MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Ο τροχός του παρακάτω σχήματος εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη βάση του με τη φορά που φαίνεται στο σχήμα. Το μέτρο της γωνιακής του ταχύτητας μειώνεται με το χρόνο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
4. Τροχός στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του τροχού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Το βαρούλκο του παρακάτω σχήματος αποτελείται από έναν κύλινδρο ακτίνας \[r\], ενώ το χερούλι του μπορεί να διαγράφει κύκλο ακτίνας \[R=2r\]. Το νήμα είναι αβαρές. Το μέτρο της ελάχιστης δύναμης που πρέπει να ασκούμε στο χερούλι ώστε το σώμα βάρους \[w\] να ισορροπεί ισούται με
6. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
7. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:

Α) Το κέντρο μάζας του δίσκου μέχρι τη στιγμή \[t_1\]  έχει μετατοπιστεί κατά \[Δx_{cm}\]  που είναι ίσο με:

α) \[ \ell \],                              β) \[\frac{\ell}{2}\],               γ) \[2\ell\].

Β) Το ελεύθερο άκρο του νήματος μέχρι τη στιγμή \[t_1\]  μετατοπίζεται κατά \[Δx_A\]  που είναι ίσο με:

α) \[3\ell\],                            β) \[2\ell\],                γ) \[\ell\].

8. Ένα ελεύθερο στερεό σώμα που αρχικά ισορροπεί ακίνητο δέχεται από κάποια στιγμή και μετά τη δράση ενός ζεύγους δυνάμεων. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Το στερεό σώμα:
9. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Ζ:
10. Δύο τροχοί (1), (2) εκτελούν στροφικές κινήσεις γύρω από σταθερούς άξονες περιστροφής που είναι κάθετοι στις βάσεις τους και περνούν απ’ τα κέντρα τους. Στα παρακάτω διαγράμματα φαίνονται οι μεταβολές των γωνιακών τους ταχυτήτων με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:

α) \[ ωR\],              β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],           β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\],       γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].

Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],                    β) \[ω\left( \frac{R}{r}+1 \right)\],                γ) \[ ω \left( \frac{R}{r}-1\right) \].

Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:

α) \[0\],                             β) \[ω^2 R\],                     γ) \[ω^2 r\].

12. Στην περιφέρεια του δίσκου του παρακάτω σχήματος έχουμε τυλίξει σε πολλές στροφές αβαρές και μη εκτατό νήμα που δένουμε το ένα άκρο του σε ακλόνητο τοίχο. Αφήνουμε το δίσκο ελεύθερο και αυτός αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ταυτόχρονα να στρέφεται έτσι ώστε το νήμα να μένει συνεχώς παράλληλο στο κεκλιμένο επίπεδο. Αν η ταχύτητα της μεταφορικής κίνησης του δίσκου κάποια στιγμή είναι \[υ_1\], τότε η ταχύτητα του σημείου επαφής του δίσκου με το κεκλιμένο επίπεδο είναι:
13. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Στερεό αρχίζει την \[t=0\] να περιστρέφεται γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο.
A) Τη χρονική στιγμή \[3t_1\] το στερεό σώμα έχει γωνιακή ταχύτητα:

α) \[α_{γων_0 } t_1\],                   β) \[  \frac{  α_{γων_0} t_1}{2} \],             γ) \[0\].

Β) Απ’ τη χρονική στιγμή \[0\] μέχρι τη χρονική στιγμή \[3t_1\]  η γωνιακή μετατόπιση του στερεού είναι:

α) \[0\],                             β) \[α_{γων} t_1^2\],                      γ) \[\frac{3}{2} α_{γων} t_1^2 \].

15. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Θεωρούμε θετική φορά για τη στροφική κίνηση την αντίθετη απ’ τη φορά κίνησης των δεικτών του ρολογιού. Η γραφική παράσταση της συνάρτησης της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
16. Ομογενής κύλινδρος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει με σταθερή επιτάχυνση \[α_{cm}\] λόγω μεταφορικής κίνησης και γωνιακή επιτάχυνση \[α_{γων}\]. Κάποια χρονική στιγμή τα μέτρα της ταχύτητας λόγω μεταφορικής κίνησης και της γωνιακής ταχύτητας είναι \[υ_{cm}\] και \[ω\] αντίστοιχα. Ποιες από τις επόμενες σχέσεις είναι σωστές;
17. Μια ομογενής δοκός ΑΓ βάρους \[w\], είναι αρθρωμένη σε κατακόρυφο τοίχο και διατηρείται οριζόντια με τη βοήθεια κατακόρυφου νήματος που είναι δεμένο στο άλλο άκρο της, όπως φαίνεται στο σχήμα. Η δύναμη του νήματος \[\vec{T}\] έχει μέτρο:
18. Σώμα αμελητέων διαστάσεων εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στροφορμής του με το χρόνο. Από \[t_0=0\] ως \[t_1\] η γωνιακή επιτάχυνση του σφαιριδίου είναι \[α_{γων_1 }\] ενώ από \[t_1\] ως \[t_2\] είναι \[α_{γων_2 }\]. Το πηλίκο \[ \frac{α_{γων_2 } } {α_{γων_1 } } \] είναι:
19. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

20. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το κέντρο μάζας του στερεού σώματος:
21. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Η ταχύτητα του κέντρου μάζας του είναι σταθερή και έχει μέτρο \[υ_{cm}\]. Σημείο Ζ απέχει απόσταση \[r=\frac{R}{2}\] απ’ το κέντρο του τροχού. Όταν η επιβατική ακτίνα του Ζ σχηματίζει γωνία \[θ=60^0\] με την κατακόρυφη διάμετρο (βλ. σχήμα), το μέτρο της ταχύτητας του Ζ είναι:
22. Τροχός ακτίνας \[R=0,25\, m\] στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ το κέντρο του. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=10-4t\] (S.I.). Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
23. Στερεό σώμα την \[t=t_1\] έχει γωνιακή ταχύτητα \[ω_1\] και τη στιγμή αυτή το μέτρο της γωνιακής του ταχύτητας αρχίζει να αυξάνεται με σταθερό ρυθμό που έχει μέτρο \[α_{γων}\]. Τη χρονική στιγμή \[t_2=t_1+Δt\] η γωνιακή ταχύτητα του στερεού γίνεται \[ω_2\]. Η γωνία \[Δθ\] που έχει στραφεί το στερεό στο χρονικό διάστημα \[Δt\] είναι:
24. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

27. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] ο τροχός έχει στραφεί κατά \[Δθ\] ποια απ’ τις επόμενες προτάσεις είναι σωστή; Ένα σημείο Α που απέχει \[\frac R2\] απ’ το κέντρο του τροχού, λόγω της μεταφορικής του κίνησης διανύει στον ίδιο χρόνο απόσταση:
28. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γραφική παράσταση της γωνιακής ταχύτητας του τροχού με το χρόνο δίνεται απ’ το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Στην ομογενή ράβδο ΚΛ του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκείται ένα ζεύγος δυνάμεων \[F_1\, ,\, F_2\] που η καθεμιά έχει μέτρο \[10\sqrt{3}\, N\]. Το μέτρο της ροπής του ζεύγους αυτής είναι \[30 \, N\cdot m\]. Το μήκος \[\ell\] της ράβδου είναι:
30. Η ομογενής ράβδος ΟΑ μήκους \[\ell\] στρέφεται σε κατακόρυφο επίπεδο, γύρω από οριζόντιο άξονα που περνά από το άκρο Ο. Η ροπή του βάρους \[\vec{w}\] της ράβδου ως προς τον άξονα περιστροφής είναι

    +30

    CONTACT US
    CALL US