MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Δύο τροχοί (1), (2) εκτελούν στροφικές κινήσεις γύρω από σταθερούς άξονες περιστροφής που είναι κάθετοι στις βάσεις τους και περνούν απ’ τα κέντρα τους. Στα παρακάτω διαγράμματα φαίνονται οι μεταβολές των γωνιακών τους ταχυτήτων με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Ένα ελεύθερο στερεό σώμα που αρχικά ισορροπεί ακίνητο δέχεται από κάποια στιγμή και μετά τη δράση ενός ζεύγους δυνάμεων. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Το στερεό σώμα:
3. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο έδαφος. Ποιες από τις επόμενες προτάσεις είναι σωστές;
4. Στερεό αρχίζει την \[t=0\] να περιστρέφεται γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο.
A) Τη χρονική στιγμή \[3t_1\] το στερεό σώμα έχει γωνιακή ταχύτητα:

α) \[α_{γων_0 } t_1\],                   β) \[  \frac{  α_{γων_0} t_1}{2} \],             γ) \[0\].

Β) Απ’ τη χρονική στιγμή \[0\] μέχρι τη χρονική στιγμή \[3t_1\]  η γωνιακή μετατόπιση του στερεού είναι:

α) \[0\],                             β) \[α_{γων} t_1^2\],                      γ) \[\frac{3}{2} α_{γων} t_1^2 \].

5. Στο παρακάτω σχήμα ο ομογενής δίσκος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει, ενώ στο ανώτερο άκρο της περιφέρειάς του έχουμε ακουμπήσει λεπτή σανίδα που μεταφέρεται με κατάλληλο μηχανισμό ώστε να μην ολισθαίνει πάνω στο δίσκο και να μένει συνεχώς οριζόντια.

Α) Αν τη στιγμή \[t_1\]  ο τροχός έχει γωνιακή ταχύτητα μέτρου \[ω\], την ίδια στιγμή το μέτρο της ταχύτητας της σανίδας  έχει μέτρο:

α) \[ωR\],                                     β) \[\frac{ωR}{2}\],                                  γ) \[2ωR\].

B) Αν σε χρόνο \[Δt\] το κέντρο μάζας του έχει μεταφερθεί κατά \[Δx_{cm}\], τότε η σανίδα μεταφέρεται στον ίδιο χρόνο κατά:

α) \[2Δx_{cm}\],                  β) \[Δx_{cm}\],                    γ) \[   \frac{    Δx_{cm}  }{  2   }   \].

