MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ταλάντωση είναι:
2. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν αντικαταστήσω το ελατήριο με άλλο τετραπλάσιας σταθεράς \[k\], τότε:
3. Σε μια φθίνουσα μηχανική ταλάντωση, η δύναμη που αντιστέκεται στην κίνηση είναι της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Στη διάρκεια μιας περιόδου το μέτρο της αντιτιθέμενης δύναμης \[F_{αν}\]:
4. Σε μια α.α.τ. ο ταλαντωτής μια χρονική στιγμή \[t_1\] έχει αρνητική επιτάχυνση. Αυτό σημαίνει ότι τη στιγμή \[t_1\]:
5. Σώμα μάζας \[m=0,5\, kg\] εκτελεί φθίνουσα μηχανική ταλάντωση και δέχεται αντιτιθέμενη δύναμη \[F_{αν}\] στην κίνησή του. Αν η σταθερά επαναφοράς του ταλαντωτή είναι \[D = 100 \frac{N}{m}\] και οι αλγεβρικές τιμές της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης του σώματος είναι \[x,\, υ,\, α\] αντίστοιχα, τότε η αλγεβρική τιμή της \[F_{αν}\] δίνεται απ’ τη σχέση:
6. Το σύστημα ιδανικό ελατήριο σταθεράς \[k\] και σώμα μάζας \[m\] του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Το σώμα δέχεται αντιτιθέμενη δύναμη της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Ο δεύτερος νόμος του Νεύτωνα για το σύστημα γράφεται:
7. Σε μια α.α.τ. τη στιγμή \[t_1\] ο ταλαντωτής έχει ταχύτητα αλγεβρικής τιμής \[υ=υ_1>0\]. Αυτό σημαίνει ότι τη στιγμή \[t_1\]:
8. Αν μια ομάδα ατόμων κινηθεί πάνω σε μια γέφυρα με κοινό βηματισμό τότε η γέφυρα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Η γέφυρα κινδυνεύει να καταστραφεί:
9. Η μέγιστη ταχύτητα του ταλαντωτή σε μια α.α.τ. εξαρτάται:
10. Τα σώματα \[Σ_1\], \[Σ_2\] ισορροπούν στα πάνω άκρα κατακόρυφων ιδανικών ελατηρίων σταθεράς \[k_1\, ,\, k_2\] που τα άλλα άκρα τους είναι στερεωμένα σε οριζόντιο δάπεδο. Τα σώματα έχουν ίσες μάζες. Εκτοξεύω τα δύο σώματα απ’ τις Θ.Ι. τους με κατακόρυφες ταχύτητες μέτρων \[υ_1\] και \[υ_2=\frac{υ_1}{2}\] αντίστοιχα και αυτά αρχίζουν να εκτελούν α.α.τ. Παρατηρώ ότι τη στιγμή που το \[Σ_1\] επιστρέφει στη Θ.Ι. του για 1η φορά μετά την εκτόξευση του, το \[Σ_2\] ακινητοποιείται για πρώτη φορά.

Α. Για τις σταθερές των ελατηρίων \[k_1\, ,\,  k_2\]  ισχύει:
α. \[k_1=k_2 \sqrt{2}\].                        
β. \[k_1=4k_2\].               
γ. \[k_1=\frac{k_2}{4}\].      
δ. \[k_1=\frac{k_2}{   \sqrt{2}   }\].

Β. Για τις μέγιστες επιταχύνσεις των σωμάτων \[α_{max,1}\, ,\, α_{max,2}\] ισχύει:
α. \[α_{max,1}=α_{max,2}\].                                        
β. \[α_{max,1}=2α_{max,2}\].              
γ. \[α_{max,1}=4α_{max,2}\].                                      
δ. \[α_{max,1}=\sqrt{2} α_{max,2}\].

