MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ο λεπτός ομογενής δίσκος του παρακάτω σχήματος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Μια χρονική στιγμή \[t_1\] το μέτρο της ταχύτητας του δίσκου είναι \[υ_{cm}\] και το σημείο Γ της περιφέρειάς του απέχει \[d= \frac{3R }{2 }\] απ’ το δάπεδο. Τη χρονική στιγμή \[t_1\] το σημείο Γ έχει ταχύτητα μέτρου:
2. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] το κέντρο μάζας του τροχού έχει διανύσει διάστημα \[x_{cm}\] και ο τροχός έχει στραφεί κατά \[Δθ\], ποια από τις παρακάτω σχέσεις είναι σωστή;
3. Ομογενής ράβδος στρέφεται γύρω από σταθερό άξονα περιστροφής. Η γωνιακή ταχύτητα της ράβδου μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.

Α) Η ράβδος ακινητοποιείται τη χρονική στιγμή \[t_1\]  που είναι ίση με:

α) \[1\, s\],              β) \[\sqrt{3}\,  s\],                       γ) \[10\, s\].

Β) Η γωνιακή μετατόπιση της ράβδου απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\]  είναι:

α) \[5\, rad\],           β) \[50\, rad\],                     γ) \[100\, rad\].

4. Στη ράβδο του σχήματος, η οποία έχει μήκος \[ \ell \], ασκείται δύναμη \[\vec{F}\]. Η ράβδος μπορεί να στρέφεται γύρω από άξονα που διέρχεται από το άκρο της Ο και είναι κάθετος στο επίπεδο της ράβδου και της δύναμης. Η ροπή της δύναμης \[\vec{F}\] ως προς το σημείο Ο είναι ίση με
5. Δύο στερεά σώματα \[(1)\, , \, (2)\] περιστρέφονται γύρω απ’ τον ίδιο ακλόνητο άξονα με γωνιακές επιταχύνσεις \[α_{γων_1 }\, , \, α_{γων_2 }\] αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή των γωνιακών τους ταχυτήτων σε συνάρτηση με το χρόνο σε κοινό σύστημα αξόνων. Για τις γωνιακές επιταχύνσεις τους ισχύει:
6. Τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Η ράβδος ΟΑ του παρακάτω σχήματος στρέφεται γύρω από σταθερό κατακόρυφο άξονα κάθετο στη διεύθυνσή της που διέρχεται απ’ το άκρο της Ο με τη φορά που φαίνεται στο σχήμα.
8. Ο ομογενής λεπτός τροχός ακτίνας \[R\] του παρακάτω σχήματος κέντρου Ο κατέρχεται στρεφόμενος με τη βοήθεια μη εκτατού νήματος που το άκρο του Κ διατηρείται ακλόνητο. Το νήμα ξετυλίγεται απ’ την περιφέρεια του τροχού χωρίς να ολισθαίνει σ’ αυτόν. Τη στιγμή \[t_1\] το σημείο Γ που απέχει \[r=\frac{R}{2}\] απ’ το κέντρο του τροχού βρίσκεται στην οριζόντια διάμετρο ενώ το κέντρο μάζας του έχει ταχύτητα μέτρου \[υ_{cm}\]. Τη στιγμή \[t_1\] το μέτρο της ταχύτητας του σημείου Γ είναι:
9. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομόκεντρους ομογενείς ομογενείς δίσκους \[(1)\, , \, (2)\] ακτίνων \[R_1\, ,\, R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κοινό κέντρο Κ των δύο δίσκων και είναι κάθετος στο επίπεδό τους. Απ’ την περιφέρεια του κάθε δίσκου έχουμε κρεμάσει μέσω αβαρών νημάτων ένα σώμα μάζας \[m_1\] απ’ την περιφέρεια του δίσκου \[(1)\] και ένα σώμα μάζας \[m_2\] απ’ την περιφέρεια του δίσκου \[(2)\]. Για να ισορροπεί το σύστημα διπλή τροχαλία-σώματα πρέπει ο λόγος των βαρών \[\frac{w_1 }{ w_2 }\] να ισούται με:
10. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και έχει σταθερή γωνιακή ταχύτητα \[ω\]. Η στροφική κίνηση του τροχού έχει φορά αντίθετη της φοράς των δεικτών του ρολογιού. Το σημείο Ζ του τροχού απέχει \[\frac{R}{2}\] απ’ το κέντρο του τροχού. Η ταχύτητα του Ζ όταν αυτό περνά απ’ την κατακόρυφη διάμετρο του τροχού και βρίσκεται πάνω απ’ το κέντρο μάζας του Κ:
11. Ο τροχός του παρακάτω σχήματος περιστρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ το κέντρο του Κ κατά τη φορά των δεικτών του ρολογιού. Η κίνηση του τροχού είναι ομαλά επιταχυνόμενη. Τα σημεία Β, Γ του τροχού απέχουν απ’ τον άξονα περιστροφής του αποστάσεις \[r_B,\, r_Γ\] με \[r_B < r_Γ \]. Να επιλέξετε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Για τα μέτρα των επιτρόχιων επιταχύνσεων \[α_{επ}\], των γραμμικών ταχυτήτων \[υ_{γρ}\] και των κεντρομόλων επιταχύνσεων \[α_κ\] την ίδια στιγμή των σημείων Β, Γ ισχύουν:
12. Σε ένα στερεό σώμα που έχει τη δυνατότητα να στρέφεται γύρω από σταθερό άξονα \[z'z\] ασκείται δύναμη \[\vec{F}\]. Αν το σημείο εφαρμογής της δύναμης \[\vec{F}\] μετατοπίζεται πάνω στο φορέα της, τότε η ροπή της ως προς τον άξονα \[z'z\]
13. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γωνία που διαγράφει σε συνάρτηση με το χρόνο δίνεται απ’ τη σχέση \[θ=4t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Στερεό σώμα είναι:
15. Η ράβδος ΟΑ του παρακάτω σχήματος στρέφεται γύρω από σταθερό οριζόντιο άξονα κάθετο στη διεύθυνσή της που διέρχεται απ’ το άκρο της Ο με τη φορά που φαίνεται στο σχήμα και με σταθερή γωνιακή ταχύτητα.
16. Ένας δίσκος εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής ο οποίος διέρχεται από κάποιο σημείο του και είναι κάθετος στο επίπεδο του. Αν η γωνιακή ταχύτητα του σώματος είναι σταθερή, τότε:
17. Στη ράβδο ΑΓ του σχήματος, η οποία έχει μήκος \[\ell\], ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\] μέτρου \[F\] όπως φαίνεται στο σχήμα. Η ροπή του ζεύγους
18. Επιλέξτε ποιες από τις παρακάτω προτάσεις είναι σωστές. Η ροπή μιας δύναμης
19. Δύο στερεά σώματα \[(1)\, , \, (2)\] περιστρέφονται γύρω απ’ τον ίδιο ακλόνητο άξονα με γωνιακές επιταχύνσεις \[α_{γων_1 }\, , \, α_{γων_2 }\] αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή των γωνιακών τους ταχυτήτων σε συνάρτηση με το χρόνο σε κοινό σύστημα αξόνων. Για τον αριθμό των περιστροφών \[Ν_1\, ,\, Ν_2\] αντίστοιχα που διαγράφει το κάθε σώμα απ’ την \[t=0\] ως τη στιγμή \[t_1\] ισχύει:
20. Ζεύγος δυνάμεων ονομάζεται το σύστημα:
21. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας \[υ_{cm}\]. Το σημείο Γ που φαίνεται στο παρακάτω σχήμα έχει ταχύτητα μέτρου:
22. Ο λεπτός ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Σημείο Γ του τροχού απέχει απόσταση \[r\] από το κέντρο μάζας του τροχού. Η μέγιστη και η ελάχιστη κατά μέτρο ταχύτητα του σημείου Γ του τροχού είναι \[\frac{υ_{max}}{υ_{min}} =4\]. Ο λόγος \[\frac{r}{R}\] είναι:
23. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομογενείς κατακόρυφους δίσκους \[(1)\, ,\, (2)\] ακτίνων \[R_1\] και \[R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται απ’ το κοινό κέντρο Κ των δύο δίσκων κάθετα στο επίπεδό τους χωρίς τριβές. Μέσω αβαρών νημάτων έχουμε κρεμάσει από την περιφέρεια του δίσκου \[(1)\] σώμα βάρους \[w_1\] και απ’ την περιφέρεια του δίσκου \[(2)\] σώμα βάρους \[w_2=6w_1\]. Για να ισορροπεί το σύστημα διπλή τροχαλία-σώματα πρέπει να ασκώ στο σώμα μάζας \[m_1\] δύναμη \[F\]:
24. Ο ομογενής τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό κατακόρυφο άξονα που διέρχεται απ’ το κέντρο του και είναι κάθετο στο επίπεδό του. Την \[t=0\] ο τροχός έχει γωνιακή ταχύτητα \[ω_0>0\] και τότε αποκτά σταθερή \[ \vec{α}_{γων}\] που η κατεύθυνσή της φαίνεται στο σχήμα.

