MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σφαιρίδιο εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\] και η αλγεβρική τιμή της στροφορμής του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Από \[0\] ως \[t_1\] το μέτρο της συνισταμένης ροπής που δέχεται το σφαιρίδιο ως προς τον άξονα περιστροφής του είναι \[Στ_1\] ενώ απ’ την \[t_1\] ως την \[t_2\] είναι \[Στ_2\]. Αντίστοιχα οι επιτρόχιες επιταχύνσεις του σφαιριδίου στα δύο παραπάνω χρονικά διαστήματα έχουν μέτρο \[α_1\, , \, α_2\]. Για τα παραπάνω μεγέθη ισχύουν:
2. Για ένα ακίνητο στερεό σώμα την t=0, για να μην αρχίσει να κινείται αμέσως μετά την t=0, θα πρέπει την t=0 να ισχύει:
3. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Η ταχύτητα του κέντρου μάζας του είναι σταθερή και έχει μέτρο \[υ_{cm}\]. Σημείο Ζ απέχει απόσταση \[r=\frac{R}{2}\] απ’ το κέντρο του τροχού. Όταν η επιβατική ακτίνα του Ζ σχηματίζει γωνία \[θ=60^0\] με την κατακόρυφη διάμετρο (βλ. σχήμα), το μέτρο της ταχύτητας του Ζ είναι:
4. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].

Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται

α) η οριζόντια δύναμη μέτρου \[F_2\]  που είναι αντίθετη με την \[F_1\]  ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν

β) η οριζόντια δύναμη \[F_3\]  ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν

Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:

α) \[\frac{F_1}{3}\]         β) \[3F_1\]       γ) \[\frac{F_1}{4}\]        δ) \[\frac{3F_1}{4}\]

5. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει την \[t=0\] σε οριζόντιο έδαφος και η επιτάχυνση του κέντρου μάζας του είναι σταθερή. Μια χρονική στιγμή \[t_1\] η γωνιακή ταχύτητα του τροχού έχει μέτρο \[ω_1\] και η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{1_{cm}}\] και έχει τη φορά που φαίνεται στο σχήμα. Τα σημεία Γ και Δ είναι τα άκρα της οριζόντιας διαμέτρου του τροχού. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
6. Σώμα αμελητέων διαστάσεων εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στροφορμής του με το χρόνο. Από \[t_0=0\] ως \[t_1\] η γωνιακή επιτάχυνση του σφαιριδίου είναι \[α_{γων_1 }\] ενώ από \[t_1\] ως \[t_2\] είναι \[α_{γων_2 }\]. Το πηλίκο \[ \frac{α_{γων_2 } } {α_{γων_1 } } \] είναι:
7. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα \[υ_{cm}\] προς τα δεξιά και η γωνιακή ταχύτητα έχει τη φορά που φαίνεται στο παρακάτω σχήμα και σταθερό μέτρο. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] οριζόντια προς τα αριστερά. Σε χρόνο \[Δt\] ο τροχός διαγράφει γωνία \[Δθ\] και το cm μετατοπίζεται οριζόντια κατά \[Δx_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
8. Μια ομογενής δοκός ΑΓ βάρους \[w\], είναι αρθρωμένη σε κατακόρυφο τοίχο και διατηρείται οριζόντια με τη βοήθεια κατακόρυφου νήματος που είναι δεμένο στο άλλο άκρο της, όπως φαίνεται στο σχήμα. Η δύναμη του νήματος \[\vec{T}\] έχει μέτρο:
9. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του. Η γωνία που διαγράφει ο τροχός με το χρόνο δίνεται απ’ τη σχέση \[θ=4t^2\] (S.I.). Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
10. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα

Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\]  και \[\vec{F}_2\]  συνδέονται με τη σχέση:

α)  \[F_2=4F_1\]

β) \[F_2=3F_1\]

γ) \[F_1=4F_2\]

δ) \[F_1=3F_2\]

Β. Η άρθρωση ασκεί στη ράβδο δύναμη  \[\vec{F}\]:

α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]

β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]

γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]

11. Μια ράβδος ΑΒ βρίσκεται πάνω σε οριζόντιο δάπεδο. Δυο οριζόντιες δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] που ασκούνται στα άκρα της ράβδου αποτελούν ζεύγος δυνάμεων. Οι φορείς των δυνάμεων σχηματίζουν με τη ράβδο γωνία \[φ\]. Αν διπλασιάσουμε το μέτρο της κάθε δύναμης, η ροπή του ζεύγους ως προς το μέσο της ράβδου
12. Ομογενής κύλινδρος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει με σταθερή επιτάχυνση \[α_{cm}\] λόγω μεταφορικής κίνησης και γωνιακή επιτάχυνση \[α_{γων}\]. Κάποια χρονική στιγμή τα μέτρα της ταχύτητας λόγω μεταφορικής κίνησης και της γωνιακής ταχύτητας είναι \[υ_{cm}\] και \[ω\] αντίστοιχα. Ποιες από τις επόμενες σχέσεις είναι σωστές;
13. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο έδαφος. Τα μέτρα των ταχυτήτων των σημείων Β, Γ, Δ την ίδια στιγμή είναι αντίστοιχα \[υ_Β,\, υ_Γ,\, υ_Δ\]. Ποια από τις παρακάτω σχέσεις είναι σωστή;
15. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν το μέτρο της επιτάχυνσης του κυλίνδρου είναι \[α_{cm}\] τότε το μέτρο της επιτάχυνσης \[α_Σ\] του σώματος Σ είναι:
16. Στερεό σώμα την \[t=t_1\] έχει γωνιακή ταχύτητα \[ω_1\] και τη στιγμή αυτή το μέτρο της γωνιακής του ταχύτητας αρχίζει να αυξάνεται με σταθερό ρυθμό που έχει μέτρο \[α_{γων}\]. Τη χρονική στιγμή \[t_2=t_1+Δt\] η γωνιακή ταχύτητα του στερεού γίνεται \[ω_2\]. Η γωνία \[Δθ\] που έχει στραφεί το στερεό στο χρονικό διάστημα \[Δt\] είναι:
17. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

