MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Η ράβδος ΚΛ είναι αρθρωμένη στο σημείο Κ σε κατακόρυφο τοίχο και δεμένη με ένα νήμα στο σημείο Ν και ισορροπεί. Ζητήθηκε από τρεις μαθητές (α), (β) και (γ) να σχεδιάσουν τη δύναμη της άρθρωσης και αυτοί σχεδίασαν αντίστοιχα τις δυνάμεις: α. \[\vec{F}_1\] β. \[\vec{F}_2\] γ. \[\vec{F}_3\]. Εσείς με ποια άποψη συμφωνείτε;
3. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Οι δίσκοι (1) και (2) συνδέονται με ιμάντα και ο καθένας μπορεί να στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στο επίπεδο των βάσεών τους. Ο ιμάντας δεν ολισθαίνει στις περιφέρειές τους. Ποιες από τις επόμενες προτάσεις είναι σωστές;
5. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο και το κέντρο μάζας του τροχού εκτελεί ομαλή κίνηση. Κάποια χρονική στιγμή \[t_1\] ένα σημείο Α του τροχού έχει μηδενική ταχύτητα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να μεγιστοποιηθεί το μέτρο της ταχύτητας του Α για πρώτη φορά μετά τη χρονική στιγμή \[t_1\] πρέπει το σημείο Α να διαγράψει μήκος τόξου:
6. Ο τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
7. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] ο τροχός έχει στραφεί κατά \[Δθ\] ποια απ’ τις επόμενες προτάσεις είναι σωστή; Ένα σημείο Α που απέχει \[\frac R2\] απ’ το κέντρο του τροχού, λόγω της μεταφορικής του κίνησης διανύει στον ίδιο χρόνο απόσταση:
8. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Σε έναν κύβο το κέντρο μάζας του ταυτίζεται με το σημείο τομής των διαγωνίων του. Αυτό σημαίνει ότι:
9. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Την ίδια χρονική στιγμή \[t_1\]:
10. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα μέτρου \[υ_{cm}\] με φορά προς τα δεξιά και ο τροχός στρέφεται δεξιόστροφα. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] προς τα δεξιά και μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το ανώτερο σημείο Β του τροχού έχει ταχύτητα:
11. Τροχός ακτίνας \[R=0,5\, m\] στρέφεται γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ τα κέντρα τους. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=4t\] (S.I.). Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
12. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
13. Σφαίρα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που διέρχεται από μια διάμετρό της. Η γωνιακή ταχύτητα της σφαίρας σε συνάρτηση με το χρόνο παριστάνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
14. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο έδαφος. Τα μέτρα των ταχυτήτων των σημείων Β, Γ, Δ την ίδια στιγμή είναι αντίστοιχα \[υ_Β,\, υ_Γ,\, υ_Δ\]. Ποια από τις παρακάτω σχέσεις είναι σωστή;
15. Οι δυο ομόκεντροι τροχοί του διπλανού σχήματος είναι κολλημένοι και μπορούν να περιστρέφονται γύρω από άξονα που διέρχεται από το κέντρο τους. Αν το σύστημα περιστρέφεται με σταθερή γωνιακή ταχύτητα με τη φορά των δεικτών του ρολογιού τότε για τα μέτρα των δυνάμεων ισχύει
16. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].

Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται

α) η οριζόντια δύναμη μέτρου \[F_2\]  που είναι αντίθετη με την \[F_1\]  ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν

β) η οριζόντια δύναμη \[F_3\]  ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν

Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:

α) \[\frac{F_1}{3}\]         β) \[3F_1\]       γ) \[\frac{F_1}{4}\]        δ) \[\frac{3F_1}{4}\]

17. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Αν \[α_Σ\] είναι το μέτρο της επιτάχυνσης του σώματος Σ και \[α_{cm}\] το μέτρο της μεταφορικής επιτάχυνσης του κυλίνδρου τότε ισχύει:
18. Ένα στερεό σώμα είναι ελεύθερο και να κινηθεί στροφικά και να μεταφερθεί. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Όταν το σώμα αρχίζει να εκτελεί σύνθετη κίνηση τότε το κέντρο μάζας του στερεού:
19. Στο παρακάτω σχήμα ο ομογενής δίσκος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει, ενώ στο ανώτερο άκρο της περιφέρειάς του έχουμε ακουμπήσει λεπτή σανίδα που μεταφέρεται με κατάλληλο μηχανισμό ώστε να μην ολισθαίνει πάνω στο δίσκο και να μένει συνεχώς οριζόντια.