6. Οι δίσκοι (1) και (2) συνδέονται με ιμάντα και ο καθένας μπορεί να στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στο επίπεδο των βάσεών τους. Ο ιμάντας δεν ολισθαίνει στις περιφέρειές τους. Ποιες από τις επόμενες προτάσεις είναι σωστές;
7. Ομογενής κύλινδρος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει με σταθερή επιτάχυνση \[α_{cm}\] λόγω μεταφορικής κίνησης και γωνιακή επιτάχυνση \[α_{γων}\]. Κάποια χρονική στιγμή τα μέτρα της ταχύτητας λόγω μεταφορικής κίνησης και της γωνιακής ταχύτητας είναι \[υ_{cm}\] και \[ω\] αντίστοιχα. Ποιες από τις επόμενες σχέσεις είναι σωστές;
8. Ένα στερεό, που αρχικά είναι ακίνητο, δέχεται ομοεπίπεδες δυνάμεις για τις οποίες ισχύουν \[Σ\vec{F}≠0\] και \[Στ=0\] ως προς άξονα κάθετο στο επίπεδο των δυνάμεων που διέρχεται από το cm του. Το στερεό αυτό:
9. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομόκεντρους ομογενείς ομογενείς δίσκους \[(1)\, , \, (2)\] ακτίνων \[R_1\, ,\, R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κοινό κέντρο Κ των δύο δίσκων και είναι κάθετος στο επίπεδό τους. Απ’ την περιφέρεια του κάθε δίσκου έχουμε κρεμάσει μέσω αβαρών νημάτων ένα σώμα μάζας \[m_1\] απ’ την περιφέρεια του δίσκου \[(1)\] και ένα σώμα μάζας \[m_2\] απ’ την περιφέρεια του δίσκου \[(2)\]. Αν το βάρος της διπλής τροχαλίας είναι \[7w_1\] τότε το μέτρο της δύναμης που δέχεται η διπλή τροχαλία απ’ τον άξονα περιστροφής της είναι:
10. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Στην περιφέρεια του δίσκου του παρακάτω σχήματος έχουμε τυλίξει σε πολλές στροφές αβαρές και μη εκτατό νήμα που δένουμε το ένα άκρο του σε ακλόνητο τοίχο. Αφήνουμε το δίσκο ελεύθερο και αυτός αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ταυτόχρονα να στρέφεται έτσι ώστε το νήμα να μένει συνεχώς παράλληλο στο κεκλιμένο επίπεδο. Αν η ταχύτητα της μεταφορικής κίνησης του δίσκου κάποια στιγμή είναι \[υ_1\], τότε η ταχύτητα του σημείου επαφής του δίσκου με το κεκλιμένο επίπεδο είναι:
12. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
13. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Αν \[α_Σ\] είναι το μέτρο της επιτάχυνσης του σώματος Σ και \[α_{cm}\] το μέτρο της μεταφορικής επιτάχυνσης του κυλίνδρου τότε ισχύει:
14. Αβαρής ράβδος μήκους \[ \ell \] ισορροπεί οριζόντια με την επίδραση των δυνάμεων \[\vec{F}_1\] και \[ \vec{F}_2\] όπως φαίνεται στο σχήμα. Η απόσταση \[x\] δίνεται από τη σχέση
15. Η διπλή τροχαλία του σχήματος είναι ελεύθερη και αποτελείται από δύο συγκολλημένους ομοαξονικούς δίσκους με ακτίνες \[R\] και \[2R\]. Στον δίσκο με ακτίνα \[R\] είναι τυλιγμένο αρκετές φορές νήμα το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο στην οροφή. Στον μεγάλο δίσκο ακτίνας \[2R\] είναι τυλιγμένο νήμα το οποίο τυλίγεται γύρω από την τροχαλία ακτίνας \[R\]. Η τροχαλία συγκρατείται από ακλόνητο άξονα περιστροφής και μπορεί να στρέφεται χωρίς τριβές. Το άκρο Α του νήματος με κατάλληλη δύναμη έχει ταχύτητα \[υ\] προς τα κάτω με αποτέλεσμα η διπλή τροχαλία να μεταφέρεται προς τα πάνω και να στρέφεται με φορά αντίθετη των δεικτών του ρολογιού. Αν τα νήματα είναι αβαρή, μη εκτατά και δεν ολισθαίνουν στις τροχαλίες, η ταχύτητα που κινείται το σημείο Β είναι:
16. Στην ομογενή ράβδο ΚΛ του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκείται ένα ζεύγος δυνάμεων \[F_1\, ,\, F_2\] που η καθεμιά έχει μέτρο \[10\sqrt{3}\, N\]. Το μέτρο της ροπής του ζεύγους αυτής είναι \[30 \, N\cdot m\]. Το μήκος \[\ell\] της ράβδου είναι:
17. Η ομογενής ράβδος ΟΑ του παρακάτω σχήματος στρέφεται πάνω σε οριζόντιο επίπεδο γύρω από σταθερό κατακόρυφο άξονα. Στο σχήμα φαίνονται οι κατευθύνσεις της γωνιακής επιτάχυνσης της ράβδου και της επιτρόχιας επιτάχυνσης του άκρου της Α. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
18. Μια λεπτή ομογενής σανίδα βάρους \[w\] και μήκους \[\ell\] διατηρείται οριζόντια έχοντας δεμένα στα δυο άκρα της ένα νήμα και ένα δυναμόμετρο. Σε ένα σημείο της σανίδας που απέχει \[\frac{\ell}{4}\] από το άκρο Α, τοποθετούμε 2 όμοια σώματα (Σ), βάρους \[w\] το καθένα.

