MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω σχήμα.
Ποιο απ’ τα παρακάτω διαγράμματα παριστάνει τη γωνιακή επιτάχυνση του στερεού με το χρόνο;
2. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Στο παρακάτω σχήμα ο ομογενής δίσκος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει, ενώ στο ανώτερο άκρο της περιφέρειάς του έχουμε ακουμπήσει λεπτή σανίδα που μεταφέρεται με κατάλληλο μηχανισμό ώστε να μην ολισθαίνει πάνω στο δίσκο και να μένει συνεχώς οριζόντια.

Α) Αν τη στιγμή \[t_1\]  ο τροχός έχει γωνιακή ταχύτητα μέτρου \[ω\], την ίδια στιγμή το μέτρο της ταχύτητας της σανίδας  έχει μέτρο:

α) \[ωR\],                                     β) \[\frac{ωR}{2}\],                                  γ) \[2ωR\].

B) Αν σε χρόνο \[Δt\] το κέντρο μάζας του έχει μεταφερθεί κατά \[Δx_{cm}\], τότε η σανίδα μεταφέρεται στον ίδιο χρόνο κατά:

α) \[2Δx_{cm}\],                  β) \[Δx_{cm}\],                    γ) \[   \frac{    Δx_{cm}  }{  2   }   \].

4. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Για τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ}\] ισχύει:
5. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το κέντρο μάζας του στερεού σώματος:
6. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:
Α) Aν το κέντρο μάζας τη στιγμή \[t_1\] έχει ταχύτητα μέτρου \[υ_{cm}\], το άκρο Α έχει ταχύτητα μέτρου:

α) \[\frac{3}{2} υ_{cm} \],                β) \[2υ_{cm}\],        γ) \[υ_{cm}\].

Β) Αν το κέντρο μάζας του δίσκου έχει επιτάχυνση μέτρου \[α_{cm}\], τότε το ελεύθερο άκρο Α του νήματος έχει επιτάχυνση μέτρου:

α) \[α_{cm}\],                      β) \[\frac{3}{2} α_{cm}\],                       γ) \[2α_{cm}\].

7. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Η γωνιακή επιτάχυνση ενός στερεού σώματος που στρέφεται γύρω από σταθερό άξονα:
8. Στερεό σώμα εκτελεί στροφική κίνηση και η γωνιακή του ταχύτητα δίνεται απ’ τη σχέση \[ω=5+2t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Η ράβδος ΟΑ του παρακάτω σχήματος α εκτελεί στροφική κίνηση γύρω από κατακόρυφο άξονα κάθετο στη ράβδο που διέρχεται απ’ το άκρο της Ο. Στο σχήμα β φαίνεται η μεταβολή της γωνιακής ταχύτητας της ράβδου με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν. Η ροπή μιας δύναμης \[\vec{F}\] ως προς άξονα:
11. H αβαρής ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από άξονα κάθετο στο επίπεδο του σχήματος και διερχόμενο από το άκρο της Ο. Αν Μ είναι το μέσο της ράβδου για να ισορροπεί αυτή πρέπει το μέτρο της δύναμης \[F_2\] να είναι
12. Τροχός ακτίνας \[R=0,25\, m\] στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ το κέντρο του. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=10-4t\] (S.I.). Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
13. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Την ίδια χρονική στιγμή \[t_1\]:
14. Ο τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
15. Σε ομογενή ράβδο ΚΛ μήκους \[\ell\] του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκούνται δύο δυνάμεις παράλληλες, ίδιου μέτρου \[F_1=F_2=F\] και αντίθετης φοράς που σχηματίζουν με τη ράβδο γωνία \[φ\] με \[ημφ=0,8\], συνφ=0,6. Το μέτρο της συνισταμένης ροπής των δύο αυτών δυνάμεων είναι:
16. Ο ομογενής τροχός κέντρου Ο και ακτίνας \[R\] του παρακάτω σχήματος μεταφέρεται με σταθερή ταχύτητα \[υ_{cm}\] ενώ ταυτόχρονα περιστρέφεται με σταθερή γωνιακή ταχύτητα \[ω\] κατά την ωρολογιακή φορά. Το σημείο Γ της περιφέρειάς του που απέχει \[R\] απ’ το έδαφος σχηματίζει με τη διεύθυνση της μεταφορικής κίνησης του τροχού γωνία \[φ\] με \[ημφ=0,6\] και \[συνφ=0,8\]. Το σημείο Α του σημείου επαφής του τροχού με το έδαφος έχει ταχύτητα μέτρου:
17. Το στερεό σώμα του παρακάτω σχήματος α στρέφεται γύρω από τον σταθερό άξονα \[z' z\] αντίρροπα των δεικτών του ρολογιού. Η γωνιακή ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].

Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται

α) η οριζόντια δύναμη μέτρου \[F_2\]  που είναι αντίθετη με την \[F_1\]  ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν

β) η οριζόντια δύναμη \[F_3\]  ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν

Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:

α) \[\frac{F_1}{3}\]         β) \[3F_1\]       γ) \[\frac{F_1}{4}\]        δ) \[\frac{3F_1}{4}\]

19. Τροχός στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του τροχού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

21. Σε μια ράβδο ΑΓ που ισορροπεί πάνω σε οριζόντιο επίπεδο ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\], όπως φαίνεται στο σχήμα. Το μέτρο της ροπής του ζεύγους είναι
22. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
23. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Οι δυο ομόκεντροι τροχοί του διπλανού σχήματος είναι κολλημένοι και μπορούν να περιστρέφονται γύρω από άξονα που διέρχεται από το κέντρο τους. Αν το σύστημα περιστρέφεται με σταθερή γωνιακή ταχύτητα με τη φορά των δεικτών του ρολογιού τότε για τα μέτρα των δυνάμεων ισχύει
25. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τα σημεία Ζ, Η του τροχού βρίσκονται κάποια στιγμή στην κατακόρυφη διάμετρο και είναι συμμετρικά ως προς το κέντρο μάζας Κ του τροχού. Η διαφορά των μέτρων των ταχυτήτων τους είναι \[υ_Ζ-υ_Η=\frac{2}{3} υ_{cm}\] όπου \[υ_{cm}\] το μέτρο της ταχύτητας του κέντρου μάζας του τροχού την ίδια στιγμή. Η απόσταση των δύο σημείων Ζ, Η του τροχού από το κέντρο Κ είναι:
26. Σε ένα τρακτέρ οι πίσω τροχοί του έχουν ακτίνα \[R_1\] ενώ οι μπροστινοί \[R_2\] με \[R_2<R_1\]. Καθώς το τρακτέρ κινείται, οι τροχοί του εκτελούν κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος. Την ίδια χρονική στιγμή \[t_1\] τα ανώτερα σημεία των παραπάνω τροχών έχουν ταχύτητες μέτρου \[υ_{1_{αν} },\, υ_{2_{αν} }\] αντίστοιχα. Ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
27. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
A) Απ’ την \[t=0\] ως τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει μετατοπιστεί κατά \[Δx_{cm}\] που είναι ίσο με:

α) \[\frac{\ell}{2}\],               β) \[\ell\],                  γ) \[2\ell\].

B) Απ’ την \[t=0\] ως τη χρονική στιγμή \[t_1\] το άκρο Α του νήματος έχει μετατοπιστεί κατά \[Δx_A\] που είναι ίσο με:

α) \[2\ell\],                β) \[\ell\],                  γ) \[\frac{\ell}{2}\].

28. Η ομογενής σφαίρα του παρακάτω σχήματος έχει ακτίνα \[R\] και βάρος \[w\], βρίσκεται σε οριζόντιο επίπεδο και πρόκειται να ανέβει ένα τραχύ σκαλοπάτι ύψους \[h = \frac{R}{4}\]. Για το σκοπό αυτό ασκούμε μια οριζόντια δύναμη \[F_1\] στο κέντρο της Κ με την κατεύθυνση του σχήματος. Επαναλαμβάνουμε το ίδιο πείραμα ασκώντας μια ομόρροπη οριζόντια δύναμη \[F_2\] στο ανώτερο σημείο της Α. Ο λόγος των μέτρων των δύο ελάχιστων δυνάμεων \[ F_{1,min} \, , \, F_{2,min} \] ώστε να αρχίσει η υπερπήδηση της σφαίρας είναι \[\frac{F_{1,min} } { F_{2,min} }\]:
29. Ένα στερεό, που αρχικά είναι ακίνητο, δέχεται ομοεπίπεδες δυνάμεις για τις οποίες ισχύουν \[Σ\vec{F}≠0\] και \[Στ=0\] ως προς άξονα κάθετο στο επίπεδο των δυνάμεων που διέρχεται από το cm του. Το στερεό αυτό:
30. Αβαρής ράβδος μήκους \[ \ell \] ισορροπεί οριζόντια με την επίδραση των δυνάμεων \[\vec{F}_1\] και \[ \vec{F}_2\] όπως φαίνεται στο σχήμα. Η απόσταση \[x\] δίνεται από τη σχέση

    +30

    CONTACT US
    CALL US