2. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει και η μεταφορική του κίνηση είναι ομαλά επιταχυνόμενη. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; 6. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Το διάγραμμα της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω σχήμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γραφική παράσταση της γωνιακής ταχύτητας του τροχού με το χρόνο δίνεται απ’ το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Οι οδοντωτοί τροχοί του παρακάτω σχήματος έρχονται σε επαφή και στρέφονται ταυτόχρονα γύρω από σταθερό άξονα που ο καθένας είναι κάθετος στο επίπεδο των βάσεών του. Οι κινήσεις τους είναι ομαλά επιταχυνόμενες. Ποιες από τις επόμενες προτάσεις είναι σωστές; Οι δύο οδοντωτοί τροχοί:
13. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα
Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\] συνδέονται με τη σχέση:
α) \[F_2=4F_1\]
β) \[F_2=3F_1\]
γ) \[F_1=4F_2\]
δ) \[F_1=3F_2\]
Β. Η άρθρωση ασκεί στη ράβδο δύναμη \[\vec{F}\]:
α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]
β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]
γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]
15. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος με σταθερή μεταφορική ταχύτητα \[υ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 18. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει την \[t=0\] σε οριζόντιο έδαφος και η επιτάχυνση του κέντρου μάζας του είναι σταθερή. Μια χρονική στιγμή \[t_1\] η γωνιακή ταχύτητα του τροχού έχει μέτρο \[ω_1\] και η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{1_{cm}}\] και έχει τη φορά που φαίνεται στο σχήμα. Τα σημεία Γ και Δ είναι τα άκρα της οριζόντιας διαμέτρου του τροχού. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
20. Στερεό σώμα εκτελεί στροφική κίνηση και η γωνιακή του ταχύτητα δίνεται απ’ τη σχέση \[ω=5+2t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές; 21. Ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται ομοεπίπεδες δυνάμεις παραμένει ακίνητο αν: 23. Ο ομογενής δίσκος του παρακάτω σχήματος στρέφεται γύρω από κατακόρυφο άξονα που είναι κάθετος στο επίπεδό του και περνά απ’ το κέντρο του. Στο σχήμα φαίνονται οι κατευθύνσεις της γωνιακής ταχύτητας του δίσκου και της επιτρόχιας επιτάχυνσης ενός σημείου Α της περιφέρειάς του. Ποια από τις παρακάτω προτάσεις είναι η σωστή;
24. Στερεό αρχίζει την \[t=0\] να περιστρέφεται γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο.
A) Τη χρονική στιγμή \[3t_1\] το στερεό σώμα έχει γωνιακή ταχύτητα:
α) \[α_{γων_0 } t_1\], β) \[ \frac{ α_{γων_0} t_1}{2} \], γ) \[0\].
Β) Απ’ τη χρονική στιγμή \[0\] μέχρι τη χρονική στιγμή \[3t_1\] η γωνιακή μετατόπιση του στερεού είναι:
α) \[0\], β) \[α_{γων} t_1^2\], γ) \[\frac{3}{2} α_{γων} t_1^2 \].
26. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].
Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται
α) η οριζόντια δύναμη μέτρου \[F_2\] που είναι αντίθετη με την \[F_1\] ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν
β) η οριζόντια δύναμη \[F_3\] ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν
Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:
α) \[\frac{F_1}{3}\] β) \[3F_1\] γ) \[\frac{F_1}{4}\] δ) \[\frac{3F_1}{4}\]
30. Στο παρακάτω σχήμα ο ομογενής δίσκος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει, ενώ στο ανώτερο άκρο της περιφέρειάς του έχουμε ακουμπήσει λεπτή σανίδα που μεταφέρεται με κατάλληλο μηχανισμό ώστε να μην ολισθαίνει πάνω στο δίσκο και να μένει συνεχώς οριζόντια.
Α) Αν τη στιγμή \[t_1\] ο τροχός έχει γωνιακή ταχύτητα μέτρου \[ω\], την ίδια στιγμή το μέτρο της ταχύτητας της σανίδας έχει μέτρο:
α) \[ωR\], β) \[\frac{ωR}{2}\], γ) \[2ωR\].
B) Αν σε χρόνο \[Δt\] το κέντρο μάζας του έχει μεταφερθεί κατά \[Δx_{cm}\], τότε η σανίδα μεταφέρεται στον ίδιο χρόνο κατά:
α) \[2Δx_{cm}\], β) \[Δx_{cm}\], γ) \[ \frac{ Δx_{cm} }{ 2 } \].