Α) Η χρονική στιγμή \[t_1\]  που ο τροχός ακινητοποιείται είναι:

α) \[ \frac{  ω_0  }{   2|α_{γων} |  }  \],             
β) \[\frac{ 2ω_0}{|α_{γων} |}  \],         
γ) \[\frac{ω_0}{|α_{γων} |}\] .

Β) Η γωνία που διαγράφει ο τροχός μέχρι τη χρονική στιγμή \[t_1\]  είναι:

α) \[  \frac{ω_0^2}{  2|α_{γων}| }  \],                        
β) \[  \frac{ω_0^2}{|α_{γων} |}\],              
γ) \[ \frac{2ω_0^2}{|α_{γων} | }\].

25. Η ομογενής ράβδος ΑΒ μήκους \[ \ell \] του παρακάτω σχήματος στρέφεται γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη ράβδο και διέρχεται απ’ το σημείο της Γ για το οποίο ισχύει \[ΑΓ=\frac{\ell}{4}\]. Η ράβδος αρχίζει να στρέφεται την \[t=0\] με σταθερή γωνιακή επιτάχυνση.
Α) Για τις αλγεβρικές τιμές \[υ_Α,\, υ_Β\]  των γραμμικών ταχυτήτων την ίδια χρονική στιγμή των άκρων Α, Β ισχύει:
α) \[υ_Α=-υ_Β\],              β) \[υ_Α=υ_Β\],               γ) \[υ_Β=3υ_Α\],                         δ) \[υ_Β=-3υ_Α\].


Β) Για το μέσο Μ της ράβδου τη στιγμή \[t_1\]  που αυτή έχει γωνιακή ταχύτητα μέτρου \[ω_1\]  η επιτρόχια επιτάχυνση του μέσου Μ είναι \[α_{επ_Μ }\]  για την οποία ισχύει:
α) \[α_{επ_Μ}=\frac{\ell ω_1}{t_1}\] ,    
β) \[α_{επ_Μ }=\frac{\ell ω_1}{4t_1 }\],  
γ) \[ α_{επ_Μ }=\frac{\ell ω_1}{2t_1 }\].

26. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Ένα στερεό σώμα εκτελεί μεταφορική κίνηση. Ποια από τις παρακάτω προτάσεις είναι σωστή;
28. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος με σταθερή γωνιακή ταχύτητα \[ω\]. Ένα σημείο του τροχού που δεν ανήκει στην περιφέρειά του έχει σε μια θέση μέγιστη κατά μέτρο ταχύτητα \[υ_{max}\] και σε μια άλλη θέση ελάχιστη κατά μέτρο ταχύτητα \[υ_{min}\]. Το άθροισμα των μέτρων \[υ_{max}+υ_{min}\] είναι ίσο με:
29. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Μόνο στροφική κίνηση εκτελεί:
30. Δίσκος στρέφεται γύρω από σταθερό άξονα που διέρχεται απ’ το κέντρο του και είναι κάθετος στο επίπεδό του. Δύο σημεία του δίσκου Β, Γ απέχουν απ’ τον άξονα περιστροφής του αποστάσεις \[r_B,\, r_Γ\] με \[r_Γ=3r_B\].

Α. Αν σε χρόνο \[Δt\] η επιβατική ακτίνα του Β διαγράψει γωνία \[Δθ_Β\], η επιβατική ακτίνα του Γ στον ίδιο χρόνο θα διαγράψει γωνία \[Δθ_Γ\] για την οποία ισχύει:
α) \[Δθ_Β=Δθ_Γ\],                       β) \[Δθ_Β=\frac{Δθ_Γ}{3} \],                 γ) \[ Δθ_Β=3Δθ_Γ\].

Β. Αν σε χρόνο \[Δt\] το σημείο Β διανύσει μήκος τόξου \[Δs_B\]  το σημείο Γ στον ίδιο χρόνο θα διανύσει τόξο \[Δs_Γ\]  για το οποίο ισχύει:
α) \[Δs_Γ=Δs_B\],                        β) \[Δs_Γ=3Δs_B\],          γ) \[Δs_Γ=\frac{Δs_B}{3}\].

Γ) Για τα μέτρα \[α_{κ_Β},\, α_{κ_Γ }\]  των κεντρομόλων επιταχύνσεων την ίδια στιγμή ισχύει:
α) \[ α_{κ_Β }=\frac{  α_{κ_Γ}  } {3}  \],                                 
β) \[ α_{κ_Β }=3α_{κ_Γ }  \],          
γ) \[ α_{κ_Β }=α_{κ_Γ }  \],                        
δ) \[ α_{κ_Β }=α_{κ_Γ }=0\], αν η κίνηση του δίσκου είναι ομαλή στροφική.


    +30

    CONTACT US
    CALL US