Α) Αν τη στιγμή \[t_1\]  ο τροχός έχει γωνιακή ταχύτητα μέτρου \[ω\], την ίδια στιγμή το μέτρο της ταχύτητας της σανίδας  έχει μέτρο:

α) \[ωR\],                                     β) \[\frac{ωR}{2}\],                                  γ) \[2ωR\].

B) Αν σε χρόνο \[Δt\] το κέντρο μάζας του έχει μεταφερθεί κατά \[Δx_{cm}\], τότε η σανίδα μεταφέρεται στον ίδιο χρόνο κατά:

α) \[2Δx_{cm}\],                  β) \[Δx_{cm}\],                    γ) \[   \frac{    Δx_{cm}  }{  2   }   \].

20. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:

α) \[ ωR\],              β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],           β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\],       γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].

Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],                    β) \[ω\left( \frac{R}{r}+1 \right)\],                γ) \[ ω \left( \frac{R}{r}-1\right) \].

Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:

α) \[0\],                             β) \[ω^2 R\],                     γ) \[ω^2 r\].

21. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω σε οριζόντιο έδαφος. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
22. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα

Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\]  και \[\vec{F}_2\]  συνδέονται με τη σχέση:

α)  \[F_2=4F_1\]

β) \[F_2=3F_1\]

γ) \[F_1=4F_2\]

δ) \[F_1=3F_2\]

Β. Η άρθρωση ασκεί στη ράβδο δύναμη  \[\vec{F}\]:

α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]

β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]

γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]

23. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

24. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\]. Όταν το σημείο Ζ έχει ταχύτητα \[υ_Ζ=υ_{cm}\] η γωνία \[θ\] είναι:
25. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω σχήμα.
Ποιο απ’ τα παρακάτω διαγράμματα παριστάνει τη γωνιακή επιτάχυνση του στερεού με το χρόνο;
26. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα \[υ_{cm}\] προς τα δεξιά και η γωνιακή ταχύτητα έχει τη φορά που φαίνεται στο παρακάτω σχήμα και σταθερό μέτρο. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] οριζόντια προς τα αριστερά. Σε χρόνο \[Δt\] ο τροχός διαγράφει γωνία \[Δθ\] και το cm μετατοπίζεται οριζόντια κατά \[Δx_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
27. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

28. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] και το κέντρο μάζας του έχει σταθερή ταχύτητα \[\vec{υ}_{cm}\] ενώ ένα σημείο Ζ που απέχει \[r\] απ’ το κέντρο Κ του τροχού έχει γραμμική ταχύτητα \[\vec{υ}_{γρ_Ζ }\]. Σύμφωνα με την αρχή της επαλληλίας των κινήσεων η ταχύτητα του σημείου Ζ είναι:
29. Σφαιρίδιο εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\] και η αλγεβρική τιμή της στροφορμής του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Από \[0\] ως \[t_1\] το μέτρο της συνισταμένης ροπής που δέχεται το σφαιρίδιο ως προς τον άξονα περιστροφής του είναι \[Στ_1\] ενώ απ’ την \[t_1\] ως την \[t_2\] είναι \[Στ_2\]. Αντίστοιχα οι επιτρόχιες επιταχύνσεις του σφαιριδίου στα δύο παραπάνω χρονικά διαστήματα έχουν μέτρο \[α_1\, , \, α_2\]. Για τα παραπάνω μεγέθη ισχύουν:
30. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν σε χρόνο \[Δt\] ο κύλινδρος έχει εκτελέσει \[Ν_1\] περιστροφές στον ίδιο χρόνο η τροχαλία έχει εκτελέσει \[N_2\] περιστροφές και ισχύει:

    +30

    CONTACT US
    CALL US