MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα μέτρου \[υ_{cm}\] με φορά προς τα δεξιά και ο τροχός στρέφεται δεξιόστροφα. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] προς τα δεξιά και μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το ανώτερο σημείο Β του τροχού έχει ταχύτητα:
2. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα κάθετο στις βάσεις του που διέρχεται απ’ το κέντρο του. Ένα σημείο της περιφέρειάς του αυξάνει το μέτρο της γραμμικής ταχύτητάς του σύμφωνα με την εξίσωση \[υ=3t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα \[ω\]. Η σχέση που συνδέει την ίδια στιγμή τα μέτρα των ταχυτήτων των σημείων της κατακόρυφης διαμέτρου ΑΒ με την απόστασή τους \[x\] απ’ το σημείο Α του τροχού που την ίδια στιγμή είναι σε επαφή με το έδαφος είναι:
4. H αβαρής ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από άξονα κάθετο στο επίπεδο του σχήματος και διερχόμενο από το άκρο της Ο. Αν Μ είναι το μέσο της ράβδου για να ισορροπεί αυτή πρέπει το μέτρο της δύναμης \[F_2\] να είναι
5. Οι δύο τροχοί (1), (2) του παρακάτω σχήματος είναι συνδεδεμένοι με ιμάντα και στρέφονται ομαλά επιταχυνόμενοι γύρω από σταθερούς άξονες που είναι ο καθένας κάθετος στις βάσεις του κάθε δίσκου και διέρχεται απ’ το κέντρο του χωρίς ο ιμάντας να ολισθαίνει στις περιφέρειές τους. Η φορά περιστροφής του δίσκου (1) φαίνεται στο παρακάτω σχήμα. Για τις ακτίνες των δύο δίσκων ισχύει \[R_1=2R_2\].
A) Αν η γωνιακή ταχύτητα του τροχού (1) έχει τη χρονική στιγμή \[t_1\] μέτρο \[ω_1\] τότε ο τροχός (2) την ίδια στιγμή:

α) έχει γωνιακή ταχύτητα μέτρου \[ω_2=ω_1\]  και στρέφεται αντίρροπα των δεικτών του ρολογιού.

β) έχει γωνιακή ταχύτητα μέτρου \[ω_2=2ω_1\]  και στρέφεται αντίρροπα της φοράς των δεικτών του ρολογιού.

γ) έχει γωνιακή ταχύτητα μέτρου \[ω_2=2ω_1\]  και στρέφεται ομόρροπα με τους δείκτες του ρολογιού.

Β) Για τα μέτρα των επιτρόχιων επιταχύνσεων των περιφερειών \[α_{επ_1 },\, α_{επ_2 }\]  των δύο τροχών ισχύει:
α) \[α_{επ_1 }=α_{επ_2 }\],                     
β) \[α_{επ_1}=2α_{επ_2}\],                   
γ) \[α_{επ_1}=\frac{  α_{επ_2}  }{ 2  }\].

6. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της διαγραφόμενης γωνίας (γωνιακής μετατόπισης) με το χρόνο μιας ράβδου που στρέφεται γύρω από σταθερό άξονα περιστροφής. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Σε μια ράβδο ΑΓ που ισορροπεί πάνω σε οριζόντιο επίπεδο ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\], όπως φαίνεται στο σχήμα. Το μέτρο της ροπής του ζεύγους είναι
8. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:
9. Σε ένα τρακτέρ οι πίσω τροχοί του έχουν ακτίνα \[R_1\] ενώ οι μπροστινοί \[R_2\] με \[R_2<R_1\]. Καθώς το τρακτέρ κινείται, οι τροχοί του εκτελούν κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος. Την ίδια χρονική στιγμή \[t_1\] τα ανώτερα σημεία των παραπάνω τροχών έχουν ταχύτητες μέτρου \[υ_{1_{αν} },\, υ_{2_{αν} }\] αντίστοιχα. Ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
10. Το στερεό σώμα του παρακάτω σχήματος α στρέφεται γύρω από τον σταθερό άξονα \[z' z\] αντίρροπα των δεικτών του ρολογιού. Η γωνιακή ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

