MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Τροχός στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του τροχού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Αν \[α_Σ\] είναι το μέτρο της επιτάχυνσης του σώματος Σ και \[α_{cm}\] το μέτρο της μεταφορικής επιτάχυνσης του κυλίνδρου τότε ισχύει:
4. Ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται ομοεπίπεδες δυνάμεις παραμένει ακίνητο αν:
5. Δύο τροχοί (1), (2) εκτελούν στροφικές κινήσεις γύρω από σταθερούς άξονες περιστροφής που είναι κάθετοι στις βάσεις τους και περνούν απ’ τα κέντρα τους. Στα παρακάτω διαγράμματα φαίνονται οι μεταβολές των γωνιακών τους ταχυτήτων με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Σύμφωνα με το σχήμα ποια από τις παρακάτω σχέσεις είναι η σωστή; Ως θετική φορά να λάβετε τη φορά που φαίνεται στο σχήμα και να θεωρήσετε ότι οι ροπές των δυνάμεων \[\vec{w},\, \vec{F}\] υπολογίζονται ως προς το άκρο Ο της ράβδου.
7. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:

α) \[ ωR\],              β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],           β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\],       γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].

Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],                    β) \[ω\left( \frac{R}{r}+1 \right)\],                γ) \[ ω \left( \frac{R}{r}-1\right) \].

Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:

α) \[0\],                             β) \[ω^2 R\],                     γ) \[ω^2 r\].

8. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τα σημεία Ζ, Η του τροχού βρίσκονται κάποια στιγμή στην κατακόρυφη διάμετρο και είναι συμμετρικά ως προς το κέντρο μάζας Κ του τροχού. Η διαφορά των μέτρων των ταχυτήτων τους είναι \[υ_Ζ-υ_Η=\frac{2}{3} υ_{cm}\] όπου \[υ_{cm}\] το μέτρο της ταχύτητας του κέντρου μάζας του τροχού την ίδια στιγμή. Η απόσταση των δύο σημείων Ζ, Η του τροχού από το κέντρο Κ είναι:
9. Ο τροχός του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο και το cm του έχει σταθερή επιτάχυνση \[\vec{α}_{cm} \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Για ένα ακίνητο στερεό σώμα την t=0, για να μην αρχίσει να κινείται αμέσως μετά την t=0, θα πρέπει την t=0 να ισχύει:
11. Ομογενής δίσκος αρχίζει να στρέφεται γύρω από σταθερό άξονα περιστροφής τη χρονική στιγμή t=0. Η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο φαίνεται στο παρακάτω διάγραμμα.
Α) Τη χρονική διάρκεια από \[t_2\]  ως \[t_3\]:

α) ο δίσκος αυξάνει το μέτρο της γωνιακής ταχύτητάς του με σταθερό ρυθμό,

β) ο δίσκος μειώνει το μέτρο της γωνιακής ταχύτητάς του με σταθερό ρυθμό,

γ) η στροφική του δίσκου είναι επιβραδυνόμενη αλλά όχι ομαλά,

δ) η στροφική του δίσκου είναι επιταχυνόμενη αλλά όχι ομαλά.

Β) Ο δίσκος αποκτά μέγιστη γωνιακή ταχύτητα:

α) τη χρονική στιγμή \[t_1\],

β) τη χρονική στιγμή \[t_2\],

γ) τη χρονική στιγμή \[t_3\].

12. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
Α) Αν τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας του άκρου Α τη στιγμή \[t_1\] είναι:

α) \[υ_{1_{cm} }\],               β) \[\frac{ υ_{1_{cm} } }{2}  \],                        γ) \[2υ_{1_{cm} }\].

Β) Αν το μέτρο της επιτάχυνσης του κέντρου μάζας είναι \[α_{cm}\],  το μέτρο της επιτάχυνσης του άκρου Α είναι:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[\frac{α_{cm} }{2} \].

13. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:
14. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα

Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\]  και \[\vec{F}_2\]  συνδέονται με τη σχέση:

α)  \[F_2=4F_1\]

β) \[F_2=3F_1\]

γ) \[F_1=4F_2\]

δ) \[F_1=3F_2\]

Β. Η άρθρωση ασκεί στη ράβδο δύναμη  \[\vec{F}\]:

α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]

β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]

γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]

15. Στην ομογενή ράβδο ΚΛ του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκείται ένα ζεύγος δυνάμεων \[F_1\, ,\, F_2\] που η καθεμιά έχει μέτρο \[10\sqrt{3}\, N\]. Το μέτρο της ροπής του ζεύγους αυτής είναι \[30 \, N\cdot m\]. Το μήκος \[\ell\] της ράβδου είναι:
16. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

17. Τροχός ακτίνας \[R=0,25\, m\] στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ το κέντρο του. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=10-4t\] (S.I.). Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
18. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα \[υ_{cm}\] προς τα δεξιά και η γωνιακή ταχύτητα έχει τη φορά που φαίνεται στο παρακάτω σχήμα και σταθερό μέτρο. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] οριζόντια προς τα αριστερά. Σε χρόνο \[Δt\] ο τροχός διαγράφει γωνία \[Δθ\] και το cm μετατοπίζεται οριζόντια κατά \[Δx_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
19. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του. Η γωνία που διαγράφει ο τροχός με το χρόνο δίνεται απ’ τη σχέση \[θ=4t^2\] (S.I.). Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
20. Σε ένα τρακτέρ οι πίσω τροχοί του έχουν ακτίνα \[R_1\] ενώ οι μπροστινοί \[R_2\] με \[R_2<R_1\]. Καθώς το τρακτέρ κινείται, οι τροχοί του εκτελούν κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος. Την ίδια χρονική στιγμή \[t_1\] τα ανώτερα σημεία των παραπάνω τροχών έχουν ταχύτητες μέτρου \[υ_{1_{αν} },\, υ_{2_{αν} }\] αντίστοιχα. Ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
21. Σε λεπτό ομογενή κύλινδρο κέντρου Κ και ακτίνας \[R\] έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r\] και μπορεί να στρέφεται γύρω από οριζόντιο άξονα που είναι κάθετος στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν η επιτάχυνση του κέντρου μάζας του κυλίνδρου είναι \[α_{cm}\] τότε η επιτάχυνση \[\vec{α}_Σ\] του σώματος έχει μέτρο:
22. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν.
23. Τροχός ακτίνας \[R=0,5\, m\] στρέφεται γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ τα κέντρα τους. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=4t\] (S.I.). Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
24. Στερεό εκτελεί μεταβαλλόμενη στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Η γωνιακή επιτάχυνση του στερεού σώματος:
25. Μια ράβδος ΑΒ βρίσκεται πάνω σε οριζόντιο δάπεδο. Δυο οριζόντιες δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] που ασκούνται στα άκρα της ράβδου αποτελούν ζεύγος δυνάμεων. Οι φορείς των δυνάμεων σχηματίζουν με τη ράβδο γωνία \[φ\]. Αν διπλασιάσουμε το μέτρο της κάθε δύναμης, η ροπή του ζεύγους ως προς το μέσο της ράβδου
26. Σφαιρίδιο εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\] και η αλγεβρική τιμή της στροφορμής του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Από \[0\] ως \[t_1\] το μέτρο της συνισταμένης ροπής που δέχεται το σφαιρίδιο ως προς τον άξονα περιστροφής του είναι \[Στ_1\] ενώ απ’ την \[t_1\] ως την \[t_2\] είναι \[Στ_2\]. Αντίστοιχα οι επιτρόχιες επιταχύνσεις του σφαιριδίου στα δύο παραπάνω χρονικά διαστήματα έχουν μέτρο \[α_1\, , \, α_2\]. Για τα παραπάνω μεγέθη ισχύουν:
27. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα μέτρου \[υ_{cm}\] με φορά προς τα δεξιά και ο τροχός στρέφεται δεξιόστροφα. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] προς τα δεξιά και μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το ανώτερο σημείο Β του τροχού έχει ταχύτητα:
28. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] και το κέντρο μάζας του έχει σταθερή ταχύτητα \[\vec{υ}_{cm}\] ενώ ένα σημείο Ζ που απέχει \[r\] απ’ το κέντρο Κ του τροχού έχει γραμμική ταχύτητα \[\vec{υ}_{γρ_Ζ }\]. Σύμφωνα με την αρχή της επαλληλίας των κινήσεων η ταχύτητα του σημείου Ζ είναι:
29. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Ζ:
30. Τροχός στρέφεται γύρω από σταθερό άξονα εκτελώντας επιταχυνόμενη κίνηση. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Όλα τα κινούμενα σημεία του στερεού έχουν την ίδια στιγμή:

    +30

    CONTACT US
    CALL US