1. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Οι δίσκοι (1) και (2) συνδέονται με ιμάντα και ο καθένας μπορεί να στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στο επίπεδο των βάσεών τους. Ο ιμάντας δεν ολισθαίνει στις περιφέρειές τους. Ποιες από τις επόμενες προτάσεις είναι σωστές;
6. Ο τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
9. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Την ίδια χρονική στιγμή \[t_1\]: 11. Τροχός ακτίνας \[R=0,5\, m\] στρέφεται γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ τα κέντρα τους. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=4t\] (S.I.). Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 12. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
13. Σφαίρα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που διέρχεται από μια διάμετρό της. Η γωνιακή ταχύτητα της σφαίρας σε συνάρτηση με το χρόνο παριστάνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
16. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].
Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται
α) η οριζόντια δύναμη μέτρου \[F_2\] που είναι αντίθετη με την \[F_1\] ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν
β) η οριζόντια δύναμη \[F_3\] ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν
Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:
α) \[\frac{F_1}{3}\] β) \[3F_1\] γ) \[\frac{F_1}{4}\] δ) \[\frac{3F_1}{4}\]
18. Ένα στερεό σώμα είναι ελεύθερο και να κινηθεί στροφικά και να μεταφερθεί. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Όταν το σώμα αρχίζει να εκτελεί σύνθετη κίνηση τότε το κέντρο μάζας του στερεού: 19. Στο παρακάτω σχήμα ο ομογενής δίσκος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει, ενώ στο ανώτερο άκρο της περιφέρειάς του έχουμε ακουμπήσει λεπτή σανίδα που μεταφέρεται με κατάλληλο μηχανισμό ώστε να μην ολισθαίνει πάνω στο δίσκο και να μένει συνεχώς οριζόντια.
Α) Αν τη στιγμή \[t_1\] ο τροχός έχει γωνιακή ταχύτητα μέτρου \[ω\], την ίδια στιγμή το μέτρο της ταχύτητας της σανίδας έχει μέτρο:
α) \[ωR\], β) \[\frac{ωR}{2}\], γ) \[2ωR\].
B) Αν σε χρόνο \[Δt\] το κέντρο μάζας του έχει μεταφερθεί κατά \[Δx_{cm}\], τότε η σανίδα μεταφέρεται στον ίδιο χρόνο κατά:
α) \[2Δx_{cm}\], β) \[Δx_{cm}\], γ) \[ \frac{ Δx_{cm} }{ 2 } \].
20. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:
α) \[ ωR\], β) \[ωr\], γ) \[ω(R-r)\].
Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:
α) \[2υ_{cm}\], β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\], γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].
Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:
α) \[2υ_{cm}\], β) \[ω\left( \frac{R}{r}+1 \right)\], γ) \[ ω \left( \frac{R}{r}-1\right) \].
Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:
α) \[0\], β) \[ω^2 R\], γ) \[ω^2 r\].
21. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω σε οριζόντιο έδαφος. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
22. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα
Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\] συνδέονται με τη σχέση:
α) \[F_2=4F_1\]
β) \[F_2=3F_1\]
γ) \[F_1=4F_2\]
δ) \[F_1=3F_2\]
Β. Η άρθρωση ασκεί στη ράβδο δύναμη \[\vec{F}\]:
α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]
β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]
γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]
23. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\] είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\] και απ’ τη στιγμή \[2t_1\] ως \[4t_1\] τότε ισχύει: α) \[α_{γων_1 }=α_{γων_2 }\],
β) \[α_{γων_1 }=-α_{γων_2 }\],
γ) \[α_{γων_1 }=2α_{γων_2 }\],
δ) \[α_{γων_1 }=-2α_{γων_2 }\].
Β) Απ’ τη στιγμή \[t_1\] ως τη στιγμή \[2t_1\] ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.
27. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].
Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\] ενώ ο (2) μέτρου \[α_{γων_2 }\].
A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[ \frac{α_{γων_1 } }{α_{γων_2} } =\frac{R_1}{R_2} \],
β) \[ \frac{ α_{γων_1 } }{α_{γων_2 } } =\frac{R_2}{R_1} \] ,
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \]. Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \, α_{κ_2 }\] αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1} }{ α_{κ_2} } =1\],
β) \[ \frac{ α_{κ_1 } }{ α_{κ_2 } } =\frac{ R_1 }{ R_2 }\],
γ) \[ \frac{ α_{κ_1} }{ α_{κ_2 } } =\frac{ R_2 }{ R_1 } \] .