1. Υλικό σημείο εκτελεί α.α.τ. Να αντιστοιχίσετε τα παρακάτω μεγέθη με τα αντίστοιχα διαγράμματα.α. Ενέργεια ταλάντωσης
β. Δυναμική ενέργεια ταλάντωσης
γ. Κινητική ενέργεια ταλάντωσης

3. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων δύο απλών αρμονικών ταλαντωτών ίσων μαζών σε συνάρτηση με την απομάκρυνσή τους απ’ τη Θ.Ι.
Α. Ο λόγος των περιόδων των α.α.τ. είναι: α. \[ \frac{ Τ_1 }{ Τ_2} =4\].
β. \[\frac{ Τ_1}{Τ_2} =\frac{1}{4}\].
γ. \[\frac{Τ_1}{Τ_2} =\frac{1}{2} \].
δ. \[ \frac{ Τ_1}{Τ_2} =2. \].
Β. Ο λόγος των μέγιστων δυνάμεων επαναφοράς που δέχονται οι δύο ταλαντωτές είναι:
α. \[ \frac{ F_{επ,max,1} }{ F_{ επ,max,2 } } =1 \].
β. \[ \frac{ F_{επ,max,1} }{ F_{επ,max,2} } =\frac{1}{2} \].
γ. \[ \frac{ F_{επ,max,1} } {F_{επ,max,2} } =4 \].
δ. \[ \frac{ F_{επ,max,1} }{F_{επ,max,2} } =8 \].
7. Ένας απλός αρμονικός ταλαντωτής εκτελεί ταλάντωση γύρω απ’ τη Θ.Ι. του Ο μεταξύ των σημείων Κ και Λ με περίοδο \[Τ\]. Τη στιγμή \[t_1\] ο ταλαντωτής βρίσκεται στο σημείο Ζ της τροχιάς και έχει ταχύτητα προς τα δεξιά. Τη χρονική στιγμή \[t_1+T\] ο ταλαντωτής:
9. Η ενέργεια της α.α.τ. εμφανίζεται με μορφή: 12. Η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή σε μια α.α.τ. είναι \[x=A\; ημ(ωt+φ_0 )\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 14. Η επιτάχυνση στην απλή αρμονική ταλάντωση είναι διάνυσμα: 18. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.
Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:
α. \[υ_{max,1}=2υ_{max,2}\].
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\].
γ. \[υ_{max,1}=υ_{max,2}\].
δ. \[ υ_{max,1}=4υ_{max,2}\].
Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\]. β. \[Ε_{Τ,1}=2Ε_{Τ,2}\]. γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\]. δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].
19. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].
Α. Η σχέση των \[E_1\], \[E_2\] είναι:
α. \[Ε_1=Ε_2\]. β. \[Ε_1=2Ε_2\]. γ. \[Ε_1=4Ε_2\]. δ. \[Ε_1=\frac{Ε_2}{16}\].
B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\] είναι:
α. \[υ_{max,1}=υ_{max,2}\].
β. \[υ_{max,1}=2υ_{max,2}\].
γ. \[υ_{max,1}=4υ_{max,2}\].
δ. \[υ_{max,1}=\frac{υ_{max,2} } { 4 } \].
21. Υλικό σημείο εκτελεί α.α.τ. Να αντιστοιχήσετε τα παρακάτω μεγέθη με τα αντίστοιχα διαγράμματα.α. Ενέργεια ταλάντωσης
β. Κινητική ενέργεια
γ. Δυναμική ενέργεια ταλάντωσης

22. Αν διπλασιάσω τη μέγιστη ταχύτητα της α.α.τ. ενός υλικού σημείου χωρίς ν' αλλάξει η μάζα του ή η σταθερά επαναφοράς, τότε: 25. Η ενέργεια μιας α.α.τ.: 26. Αντιτιθέμενη δύναμη της μορφής \[F_ { αν } = - b υ \] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας δέχονται: