4. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των φάσεων δύο α.α.τ. σε σχέση με το χρόνο για δύο α.α.τ. Επιλέξτε ποιες από τις παρακάτω προτάσεις είναι σωστές. 5. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\]. 11. Σώμα εκτελεί φθίνουσα ταλάντωση και η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\], όπου \[υ\] η αλγεβρική τιμή της ταχύτητας. Η θετική σταθερά \[b\] εξαρτάται: 13. Ταλαντωτής εκτελεί α.α.τ. και η τροχιά που διαγράφει φαίνεται στο παρακάτω σχήμα. Η περίοδος της ταλάντωσης είναι \[Τ,\] το πλάτος της \[Α\], ενώ η αρχική της φάση είναι μηδενική. Το σημείο Γ της τροχιάς βρίσκεται στη θέση \[x_Γ=+\frac{Α}{2}\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Σύστημα ελατήριο-σώμα του παρακάτω σχήματος τίθεται σε κίνηση. 17. Δύο σώματα με ίσες μάζες είναι δεμένα και ισορροπούν στα πάνω ελεύθερα άκρα δύο ιδανικών ελατηρίων που έχουν ίδιο φυσικό μήκος που τα κάτω άκρα τους είναι προσδεμένα σε οριζόντιο δάπεδο. Εκτρέπω και τα δύο σώματα κατά \[d\] κατακόρυφα προς τα κάτω και απ’ τις θέσεις αυτές τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τα ελατήρια έχουν σταθερές \[k_1\], \[k_2\] με \[k_1>k_2\]. 18. Η ενέργεια της α.α.τ. εμφανίζεται με μορφή: 22. Στο παρακάτω σχήμα φαίνονται σε κοινό σύστημα αξόνων τα διαγράμματα της δυναμικής, κινητικής, ολικής ενέργειας μιας απλής αρμονικής ταλάντωσης πλάτους Α και περιόδου Τ.
Α. Η δυναμική ενέργεια της α.α.τ. περιγράφεται στο διάγραμμα:
α. \[1\]. β. \[2\]. γ. \[3\].
Β. Οι τιμές των \[x_1,x_2\] είναι:
α. \[\pm \frac{A}{2}\]. β. \[\pm \frac{A\sqrt{2} }{2}\]. γ. \[\pm \frac{A\sqrt{3}}{2}\]. δ. \[ x_1=-\frac{A}{2}\, ,\, x_2=+\frac{A\sqrt{2} }{2} \].
25. Η εξίσωση \[U_T=32-2υ^2\] (S.I.) δίνει τη σχέση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την ταχύτητά του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και της μέγιστης ταχύτητας \[υ_{max}\] είναι: 30. Σε μια α.α.τ. ο ταλαντωτής περνά απ’ τα σημεία Γ και Δ της τροχιάς του με μη μηδενική ταχύτητα. Τα σημεία αυτά είναι συμμετρικά ως προς τη Θ.Ι. της ταλάντωσης.Α. Για την επιτάχυνση του ταλαντωτή στις θέσεις Γ και Δ ισχύει:
α. \[α_Γ=α_Δ\]. β. \[α_Γ=-α_Δ\]. γ. \[α_Γ=α_Δ=α_{max}\]. δ. \[|α_Γ|=2|α_Δ|\].
Β. Για τις κινητικές ενέργειες του ταλαντωτή στις θέσεις Γ και Δ ισχύει:
α. \[Κ_Γ=Κ_Δ\]. β. \[Κ_Γ=Κ_Δ=0\]. γ. \[Κ_Γ=Κ_Δ=Κ_{max}\]. δ. \[Κ_Γ \neq Κ_Δ\].