MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
Α) Αν τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας του άκρου Α τη στιγμή \[t_1\] είναι:

α) \[υ_{1_{cm} }\],               β) \[\frac{ υ_{1_{cm} } }{2}  \],                        γ) \[2υ_{1_{cm} }\].

Β) Αν το μέτρο της επιτάχυνσης του κέντρου μάζας είναι \[α_{cm}\],  το μέτρο της επιτάχυνσης του άκρου Α είναι:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[\frac{α_{cm} }{2} \].

2. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα κάθετο στις βάσεις του που διέρχεται απ’ το κέντρο του. Ένα σημείο της περιφέρειάς του αυξάνει το μέτρο της γραμμικής ταχύτητάς του σύμφωνα με την εξίσωση \[υ=3t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].

Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται

α) η οριζόντια δύναμη μέτρου \[F_2\]  που είναι αντίθετη με την \[F_1\]  ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν

β) η οριζόντια δύναμη \[F_3\]  ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν

Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:

α) \[\frac{F_1}{3}\]         β) \[3F_1\]       γ) \[\frac{F_1}{4}\]        δ) \[\frac{3F_1}{4}\]

4. Ένα ελεύθερο στερεό σώμα που αρχικά ισορροπεί ακίνητο δέχεται από κάποια στιγμή και μετά τη δράση ενός ζεύγους δυνάμεων. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Το στερεό σώμα:
5. Η ομογενής ράβδος ΟΑ μήκους \[\ell\] στρέφεται σε κατακόρυφο επίπεδο, γύρω από οριζόντιο άξονα που περνά από το άκρο Ο. Η ροπή του βάρους \[\vec{w}\] της ράβδου ως προς τον άξονα περιστροφής είναι
6. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει και η μεταφορική του κίνηση είναι ομαλά επιταχυνόμενη. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
7. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα \[υ_{cm}\] προς τα δεξιά και η γωνιακή ταχύτητα έχει τη φορά που φαίνεται στο παρακάτω σχήμα και σταθερό μέτρο. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] οριζόντια προς τα αριστερά. Σε χρόνο \[Δt\] ο τροχός διαγράφει γωνία \[Δθ\] και το cm μετατοπίζεται οριζόντια κατά \[Δx_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
8. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Η ταχύτητα του κέντρου μάζας του είναι σταθερή και έχει μέτρο \[υ_{cm}\]. Σημείο Ζ απέχει απόσταση \[r=\frac{R}{2}\] απ’ το κέντρο του τροχού. Όταν η επιβατική ακτίνα του Ζ σχηματίζει γωνία \[θ=60^0\] με την κατακόρυφη διάμετρο (βλ. σχήμα), το μέτρο της ταχύτητας του Ζ είναι:
10. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:
11. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Η γωνιακή επιτάχυνση ενός στερεού σώματος που στρέφεται γύρω από σταθερό άξονα:
12. Ο τροχός του παρακάτω σχήματος εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη βάση του με τη φορά που φαίνεται στο σχήμα. Το μέτρο της γωνιακής του ταχύτητας μειώνεται με το χρόνο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
13. Σε ένα τρακτέρ οι πίσω τροχοί του έχουν ακτίνα \[R_1\] ενώ οι μπροστινοί \[R_2\] με \[R_2<R_1\]. Καθώς το τρακτέρ κινείται, οι τροχοί του εκτελούν κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος. Την ίδια χρονική στιγμή \[t_1\] τα ανώτερα σημεία των παραπάνω τροχών έχουν ταχύτητες μέτρου \[υ_{1_{αν} },\, υ_{2_{αν} }\] αντίστοιχα. Ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
14. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν το μέτρο της επιτάχυνσης του κυλίνδρου είναι \[α_{cm}\] τότε το μέτρο της επιτάχυνσης \[α_Σ\] του σώματος Σ είναι:
15. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της διαγραφόμενης γωνίας (γωνιακής μετατόπισης) με το χρόνο μιας ράβδου που στρέφεται γύρω από σταθερό άξονα περιστροφής. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
16. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Σε μια ράβδο ΑΓ που ισορροπεί πάνω σε οριζόντιο επίπεδο ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\], όπως φαίνεται στο σχήμα. Το μέτρο της ροπής του ζεύγους είναι
18. H αβαρής ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από άξονα κάθετο στο επίπεδο του σχήματος και διερχόμενο από το άκρο της Ο. Αν Μ είναι το μέσο της ράβδου για να ισορροπεί αυτή πρέπει το μέτρο της δύναμης \[F_2\] να είναι
19. Μια λεπτή ομογενής σανίδα βάρους \[w\] και μήκους \[\ell\] διατηρείται οριζόντια έχοντας δεμένα στα δυο άκρα της ένα νήμα και ένα δυναμόμετρο. Σε ένα σημείο της σανίδας που απέχει \[\frac{\ell}{4}\] από το άκρο Α, τοποθετούμε 2 όμοια σώματα (Σ), βάρους \[w\] το καθένα.

