MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max}\]. Στις θέσεις που η δυναμική ενέργεια της α.α.τ. είναι διπλάσια της κινητικής η ταχύτητα του σώματος είναι
2. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την ταχύτητά του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Σε μια α.α.τ. η δύναμη επαναφοράς:
4. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί ελεύθερη ταλάντωση. Τότε:
5. Σώμα εκτελεί α.α.τ. Σε μια θέση \[x_1\] το σώμα δέχεται δύναμη επαναφοράς που έχει μέτρο το \[50\, \%\] του μέτρου της δύναμης επαναφοράς που δέχεται σε μια ακραία θέση της τροχιάς του. Ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. στη θέση \[x_1\] είναι:
6. Η συχνότητα ενός περιοδικού φαινομένου είναι \[f=10\; Hz\]. Αυτό σημαίνει ότι:
7. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των ταχυτήτων δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.

Α. Ο λόγος των πλατών των δύο ταλαντωτών είναι:

α. \[\frac{Α_1}{Α_2} =\frac{3}{4}\].                    β. \[\frac{Α_1}{Α_2} =\frac{4}{3}\].                   

γ. \[\frac{Α_1}{Α_2} =2\].                       δ. \[\frac{Α_1}{Α_2} =\frac{1}{2}\].

Β. Ο λόγος των μέγιστων δυνάμεων επαναφοράς είναι:

α. \[\frac{    F_{επmax,1} } {F_{επmax,2}   } =3\].       
β. \[\frac{  F_{επmax,1} }{ F_{επmax,2}  } =\frac{1}{3}\].                
γ. \[\frac{F_{επmax,1}  }{  F_{επmax,2}  } =9\].                       
δ. \[  \frac{ F_{επmax,1}   }{  F_{επmax,2} } =\frac{1}{9}\].

8. Σώμα εκτελεί α.α.τ. και η δύναμη επαναφοράς του σώματος δίνεται απ’ τη σχέση \[ΣF=-200⋅x\] (S.I.). Αν η ενέργεια της α.α.τ. είναι \[Ε_Τ=1 J\], τότε στη διάρκεια μιας περιόδου:

Α. ο ταλαντωτής διανύει απόσταση:

α. \[0,1\, m\].          β. \[0,2\, m\].          γ. \[0,3\, m\].          δ. \[0,4 \, m\].

B. ο ταλαντωτής μετατοπίζεται κατά:

α. \[0\, m\].             β. \[0,1\, m\].          γ. \[0,4\, m\].          δ. \[-0,4\, m\].

9. Η εξίσωση \[Κ=8-2x^2\] (S.I.) δίνει τη σχέση της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την απομάκρυνσή του \[x\] απ’ τη Θ.Ι. του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και του πλάτους \[Α\] είναι:
10. Ταλαντωτής μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και μέγιστης ταχύτητας \[υ_{max}\]. Μια χρονική στιγμή \[t_1\] το σώμα περνά απ’ τη θέση \[x_1\] με ταχύτητα \[υ_1\]. Η ενέργεια της ταλάντωσης τη στιγμή \[t_1\] είναι:
11. Για να διπλασιάσω την ιδιοσυχνότητα του συστήματος ελατηρίου-σώματος πρέπει:
12. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\].
13. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των δυνάμεων επαναφοράς σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές.

Α. Ο λόγος των σταθερών επαναφοράς των δύο ταλαντωτών είναι:
α. \[  \frac{  D_1}{  D_2  } =2\].                    
β. \[  \frac{D_1}{D_2} =\frac{1}{2}  \].         
γ. \[  \frac{D_1}{D_2} =\sqrt{2}\].                 
δ. \[\frac{D_1}{D_2} =\frac{   \sqrt{2}   } {2}\].

B. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:
α. \[   \frac{   Ε_{Τ,1}       }{        Ε_{Τ,2}          } =2\].                  
β. \[   \frac{Ε_{Τ,1}  }{Ε_{Τ,2} } =\frac{1}{2}  \].                   
γ. \[\frac{Ε_{Τ,1} }   {Ε_{Τ,2}      } =4\].                  
δ. \[ \frac{ Ε_{Τ,1}  }{Ε_{Τ,2}   } =\frac{1}{4}\].
14. Σε μια α.α.τ. τη στιγμή \[t_1\] ο ταλαντωτής έχει απομάκρυνση \[x=x_1>0\]. Αυτό σημαίνει ότι την \[t_1\]
15. Η ενέργεια της α.α.τ. εμφανίζεται με μορφή:
16. Η δυναμική ενέργεια της α.α.τ.:
17. Η διεγείρουσα δύναμη που δέχεται ένας ταλαντωτής όταν εκτελεί εξαναγκασμένη ταλάντωση είναι:
18. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].