18. Ο τροχός του παρακάτω σχήματος εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη βάση του με τη φορά που φαίνεται στο σχήμα. Το μέτρο της γωνιακής του ταχύτητας μειώνεται με το χρόνο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
19. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Την ίδια χρονική στιγμή \[t_1\]:
20. Σε λεπτό ομογενή κύλινδρο κέντρου Κ και ακτίνας \[R\] έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r\] και μπορεί να στρέφεται γύρω από οριζόντιο άξονα που είναι κάθετος στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν η επιτάχυνση του κέντρου μάζας του κυλίνδρου είναι \[α_{cm}\] τότε τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ }\] συνδέονται με τη σχέση:
21. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και το κέντρο μάζας του έχει σταθερή επιτάχυνση μέτρου \[α_{cm}\]. Τη χρονική στιγμή \[t_1\] το μέτρο της γωνιακής ταχύτητας του τροχού είναι \[ω_1\].

Α. Η επιτάχυνση του ανώτερου σημείου Β του τροχού τη στιγμή \[t_1\]  έχει μέτρο:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[ \sqrt{4α_{cm}^2+(ω_1^2 R)^2 }\].

B) Η επιτάχυνση του σημείου επαφής Α του τροχού με το οριζόντιο δάπεδο έχει τη στιγμή \[t_1\] μέτρο:

α) \[ω_1^2 R\],                β) \[0\],                             γ) \[α_{cm}\].

22. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
A) Απ’ την \[t=0\] ως τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει μετατοπιστεί κατά \[Δx_{cm}\] που είναι ίσο με:

α) \[\frac{\ell}{2}\],               β) \[\ell\],                  γ) \[2\ell\].

B) Απ’ την \[t=0\] ως τη χρονική στιγμή \[t_1\] το άκρο Α του νήματος έχει μετατοπιστεί κατά \[Δx_A\] που είναι ίσο με:

α) \[2\ell\],                β) \[\ell\],                  γ) \[\frac{\ell}{2}\].

23. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα κάθετο στις βάσεις του που διέρχεται απ’ το κέντρο του. Ένα σημείο της περιφέρειάς του αυξάνει το μέτρο της γραμμικής ταχύτητάς του σύμφωνα με την εξίσωση \[υ=3t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Η ράβδος ΑΒ του παρακάτω σχήματος εκτελεί ομαλή στροφική κίνηση πάνω σε οριζόντιο επίπεδο γύρω από σταθερό κατακόρυφο άξονα που περνά από ένα σημείο της Ζ. Στο σχήμα φαίνονται οι ταχύτητες των άκρων της Α, Β. Το σημείο Ζ απέχει απ’ το άκρο Α:
25. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν σε χρόνο \[Δt\] ο κύλινδρος έχει εκτελέσει \[Ν_1\] περιστροφές στον ίδιο χρόνο η τροχαλία έχει εκτελέσει \[N_2\] περιστροφές και ισχύει:
26. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της μεταβολής των γωνιακών ταχυτήτων δύο σφαιρικών φλοιών (1) και (2) με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Στερεό εκτελεί μεταβαλλόμενη στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Η γωνιακή επιτάχυνση του στερεού σώματος:
28. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:
29. Στερεό σώμα στρέφεται γύρω από σταθερό άξονα και η μεταβολή της γωνιακής ταχύτητας του σώματος με το χρόνο φαίνεται στο παρακάτω διάγραμμα.
Ποιο απ’ τα παρακάτω διαγράμματα εκφράζει τη μεταβολή της γωνιακής επιτάχυνσης με το χρόνο;
30. Οι οδοντωτοί τροχοί του παρακάτω σχήματος έρχονται σε επαφή και στρέφονται ταυτόχρονα γύρω από σταθερό άξονα που ο καθένας είναι κάθετος στο επίπεδο των βάσεών του. Οι κινήσεις τους είναι ομαλά επιταχυνόμενες. Ποιες από τις επόμενες προτάσεις είναι σωστές; Οι δύο οδοντωτοί τροχοί:

    +30

    CONTACT US
    CALL US