Α. Η ένδειξη του δυναμόμετρου είναι ίση με:

α) \[w\]

β) \[2w\]

γ) \[3w\]

δ) \[4w\]

Β. Αν διπλασιάσουμε το πλήθος των σωμάτων (Σ) η ένδειξη του δυναμόμετρου θα:

α) διπλασιαστεί

β) τετραπλασιαστεί

γ) αυξηθεί κατά \[1,5\] φορές

20. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Για τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ}\] ισχύει:
21. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος με σταθερή μεταφορική ταχύτητα \[υ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τη στιγμή \[t_1\] ένα σημείο Γ της περιφέρειάς του που απέχει \[R\] απ’ το έδαφος έχει ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το μέτρο της ταχύτητας του ανώτερου σημείου του τροχού την ίδια στιγμή έχει ταχύτητα μέτρου:
23. Σφαίρα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που διέρχεται από μια διάμετρό της. Η γωνιακή ταχύτητα της σφαίρας σε συνάρτηση με το χρόνο παριστάνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
24. Ο τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
25. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:

Α) Το κέντρο μάζας του δίσκου μέχρι τη στιγμή \[t_1\]  έχει μετατοπιστεί κατά \[Δx_{cm}\]  που είναι ίσο με:

α) \[ \ell \],                              β) \[\frac{\ell}{2}\],               γ) \[2\ell\].

Β) Το ελεύθερο άκρο του νήματος μέχρι τη στιγμή \[t_1\]  μετατοπίζεται κατά \[Δx_A\]  που είναι ίσο με:

α) \[3\ell\],                            β) \[2\ell\],                γ) \[\ell\].

26. Η ομογενής σφαίρα του παρακάτω σχήματος έχει ακτίνα \[R\] και βάρος \[w\], βρίσκεται σε οριζόντιο επίπεδο και πρόκειται να ανέβει ένα τραχύ σκαλοπάτι ύψους \[h = \frac{R}{4}\]. Για το σκοπό αυτό ασκούμε μια οριζόντια δύναμη \[F_1\] στο κέντρο της Κ με την κατεύθυνση του σχήματος. Επαναλαμβάνουμε το ίδιο πείραμα ασκώντας μια ομόρροπη οριζόντια δύναμη \[F_2\] στο ανώτερο σημείο της Α. Ο λόγος των μέτρων των δύο ελάχιστων δυνάμεων \[ F_{1,min} \, , \, F_{2,min} \] ώστε να αρχίσει η υπερπήδηση της σφαίρας είναι \[\frac{F_{1,min} } { F_{2,min} }\]:
27. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

28. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Σώμα αμελητέων διαστάσεων εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στροφορμής του με το χρόνο. Από \[t_0=0\] ως \[t_1\] η γωνιακή επιτάχυνση του σφαιριδίου είναι \[α_{γων_1 }\] ενώ από \[t_1\] ως \[t_2\] είναι \[α_{γων_2 }\]. Το πηλίκο \[ \frac{α_{γων_2 } } {α_{γων_1 } } \] είναι:
30. Η διπλή τροχαλία του σχήματος είναι ελεύθερη και αποτελείται από δύο συγκολλημένους ομοαξονικούς δίσκους με ακτίνες \[R\] και \[2R\]. Στον δίσκο με ακτίνα \[R\] είναι τυλιγμένο αρκετές φορές νήμα το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο στην οροφή. Στον μεγάλο δίσκο ακτίνας \[2R\] είναι τυλιγμένο νήμα το οποίο τυλίγεται γύρω από την τροχαλία ακτίνας \[R\]. Η τροχαλία συγκρατείται από ακλόνητο άξονα περιστροφής και μπορεί να στρέφεται χωρίς τριβές. Το άκρο Α του νήματος με κατάλληλη δύναμη έχει ταχύτητα \[υ\] προς τα κάτω με αποτέλεσμα η διπλή τροχαλία να μεταφέρεται προς τα πάνω και να στρέφεται με φορά αντίθετη των δεικτών του ρολογιού. Αν τα νήματα είναι αβαρή, μη εκτατά και δεν ολισθαίνουν στις τροχαλίες, η ταχύτητα που κινείται το σημείο Β είναι:

    +30

    CONTACT US
    CALL US