MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για ένα ακίνητο στερεό σώμα την t=0, για να μην αρχίσει να κινείται αμέσως μετά την t=0, θα πρέπει την t=0 να ισχύει:
2. Σύμφωνα με το σχήμα ποια από τις παρακάτω σχέσεις είναι η σωστή; Ως θετική φορά να λάβετε τη φορά που φαίνεται στο σχήμα και να θεωρήσετε ότι οι ροπές των δυνάμεων \[\vec{w},\, \vec{F}\] υπολογίζονται ως προς το άκρο Ο της ράβδου.
3. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν σε χρόνο \[Δt\] ο κύλινδρος έχει εκτελέσει \[Ν_1\] περιστροφές στον ίδιο χρόνο η τροχαλία έχει εκτελέσει \[N_2\] περιστροφές και ισχύει:
4. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα

Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\]  και \[\vec{F}_2\]  συνδέονται με τη σχέση:

α)  \[F_2=4F_1\]

β) \[F_2=3F_1\]

γ) \[F_1=4F_2\]

δ) \[F_1=3F_2\]

Β. Η άρθρωση ασκεί στη ράβδο δύναμη  \[\vec{F}\]:

α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]

β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]

γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]

5. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Θεωρούμε θετική φορά για τη στροφική κίνηση την αντίθετη απ’ τη φορά κίνησης των δεικτών του ρολογιού. Η γραφική παράσταση της συνάρτησης της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
6. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το κέντρο μάζας του στερεού σώματος:
7. Μια λεπτή ομογενής σανίδα βάρους \[w\] και μήκους \[\ell\] διατηρείται οριζόντια έχοντας δεμένα στα δυο άκρα της ένα νήμα και ένα δυναμόμετρο. Σε ένα σημείο της σανίδας που απέχει \[\frac{\ell}{4}\] από το άκρο Α, τοποθετούμε 2 όμοια σώματα (Σ), βάρους \[w\] το καθένα.

Α. Η ένδειξη του δυναμόμετρου είναι ίση με:

α) \[w\]

β) \[2w\]

γ) \[3w\]

δ) \[4w\]

Β. Αν διπλασιάσουμε το πλήθος των σωμάτων (Σ) η ένδειξη του δυναμόμετρου θα:

α) διπλασιαστεί

β) τετραπλασιαστεί

γ) αυξηθεί κατά \[1,5\] φορές

8. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
Α) Αν τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας του άκρου Α τη στιγμή \[t_1\] είναι:

α) \[υ_{1_{cm} }\],               β) \[\frac{ υ_{1_{cm} } }{2}  \],                        γ) \[2υ_{1_{cm} }\].

Β) Αν το μέτρο της επιτάχυνσης του κέντρου μάζας είναι \[α_{cm}\],  το μέτρο της επιτάχυνσης του άκρου Α είναι:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[\frac{α_{cm} }{2} \].

9. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Ζ:
10. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

11. Στο παρακάτω σχήμα ο ομογενής δίσκος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει, ενώ στο ανώτερο άκρο της περιφέρειάς του έχουμε ακουμπήσει λεπτή σανίδα που μεταφέρεται με κατάλληλο μηχανισμό ώστε να μην ολισθαίνει πάνω στο δίσκο και να μένει συνεχώς οριζόντια.

Α) Αν τη στιγμή \[t_1\]  ο τροχός έχει γωνιακή ταχύτητα μέτρου \[ω\], την ίδια στιγμή το μέτρο της ταχύτητας της σανίδας  έχει μέτρο:

α) \[ωR\],                                     β) \[\frac{ωR}{2}\],                                  γ) \[2ωR\].

B) Αν σε χρόνο \[Δt\] το κέντρο μάζας του έχει μεταφερθεί κατά \[Δx_{cm}\], τότε η σανίδα μεταφέρεται στον ίδιο χρόνο κατά:

α) \[2Δx_{cm}\],                  β) \[Δx_{cm}\],                    γ) \[   \frac{    Δx_{cm}  }{  2   }   \].

12. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν το μέτρο της επιτάχυνσης του κυλίνδρου είναι \[α_{cm}\] τότε το μέτρο της επιτάχυνσης \[α_Σ\] του σώματος Σ είναι:
13. Σφαιρίδιο εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\] και η αλγεβρική τιμή της στροφορμής του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Από \[0\] ως \[t_1\] το μέτρο της συνισταμένης ροπής που δέχεται το σφαιρίδιο ως προς τον άξονα περιστροφής του είναι \[Στ_1\] ενώ απ’ την \[t_1\] ως την \[t_2\] είναι \[Στ_2\]. Αντίστοιχα οι επιτρόχιες επιταχύνσεις του σφαιριδίου στα δύο παραπάνω χρονικά διαστήματα έχουν μέτρο \[α_1\, , \, α_2\]. Για τα παραπάνω μεγέθη ισχύουν:
14. Η ράβδος ΚΛ είναι αρθρωμένη στο σημείο Κ σε κατακόρυφο τοίχο και δεμένη με ένα νήμα στο σημείο Ν και ισορροπεί. Ζητήθηκε από τρεις μαθητές (α), (β) και (γ) να σχεδιάσουν τη δύναμη της άρθρωσης και αυτοί σχεδίασαν αντίστοιχα τις δυνάμεις: α. \[\vec{F}_1\] β. \[\vec{F}_2\] γ. \[\vec{F}_3\]. Εσείς με ποια άποψη συμφωνείτε;
15. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Για τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ}\] ισχύει:
16. Μια ράβδος ΑΒ βρίσκεται πάνω σε οριζόντιο δάπεδο. Δυο οριζόντιες δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] που ασκούνται στα άκρα της ράβδου αποτελούν ζεύγος δυνάμεων. Οι φορείς των δυνάμεων σχηματίζουν με τη ράβδο γωνία \[φ\]. Αν διπλασιάσουμε το μέτρο της κάθε δύναμης, η ροπή του ζεύγους ως προς το μέσο της ράβδου
17. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας με το χρόνο της στροφικής κίνησης ενός στερεού που γίνεται γύρω από σταθερό άξονα περιστροφής. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν. Η ροπή μιας δύναμης \[\vec{F}\] ως προς άξονα:
19. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] ο τροχός έχει στραφεί κατά \[Δθ\] ποια απ’ τις επόμενες προτάσεις είναι σωστή; Ένα σημείο Α που απέχει \[\frac R2\] απ’ το κέντρο του τροχού, λόγω της μεταφορικής του κίνησης διανύει στον ίδιο χρόνο απόσταση:
20. Δύο τροχοί (1), (2) εκτελούν στροφικές κινήσεις γύρω από σταθερούς άξονες περιστροφής που είναι κάθετοι στις βάσεις τους και περνούν απ’ τα κέντρα τους. Στα παρακάτω διαγράμματα φαίνονται οι μεταβολές των γωνιακών τους ταχυτήτων με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Τροχός στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του τροχού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Η ράβδος ΑΒ του παρακάτω σχήματος εκτελεί ομαλή στροφική κίνηση πάνω σε οριζόντιο επίπεδο γύρω από σταθερό κατακόρυφο άξονα που περνά από ένα σημείο της Ζ. Στο σχήμα φαίνονται οι ταχύτητες των άκρων της Α, Β. Το σημείο Ζ απέχει απ’ το άκρο Α:
23. Στο σχήμα οι \[\vec{F}_1 \] και \[\vec{F}_2 \] αποτελούν ζεύγος δυνάμεων. Αν \[x_1,\, x_2\] είναι οι αποστάσεις των φορέων των δυνάμεων \[\vec{F}_1,\, \vec{F}_2\] αντίστοιχα από το Κ τότε η αλγεβρική τιμή της ροπής του ζεύγους ως προς το σημείο Κ είναι
24. Στον ομογενή ακίνητο κύλινδρο του παρακάτω σχήματος έχουμε τυλίξει λεπτό και μη εκτατό νήμα. Τραβώντας το άκρο Α του νήματος ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και το κέντρο μάζας του κυλίνδρου αποκτά επιτάχυνση μέτρου \[α_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το ελεύθερο άκρο Α του νήματος έχει επιτάχυνση μέτρου:
25. Σε λεπτό ομογενή κύλινδρο κέντρου Κ και ακτίνας \[R\] έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r\] και μπορεί να στρέφεται γύρω από οριζόντιο άξονα που είναι κάθετος στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν η επιτάχυνση του κέντρου μάζας του κυλίνδρου είναι \[α_{cm}\] τότε τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ }\] συνδέονται με τη σχέση:
26. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και το κέντρο μάζας του έχει σταθερή επιτάχυνση μέτρου \[α_{cm}\]. Τη χρονική στιγμή \[t_1\] το μέτρο της γωνιακής ταχύτητας του τροχού είναι \[ω_1\].

Α. Η επιτάχυνση του ανώτερου σημείου Β του τροχού τη στιγμή \[t_1\]  έχει μέτρο:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[ \sqrt{4α_{cm}^2+(ω_1^2 R)^2 }\].

B) Η επιτάχυνση του σημείου επαφής Α του τροχού με το οριζόντιο δάπεδο έχει τη στιγμή \[t_1\] μέτρο:

α) \[ω_1^2 R\],                β) \[0\],                             γ) \[α_{cm}\].

27. Ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται ομοεπίπεδες δυνάμεις παραμένει ακίνητο αν:
28. Στην περιφέρεια του δίσκου του παρακάτω σχήματος έχουμε τυλίξει σε πολλές στροφές αβαρές και μη εκτατό νήμα που δένουμε το ένα άκρο του σε ακλόνητο τοίχο. Αφήνουμε το δίσκο ελεύθερο και αυτός αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ταυτόχρονα να στρέφεται έτσι ώστε το νήμα να μένει συνεχώς παράλληλο στο κεκλιμένο επίπεδο. Αν η ταχύτητα της μεταφορικής κίνησης του δίσκου κάποια στιγμή είναι \[υ_1\], τότε η ταχύτητα του σημείου επαφής του δίσκου με το κεκλιμένο επίπεδο είναι:
29. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει την \[t=0\] σε οριζόντιο έδαφος και η επιτάχυνση του κέντρου μάζας του είναι σταθερή. Μια χρονική στιγμή \[t_1\] η γωνιακή ταχύτητα του τροχού έχει μέτρο \[ω_1\] και η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{1_{cm}}\] και έχει τη φορά που φαίνεται στο σχήμα. Τα σημεία Γ και Δ είναι τα άκρα της οριζόντιας διαμέτρου του τροχού. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
30. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US