MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του. Η γωνία που διαγράφει ο τροχός με το χρόνο δίνεται απ’ τη σχέση \[θ=4t^2\] (S.I.). Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
2. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].

Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται

α) η οριζόντια δύναμη μέτρου \[F_2\]  που είναι αντίθετη με την \[F_1\]  ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν

β) η οριζόντια δύναμη \[F_3\]  ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν

Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:

α) \[\frac{F_1}{3}\]         β) \[3F_1\]       γ) \[\frac{F_1}{4}\]        δ) \[\frac{3F_1}{4}\]

3. Η ράβδος ΑΒ του παρακάτω σχήματος εκτελεί ομαλή στροφική κίνηση πάνω σε οριζόντιο επίπεδο γύρω από σταθερό κατακόρυφο άξονα που περνά από ένα σημείο της Ζ. Στο σχήμα φαίνονται οι ταχύτητες των άκρων της Α, Β. Το σημείο Ζ απέχει απ’ το άκρο Α:
4. Αβαρής ράβδος μήκους \[ \ell \] ισορροπεί οριζόντια με την επίδραση των δυνάμεων \[\vec{F}_1\] και \[ \vec{F}_2\] όπως φαίνεται στο σχήμα. Η απόσταση \[x\] δίνεται από τη σχέση
5. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το κέντρο μάζας του στερεού σώματος:
6. Η διπλή τροχαλία του σχήματος είναι ελεύθερη και αποτελείται από δύο συγκολλημένους ομοαξονικούς δίσκους με ακτίνες \[R\] και \[2R\]. Στον δίσκο με ακτίνα \[R\] είναι τυλιγμένο αρκετές φορές νήμα το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο στην οροφή. Στον μεγάλο δίσκο ακτίνας \[2R\] είναι τυλιγμένο νήμα το οποίο τυλίγεται γύρω από την τροχαλία ακτίνας \[R\]. Η τροχαλία συγκρατείται από ακλόνητο άξονα περιστροφής και μπορεί να στρέφεται χωρίς τριβές. Το άκρο Α του νήματος με κατάλληλη δύναμη έχει ταχύτητα \[υ\] προς τα κάτω με αποτέλεσμα η διπλή τροχαλία να μεταφέρεται προς τα πάνω και να στρέφεται με φορά αντίθετη των δεικτών του ρολογιού. Αν τα νήματα είναι αβαρή, μη εκτατά και δεν ολισθαίνουν στις τροχαλίες, η ταχύτητα που κινείται το σημείο Β είναι:
7. Στο σχήμα οι \[\vec{F}_1 \] και \[\vec{F}_2 \] αποτελούν ζεύγος δυνάμεων. Αν \[x_1,\, x_2\] είναι οι αποστάσεις των φορέων των δυνάμεων \[\vec{F}_1,\, \vec{F}_2\] αντίστοιχα από το Κ τότε η αλγεβρική τιμή της ροπής του ζεύγους ως προς το σημείο Κ είναι
8. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\]. Όταν το σημείο Ζ έχει ταχύτητα \[υ_Ζ=υ_{cm}\] η γωνία \[θ\] είναι:
9. Ο τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
10. Ομογενής κύλινδρος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει με σταθερή επιτάχυνση \[α_{cm}\] λόγω μεταφορικής κίνησης και γωνιακή επιτάχυνση \[α_{γων}\]. Κάποια χρονική στιγμή τα μέτρα της ταχύτητας λόγω μεταφορικής κίνησης και της γωνιακής ταχύτητας είναι \[υ_{cm}\] και \[ω\] αντίστοιχα. Ποιες από τις επόμενες σχέσεις είναι σωστές;
11. Ο τροχός του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο και το cm του έχει σταθερή επιτάχυνση \[\vec{α}_{cm} \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Η γωνιακή επιτάχυνση ενός στερεού σώματος που στρέφεται γύρω από σταθερό άξονα:
13. Τροχός ακτίνας \[R=0,25\, m\] στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ το κέντρο του. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=10-4t\] (S.I.). Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
14. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομόκεντρους ομογενείς ομογενείς δίσκους \[(1)\, , \, (2)\] ακτίνων \[R_1\, ,\, R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κοινό κέντρο Κ των δύο δίσκων και είναι κάθετος στο επίπεδό τους. Απ’ την περιφέρεια του κάθε δίσκου έχουμε κρεμάσει μέσω αβαρών νημάτων ένα σώμα μάζας \[m_1\] απ’ την περιφέρεια του δίσκου \[(1)\] και ένα σώμα μάζας \[m_2\] απ’ την περιφέρεια του δίσκου \[(2)\]. Αν το βάρος της διπλής τροχαλίας είναι \[7w_1\] τότε το μέτρο της δύναμης που δέχεται η διπλή τροχαλία απ’ τον άξονα περιστροφής της είναι:
15. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] ο τροχός έχει στραφεί κατά \[Δθ\] ποια απ’ τις επόμενες προτάσεις είναι σωστή; Ένα σημείο Α που απέχει \[\frac R2\] απ’ το κέντρο του τροχού, λόγω της μεταφορικής του κίνησης διανύει στον ίδιο χρόνο απόσταση:
16. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και το κέντρο μάζας του έχει σταθερή επιτάχυνση μέτρου \[α_{cm}\]. Τη χρονική στιγμή \[t_1\] το μέτρο της γωνιακής ταχύτητας του τροχού είναι \[ω_1\].