Α. Η ένδειξη του δυναμόμετρου είναι ίση με:

α) \[w\]

β) \[2w\]

γ) \[3w\]

δ) \[4w\]

Β. Αν διπλασιάσουμε το πλήθος των σωμάτων (Σ) η ένδειξη του δυναμόμετρου θα:

α) διπλασιαστεί

β) τετραπλασιαστεί

γ) αυξηθεί κατά \[1,5\] φορές

19. Η ομογενής σφαίρα του παρακάτω σχήματος έχει ακτίνα \[R\] και βάρος \[w\], βρίσκεται σε οριζόντιο επίπεδο και πρόκειται να ανέβει ένα τραχύ σκαλοπάτι ύψους \[h = \frac{R}{4}\]. Για το σκοπό αυτό ασκούμε μια οριζόντια δύναμη \[F_1\] στο κέντρο της Κ με την κατεύθυνση του σχήματος. Επαναλαμβάνουμε το ίδιο πείραμα ασκώντας μια ομόρροπη οριζόντια δύναμη \[F_2\] στο ανώτερο σημείο της Α. Ο λόγος των μέτρων των δύο ελάχιστων δυνάμεων \[ F_{1,min} \, , \, F_{2,min} \] ώστε να αρχίσει η υπερπήδηση της σφαίρας είναι \[\frac{F_{1,min} } { F_{2,min} }\]:
20. Μια ράβδος ΑΒ βρίσκεται πάνω σε οριζόντιο δάπεδο. Δυο οριζόντιες δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] που ασκούνται στα άκρα της ράβδου αποτελούν ζεύγος δυνάμεων. Οι φορείς των δυνάμεων σχηματίζουν με τη ράβδο γωνία \[φ\]. Αν διπλασιάσουμε το μέτρο της κάθε δύναμης, η ροπή του ζεύγους ως προς το μέσο της ράβδου
21. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Ποιες από τις επόμενες προτάσεις είναι σωστές;
22. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του. Η γωνία που διαγράφει ο τροχός με το χρόνο δίνεται απ’ τη σχέση \[θ=4t^2\] (S.I.). Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
23. Τροχός ακτίνας \[R=0,25\, m\] στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ το κέντρο του. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=10-4t\] (S.I.). Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
24. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Για τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ}\] ισχύει:
25. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τα σημεία Ζ, Η του τροχού βρίσκονται κάποια στιγμή στην κατακόρυφη διάμετρο και είναι συμμετρικά ως προς το κέντρο μάζας Κ του τροχού. Η διαφορά των μέτρων των ταχυτήτων τους είναι \[υ_Ζ-υ_Η=\frac{2}{3} υ_{cm}\] όπου \[υ_{cm}\] το μέτρο της ταχύτητας του κέντρου μάζας του τροχού την ίδια στιγμή. Η απόσταση των δύο σημείων Ζ, Η του τροχού από το κέντρο Κ είναι:
26. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος με σταθερή μεταφορική ταχύτητα \[υ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Να επιλέξετε τις σωστές από τις παρακάτω προτάσεις.
28. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:
29. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τη στιγμή \[t_1\] ένα σημείο Γ της περιφέρειάς του που απέχει \[R\] απ’ το έδαφος έχει ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το μέτρο της ταχύτητας του ανώτερου σημείου του τροχού την ίδια στιγμή έχει ταχύτητα μέτρου:
30. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
Α) Αν τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας του άκρου Α τη στιγμή \[t_1\] είναι:

α) \[υ_{1_{cm} }\],               β) \[\frac{ υ_{1_{cm} } }{2}  \],                        γ) \[2υ_{1_{cm} }\].

Β) Αν το μέτρο της επιτάχυνσης του κέντρου μάζας είναι \[α_{cm}\],  το μέτρο της επιτάχυνσης του άκρου Α είναι:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[\frac{α_{cm} }{2} \].


    +30

    CONTACT US
    CALL US