15. Ο ομογενής τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό κατακόρυφο άξονα που διέρχεται απ’ το κέντρο του και είναι κάθετο στο επίπεδό του. Την \[t=0\] ο τροχός έχει γωνιακή ταχύτητα \[ω_0>0\] και τότε αποκτά σταθερή \[ \vec{α}_{γων}\] που η κατεύθυνσή της φαίνεται στο σχήμα.

Α) Η χρονική στιγμή \[t_1\]  που ο τροχός ακινητοποιείται είναι:

α) \[ \frac{  ω_0  }{   2|α_{γων} |  }  \],             
β) \[\frac{ 2ω_0}{|α_{γων} |}  \],         
γ) \[\frac{ω_0}{|α_{γων} |}\] .

Β) Η γωνία που διαγράφει ο τροχός μέχρι τη χρονική στιγμή \[t_1\]  είναι:

α) \[  \frac{ω_0^2}{  2|α_{γων}| }  \],                        
β) \[  \frac{ω_0^2}{|α_{γων} |}\],              
γ) \[ \frac{2ω_0^2}{|α_{γων} | }\].

16. Για να ξεβιδώσουμε μια βίδα, διαθέτουμε δυο κλειδιά Α και Β που έχουν μήκη \[\ell_1\] και \[\ell_2\] αντίστοιχα. Αν είναι \[\ell_1 > \ell_2\], ποιο από τα δυο κλειδιά πρέπει να χρησιμοποιήσουμε ώστε να καταβάλουμε μικρότερη δύναμη και γιατί; Να υποθέσετε ότι κάθε φορά ασκούμε την αναγκαία δύναμη στο ελεύθερο άκρο του κλειδιού, κάθετα προς τον κατά μήκος άξονα του.
17. Ποια από τις επόμενες δυνάμεις που ασκούνται στον οριζόντιο δίσκο του σχήματος έχει μη μηδενική ροπή ως προς τον άξονα περιστροφής \[z'z\];
18. Τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η γωνιακή ταχύτητα ενός στερεού σώματος που εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής:
20. Ο ομογενής λεπτός τροχός ακτίνας \[R\] του παρακάτω σχήματος κέντρου Ο κατέρχεται στρεφόμενος με τη βοήθεια μη εκτατού νήματος που το άκρο του Κ διατηρείται ακλόνητο. Το νήμα ξετυλίγεται απ’ την περιφέρεια του τροχού χωρίς να ολισθαίνει σ’ αυτόν. Τη στιγμή \[t_1\] το σημείο Γ που απέχει \[r=\frac{R}{2}\] απ’ το κέντρο του τροχού βρίσκεται στην οριζόντια διάμετρο ενώ το κέντρο μάζας του έχει ταχύτητα μέτρου \[υ_{cm}\]. Τη στιγμή \[t_1\] το μέτρο της ταχύτητας του σημείου Γ είναι:
21. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και έχει σταθερή γωνιακή ταχύτητα \[ω\]. Η στροφική κίνηση του τροχού έχει φορά αντίθετη της φοράς των δεικτών του ρολογιού. Το σημείο Ζ του τροχού απέχει \[\frac{R}{2}\] απ’ το κέντρο του τροχού. Η ταχύτητα του Ζ όταν αυτό περνά απ’ την κατακόρυφη διάμετρο του τροχού και βρίσκεται πάνω απ’ το κέντρο μάζας του Κ:
22. Κρατώντας σταθερό το άκρο Κ του μη εκτατού νήματος, αφήνουμε ελεύθερο τον ομογενή κύλινδρο κέντρου Ο του παρακάτω σχήματος και αυτός αρχίζει να κατέρχεται ενώ ταυτόχρονα περιστρέφεται ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στην τροχαλία. Κάποια στιγμή \[t_1\] το σημείο Α της περιφέρειας βρίσκεται πάνω στην οριζόντια διάμετρο ΑΒ ενώ το σημείο Γ της περιφέρειας είναι το κατώτερο σημείο του κυλίνδρου την ίδια στιγμή. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_Α }{υ_Γ}\] τη χρονική στιγμή \[t_1\] είναι:
23. Ένα στερεό σώμα εκτελεί μεταφορική κίνηση. Ποια από τις παρακάτω προτάσεις είναι σωστή;
24. Τροχός στρέφεται γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποια από τις παρακάτω προτάσεις είναι σωστή; Αν \[r_B=2r_A\], ο λόγος των μέτρων των γραμμικών ταχυτήτων \[υ_{γρ_Α }\] προς \[υ_{γρ_Β }\] είναι:
25. Τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής που είναι κάθετος στις βάσεις του και η γωνιακή του ταχύτητα μεταβάλλεται με σταθερό ρυθμό. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η \[\vec{α}_{γων}\] του τροχού:
26. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα με σταθερή γωνιακή επιτάχυνση. Δύο σημεία Β και Γ έχουν επιτρόχιες επιταχύνσεις μέτρων \[α_{επ_Β}\] και \[α_{επ_Γ}\] αντίστοιχα και ισχύει \[α_{επ_Γ}=2α_{επ_Β }\].

Α) Οι κεντρομόλες επιταχύνσεις των δύο αυτών σημείων την ίδια στιγμή \[t_1\]  έχουν μέτρα \[α_{κ_{Γ_1 }}\]  και \[α_{κ_{Β_1 }}\]  αντίστοιχα και ισχύει:
α) \[ \frac{  α_{κ_{Γ_1 }}   }  {α_{κ_{Β_1 }}  } =\frac{1}{2}  \],              
β) \[  \frac{  α_{κ_{Γ_1 }} }{  α_{κ_{Β_1 }}  } =2\],                 
γ) \[  \frac{  α_{κ_{Γ_1 }}   }{α_{κ_{Β_1 }}  } =\frac{1}{4}  \],              
δ) \[ \frac{  α_{κ_{Γ_1 }}   }{  α_{κ_{Β_1 }}  } =4\].

Β) Τα μέτρα των επιταχύνσεων \[α_Β,\, α_Γ\]  των σημείων Β, Γ αντίστοιχα έχουν λόγο  \[\frac{α_Β}{α_Γ}\]   ίσο με:
α) \[\frac{1}{2}\],                          β) \[2\],                             γ) \[\sqrt{2}\],                           δ) \[\frac{\sqrt{2} } {2}\].

27. Στερεό σώμα στρέφεται γύρω από σταθερό άξονα περιστροφής εκτελώντας ομαλά μεταβαλλόμενη κίνηση. Για την κυκλική κίνηση ενός κινούμενου σημείου του στερεού σώματος, ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Στερεό σώμα εκτελεί μεταφορική κίνηση. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Στερεό σώμα είναι:
30. Επιλέξτε ποιες από τις παρακάτω προτάσεις είναι σωστές. Η ροπή μιας δύναμης ως προς άξονα περιστροφής

    +30

    CONTACT US
    CALL US