11. Σε μια φθίνουσα μηχανική ταλάντωση που η δύναμη αντίστασης στην κίνηση συνδέεται με την ταχύτητα του ταλαντωτή σύμφωνα με τη σχέση \[F_{αν}=-bυ\], η περίοδος της φθίνουσας ταλάντωσης:
12. Ταλαντωτής εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Για να υποδιπλασιάσουμε το πλάτος \[Α\] της α.α.τ. θα πρέπει να αφαιρέσουμε απ’ τον ταλαντωτή ενέργεια:
13. Σε μια α.α.τ. τη χρονική στιγμή \[t_1\] η φάση είναι \[φ_1=\frac{25π}{6}\]. Τη στιγμή αυτή ισχύει:
14. Σώμα ισορροπεί ακίνητο δεμένο στο ένα άκρο ιδανικού οριζόντιου ελατηρίου που το άλλο του άκρο είναι ακλόνητα στερεωμένο. Η Θ.Ι. του σώματος ταυτίζεται με τη θέση που το ελατήριο έχει το φυσικό του μήκος. Ασκώ στο σώμα σταθερή οριζόντια δύναμη μέτρου \[F\] κατά τη διεύθυνση του άξονα του ελατηρίου και αυτό αρχίζει να επιμηκύνεται μέχρι το σώμα να σταματήσει στιγμιαία για πρώτη φορά στη θέση \[x_0\]. Ακριβώς τη στιγμή αυτή προσδίνω στο σώμα ταχύτητα μέτρου \[υ_0\], ομόρροπη της δύναμης και ταυτόχρονα καταργώ τη δύναμη αυτή. Το σώμα εκτελεί α.α.τ. Η ενέργεια της α.α.τ. είναι:
15. Σύστημα ελατήριο-σώμα δέχεται αντιτιθέμενη δύναμη στην κίνησή του της μορφής \[F_{αν}=-bυ\] και περιοδική δύναμη \[F=F_0\, συνωt\] με \[ω\] που μπορεί να μεταβάλλεται. Τότε:
16. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει επιτάχυνση \[α=α_0>0\]. Αυτό σημαίνει ότι τη στιγμή \[t=0\]:
17. Σε μια φθίνουσα ταλάντωση το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά και χρόνο υποδιπλασιασμού \[ t_{ \frac 12 } \]. Τη χρονική στιγμή \[ t_1=5t_{\frac 12} \] το πλάτος έχει μειωθεί κατά:
18. Δύο σώματα με μάζες \[m_1, m_2\] όπου \[m_1 > m_2\] ισορροπούν ακίνητα δεμένα στα ελεύθερα κάτω άκρα όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα ακλόνητα σε οροφή. Εκτρέπω και τα δύο σώματα κατά \[d\] κατακόρυφα προς τα κάτω και τα αφήνω ταυτόχρονα ελεύθερα απ’ τις θέσεις αυτές. Τα σώματα εκτελούν α.α.τ.
19. Το έργο της δύναμης επαναφοράς \[F_{επ}\] κατά τη διαδρομή ΚΛ σε μια α.α.τ. είναι ίσο:
20. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν διπλασιάσω τη μάζα του σώματος χωρίς να μεταβάλω το πλάτος, τότε:
21. Σύστημα ελατήριο-σώμα εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης με τη βοήθεια διεγέρτη-τροχού. Ο τροχός έχει σταθερή συχνότητα \[f_1\] που φαίνεται στο διάγραμμα του παρακάτω σχήματος. Αν διπλασιάσω τη μάζα του σώματος τότε:

Α. η συχνότητα της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερή.

Β. το πλάτος της ταλάντωσης:

α) θα μειωθεί.             β) θα αυξηθεί.             γ) θα μείνει σταθερό.

22. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς είναι:
23. Σε μια φθίνουσα αρμονική ταλάντωση η δύναμη αντίστασης είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Το έργο της \[F_{αν}\] είναι:
24. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η σταθερά απόσβεσης είναι πολύ μικρή. Η συχνότητα του διεγέρτη είναι \[f_δ\] και η ιδιοσυχνότητα του συστήματος είναι \[f_0\]. Αν αρχικά \[f_δ < f_0\], για να βρεθεί το σύστημα σε κατάσταση συντονισμού πρέπει:
25. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
26. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Το χρονικό διάστημα για την απ’ ευθείας μετάβαση από τη Θ.Ι. στη θέση \[x_1=\frac{A}{2}\] για πρώτη φορά είναι \[Δt_1\] ενώ το αντίστοιχο χρονικό διάστημα απ’ τη θέση \[x_1=\frac{A}{2}\] στη θέση \[x_2=A\] είναι \[Δt_2\]. Για τα \[Δt_1, Δt_2\] ισχύει:
27. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η σταθερά απόσβεσης \[b\] της αντιτιθέμενης δύναμης είναι πολύ μικρή. Αρχικά το σύστημα βρίσκεται σε κατάσταση συντονισμού και η συχνότητα περιστροφής του τροχού είναι \[f_1\]. Αν αντικαταστήσω το ελατήριο με κάποιο άλλο διπλάσιας σταθεράς \[k\], για να βρεθεί το νέο σύστημα πάλι σε κατάσταση συντονισμού η συχνότητα του τροχού μεταβάλλεται στην τιμή \[f_2\]. Για τις συχνότητες \[f_1,\, f_2\] ισχύει:
28. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
29. Σε μια απλή φθίνουσα αρμονική ταλάντωση σώματος μάζας \[m\], η δύναμη της αντίστασης \[F_{αν}\] με την ταχύτητα του ταλαντωτή \[υ\] συνδέονται απ’ τη σχέση \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η γωνιακή συχνότητα της φθίνουσας ταλάντωσης δίνεται απ’ τη σχέση \[ ω = \sqrt{ \frac{D}{m}-\left( \frac{b}{2m} \right)^2 }\] όπου \[D\] η σταθερά επαναφοράς της ταλάντωσης. Σύμφωνα με τη σχέση αυτή μπορούμε να ταυτίσουμε προσεγγιστικά την περίοδο της φθίνουσας ταλάντωσης με την περίοδο \[T_0\] που θα είχε ο ταλαντωτής όταν εκτελούσε α.α.τ. αν:
30. Στο θάλαμο της πειραματικής διάταξης για τη μελέτη μιας φθίνουσας ταλάντωσης τοποθετούμε ορισμένη ποσότητα αέρα μέσω της αεραντλίας και θέτουμε το σύστημα ελατήριο-σώμα σε ταλάντωση. Αν η πίεση του αέρα στο θάλαμο παραμένει συνεχώς σταθερή, ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US