Α. Η επιτάχυνση του ανώτερου σημείου Β του τροχού τη στιγμή \[t_1\]  έχει μέτρο:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[ \sqrt{4α_{cm}^2+(ω_1^2 R)^2 }\].

B) Η επιτάχυνση του σημείου επαφής Α του τροχού με το οριζόντιο δάπεδο έχει τη στιγμή \[t_1\] μέτρο:

α) \[ω_1^2 R\],                β) \[0\],                             γ) \[α_{cm}\].

17. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

18. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Τη στιγμή που η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{cm}\], ένα σημείο της περιφέρειας του τροχού που την ίδια στιγμή απέχει \[R\] απ’ το έδαφος έχει ταχύτητα μέτρου:
19. Ένα στερεό σώμα είναι ελεύθερο και να κινηθεί στροφικά και να μεταφερθεί. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Όταν το σώμα αρχίζει να εκτελεί σύνθετη κίνηση τότε το κέντρο μάζας του στερεού:
20. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Την ίδια χρονική στιγμή \[t_1\]:
21. Ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται ομοεπίπεδες δυνάμεις παραμένει ακίνητο αν:
22. Η ομογενής ράβδος ΟΑ του παρακάτω σχήματος στρέφεται πάνω σε οριζόντιο επίπεδο γύρω από σταθερό κατακόρυφο άξονα. Στο σχήμα φαίνονται οι κατευθύνσεις της γωνιακής επιτάχυνσης της ράβδου και της επιτρόχιας επιτάχυνσης του άκρου της Α. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
23. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

24. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν. Η ροπή μιας δύναμης \[\vec{F}\] ως προς άξονα:
25. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] και το κέντρο μάζας του έχει σταθερή ταχύτητα \[\vec{υ}_{cm}\] ενώ ένα σημείο Ζ που απέχει \[r\] απ’ το κέντρο Κ του τροχού έχει γραμμική ταχύτητα \[\vec{υ}_{γρ_Ζ }\]. Σύμφωνα με την αρχή της επαλληλίας των κινήσεων η ταχύτητα του σημείου Ζ είναι:
27. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα

Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\]  και \[\vec{F}_2\]  συνδέονται με τη σχέση:

α)  \[F_2=4F_1\]

β) \[F_2=3F_1\]

γ) \[F_1=4F_2\]

δ) \[F_1=3F_2\]

Β. Η άρθρωση ασκεί στη ράβδο δύναμη  \[\vec{F}\]:

α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]

β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]

γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]

29. Η ομογενής ράβδος ΟΑ μήκους \[\ell\] στρέφεται σε κατακόρυφο επίπεδο, γύρω από οριζόντιο άξονα που περνά από το άκρο Ο. Η ροπή του βάρους \[\vec{w}\] της ράβδου ως προς τον άξονα περιστροφής είναι
30. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:

    +30

    CONTACT US
    CALL US