12. Στερεό σώμα την \[t=t_1\] έχει γωνιακή ταχύτητα \[ω_1\] και τη στιγμή αυτή το μέτρο της γωνιακής του ταχύτητας αρχίζει να αυξάνεται με σταθερό ρυθμό που έχει μέτρο \[α_{γων}\]. Τη χρονική στιγμή \[t_2=t_1+Δt\] η γωνιακή ταχύτητα του στερεού γίνεται \[ω_2\]. Η γωνία \[Δθ\] που έχει στραφεί το στερεό στο χρονικό διάστημα \[Δt\] είναι:
13. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω σχήμα.
Ποιο απ’ τα παρακάτω διαγράμματα παριστάνει τη γωνιακή επιτάχυνση του στερεού με το χρόνο;
14. Σε ομογενή ράβδο ΚΛ μήκους \[\ell\] του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκούνται δύο δυνάμεις παράλληλες, ίδιου μέτρου \[F_1=F_2=F\] και αντίθετης φοράς που σχηματίζουν με τη ράβδο γωνία \[φ\] με \[ημφ=0,8\], συνφ=0,6. Το μέτρο της συνισταμένης ροπής των δύο αυτών δυνάμεων είναι:
15. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
16. Στο σχήμα οι \[\vec{F}_1 \] και \[\vec{F}_2 \] αποτελούν ζεύγος δυνάμεων. Αν \[x_1,\, x_2\] είναι οι αποστάσεις των φορέων των δυνάμεων \[\vec{F}_1,\, \vec{F}_2\] αντίστοιχα από το Κ τότε η αλγεβρική τιμή της ροπής του ζεύγους ως προς το σημείο Κ είναι
17. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Για τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ}\] ισχύει:
18. Η διπλή τροχαλία του σχήματος είναι ελεύθερη και αποτελείται από δύο συγκολλημένους ομοαξονικούς δίσκους με ακτίνες \[R\] και \[2R\]. Στον δίσκο με ακτίνα \[R\] είναι τυλιγμένο αρκετές φορές νήμα το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο στην οροφή. Στον μεγάλο δίσκο ακτίνας \[2R\] είναι τυλιγμένο νήμα το οποίο τυλίγεται γύρω από την τροχαλία ακτίνας \[R\]. Η τροχαλία συγκρατείται από ακλόνητο άξονα περιστροφής και μπορεί να στρέφεται χωρίς τριβές. Το άκρο Α του νήματος με κατάλληλη δύναμη έχει ταχύτητα \[υ\] προς τα κάτω με αποτέλεσμα η διπλή τροχαλία να μεταφέρεται προς τα πάνω και να στρέφεται με φορά αντίθετη των δεικτών του ρολογιού. Αν τα νήματα είναι αβαρή, μη εκτατά και δεν ολισθαίνουν στις τροχαλίες, η ταχύτητα που κινείται το σημείο Β είναι:
19. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Το διάγραμμα της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω σχήμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος εκτελεί ένας τροχός:
21. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της μεταβολής των γωνιακών ταχυτήτων δύο σφαιρικών φλοιών (1) και (2) με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Σε έναν κύβο το κέντρο μάζας του ταυτίζεται με το σημείο τομής των διαγωνίων του. Αυτό σημαίνει ότι:
23. Σε λεπτό ομογενή κύλινδρο κέντρου Κ και ακτίνας \[R\] έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r\] και μπορεί να στρέφεται γύρω από οριζόντιο άξονα που είναι κάθετος στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν η επιτάχυνση του κέντρου μάζας του κυλίνδρου είναι \[α_{cm}\] τότε η επιτάχυνση \[\vec{α}_Σ\] του σώματος έχει μέτρο:
24. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και το κέντρο μάζας του έχει σταθερή επιτάχυνση μέτρου \[α_{cm}\]. Τη χρονική στιγμή \[t_1\] το μέτρο της γωνιακής ταχύτητας του τροχού είναι \[ω_1\].

Α. Η επιτάχυνση του ανώτερου σημείου Β του τροχού τη στιγμή \[t_1\]  έχει μέτρο:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[ \sqrt{4α_{cm}^2+(ω_1^2 R)^2 }\].

B) Η επιτάχυνση του σημείου επαφής Α του τροχού με το οριζόντιο δάπεδο έχει τη στιγμή \[t_1\] μέτρο:

α) \[ω_1^2 R\],                β) \[0\],                             γ) \[α_{cm}\].

25. Μια αβαρής ράβδος ΑΓ μήκους \[\ell\], κρέμεται από τα δυο άκρα της με δυο κατακόρυφα νήματα και διατηρείται οριζόντια. Ένα σώμα Σ βάρους \[w\] ισορροπεί σε απόσταση \[\frac{\ell}{4}\] από το άκρο Α της ράβδου. Οι τάσεις \[\vec{Τ}_1\] και \[\vec{Τ}_2\] των νημάτων που ασκούνται στα άκρα Α και Γ της ράβδου έχουν μέτρα που συνδέονται με τη σχέση
26. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
27. Μια ομογενής δοκός ΑΓ βάρους \[w\], είναι αρθρωμένη σε κατακόρυφο τοίχο και διατηρείται οριζόντια με τη βοήθεια κατακόρυφου νήματος που είναι δεμένο στο άλλο άκρο της, όπως φαίνεται στο σχήμα. Η δύναμη του νήματος \[\vec{T}\] έχει μέτρο:
28. Δύο στερεά σώματα (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερό άξονα περιστροφής το καθένα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας του κάθε στερεού με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
29. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν σε χρόνο \[Δt\] ο κύλινδρος έχει εκτελέσει \[Ν_1\] περιστροφές στον ίδιο χρόνο η τροχαλία έχει εκτελέσει \[N_2\] περιστροφές και ισχύει:
30. Οι δυο ομόκεντροι τροχοί του διπλανού σχήματος είναι κολλημένοι και μπορούν να περιστρέφονται γύρω από άξονα που διέρχεται από το κέντρο τους. Αν το σύστημα περιστρέφεται με σταθερή γωνιακή ταχύτητα με τη φορά των δεικτών του ρολογιού τότε για τα μέτρα των δυνάμεων ισχύει

    +30

    CONTACT US
    CALL US