Α. Η σχέση των \[E_1\], \[E_2\]  είναι:

α. \[Ε_1=Ε_2\].                  β. \[Ε_1=2Ε_2\].                γ. \[Ε_1=4Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{16}\].

B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\]  είναι:

α. \[υ_{max,1}=υ_{max,2}\].     
β. \[υ_{max,1}=2υ_{max,2}\].   
γ. \[υ_{max,1}=4υ_{max,2}\].   
δ. \[υ_{max,1}=\frac{υ_{max,2}  }  {  4  }   \].

19. Η επιτάχυνση στην απλή αρμονική ταλάντωση είναι διάνυσμα:
20. Στη θέση ισορροπίας μιας α.α.τ.:
21. Αν \[Κ\] και \[U\] είναι η κινητική και δυναμική ενέργεια αντίστοιχα της α.α.τ., ποιες από τις παραπάνω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς \[F_{επ}\] σε μια διαδρομή από το Κ ως το Λ είναι ίσο με:
22. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Αν τετραπλασιάσω τη σταθερά επαναφοράς \[k\] χωρίς να μεταβάλω τη συχνότητα του διεγέρτη τότε η συχνότητα της ταλάντωσης:
23. Σώμα εκτελεί α.α.τ. πλάτους \[Α\], γωνιακής συχνότητας \[ω\] και ενέργειας \[E_T\]. Σε μια θέση \[x_1\] της τροχιάς του αποκτά ταχύτητα που έχει μέτρο ίσο με το μισό του μέτρου της ταχύτητας που έχει όταν περνά απ’ τη θέση που μηδενίζεται η επιτάχυνσή του. Στη θέση \[x_1\]:

Α. για την επιτάχυνση  του σώματος ισχύει:

α. \[|α_1|=ω^2 Α\].      β. \[ |α_1|=\frac{ω^2 Α}{2} \].       γ. \[ |α_1|=\frac{ω^2 Α\sqrt{3}}{2} \].      δ. \[  |α_1|=\frac{ω^2Α \sqrt{2} }{2} \].

B. για τη δυναμική ενέργεια της α.α.τ. ισχύει:

α. \[U_{T_1}=E_T\].           β. \[U_{T_1}=\frac{E_T}{2}\].       γ. \[U_{T_1}=\frac{E_T}{3}\].          δ. \[ U_{T_1}=\frac{3E_T}{4}\].

24. Η περίοδος της περιοδικής κίνησης του ωροδείκτη ενός ρολογιού είναι:
25. Ένας απλός αρμονικός ταλαντωτής εκτελεί ταλάντωση γύρω απ’ τη Θ.Ι. του Ο μεταξύ των σημείων Κ και Λ με περίοδο \[Τ\]. Τη στιγμή \[t_1\] ο ταλαντωτής βρίσκεται στο σημείο Ζ της τροχιάς του και κινείται προς τα δεξιά. Τη χρονική στιγμή \[t_1+T\] ο ταλαντωτής:
26. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Τη χρονική στιγμή \[t=0\] ο ταλαντωτής έχει απομάκρυνση \[x=A\]. Ο ταλαντωτής περνά για δεύτερη φορά απ’ τη Θ.Ι. του τη χρονική στιγμή:
27. Ικανή και αναγκαία συνθήκη για να εκτελέσει ένα υλικό σημείο α.α.τ. είναι αυτή που απαιτεί η συνισταμένη δύναμη που δέχεται το σημείο να είναι:
28. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει αρνητική ταχύτητα και δέχεται μηδενική δύναμη επαναφοράς. Τη χρονική στιγμή \[t_1=\frac{T}{12}\] ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. είναι:
29. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Η συχνότητα της ταλάντωσης:
30. Σώμα εκτελεί α.α.τ. με περίοδο \[Τ\]. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της δύναμης επαναφοράς που δέχεται ο ταλαντωτής σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US