MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ταλαντωτής εκτελεί α.α.τ. και η τροχιά που διαγράφει φαίνεται στο παρακάτω σχήμα. Η περίοδος της ταλάντωσης είναι \[Τ\] και το πλάτος της \[Α\], ενώ έχει αρχική φάση \[\frac{π}{2}\]. Το σημείο Γ βρίσκεται στη θέση \[x_Γ=-\frac{Α}{2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
3. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Εκτρέπω το σώμα απ’ τη Θ.Ι. του κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και την \[t=0\] το αφήνω ελεύθερο να κινηθεί. Το σύστημα εκτελεί α.α.τ. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
4. Σε μια φθίνουσα αρμονική ταλάντωση η αντιτιθέμενη δύναμη είναι της μορφής \[F_{αν}=-bυ\], όπου \[b\] είναι μια θετική σταθερά. Η δύναμη επαναφοράς του ταλαντωτή και η αντιτιθέμενη δύναμη:
5. Σε μια α.α.τ. τη χρονική στιγμή \[t_1\] η φάση είναι \[φ_1=\frac{25π}{6}\]. Τη στιγμή αυτή ισχύει:
6. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της επιτάχυνσης του ταλαντωτή σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Ταλαντωτής εκτελεί φθίνουσα ταλάντωση με αρχικό πλάτος \[Α_0\] που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Αν ο ίδιος ταλαντωτής εκτελούσε ίδιας μορφής ταλάντωση με ίδιο αρχικό πλάτος αλλά με μεγαλύτερη σταθερά απόσβεσης τότε:
8. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
9. Ταλάντωση είναι:
10. Σύστημα ιδανικού ελατηρίου-σώματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση μέσα σε θάλαμο με αέρα. Αρχικά η πίεση του αέρα είναι \[P_1\] και η σταθερά απόσβεσης \[b_1\]. Με τις συνθήκες αυτές αυξάνω αργά τη συχνότητα του διεγέρτη αρχίζοντας από μηδενική τιμή. Κατόπιν αυξάνω την πίεση στην τιμή \[P_2\] και η σταθερά απόσβεσης γίνεται \[b_2\] και επαναλαμβάνω το ίδιο πείραμα. Τα πειραματικά διαγράμματα στις δύο περιστάσεις είναι στο σχήμα:
11. Ταλαντωτές κινούνται σε διαφορετικά μέσα και η δύναμη αντίστασης που δέχονται σε συνάρτηση με την αλγεβρική τιμή της ταχύτητάς τους είναι της μορφής \[ΣF=-bυ\], όπου \[b\] θετικές σταθερές. Στη δεξιά στήλη έχουν σχεδιαστεί τα χρονοδιαγράμματα των απομακρύνσεων των ταλαντωτών \[x\] απ’ τη Θ.Ι. τους. Να αντιστοιχήσετε τα στοιχεία της πάνω στήλης που συμβολίζονται με αριθμούς και εκφράζουν τον βαθμό της απόσβεσης, με τα διαγράμματα της κάτω στήλης.1. μικρή απόσβεση
2. μεσαία απόσβεση
3. πολύ μεγάλη απόσβεση
4. μηδενική απόσβεση

12. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του:
13. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\]. Όταν το σημείο βρίσκεται στις θέσεις \[x=±\frac{A}{2}\], το πηλίκο της κινητικής προς τη δυναμική ενέργεια \[\frac ΚU\] είναι ίσο με:
14. Τα σώματα \[Σ_1\], \[Σ_2\] ισορροπούν στα πάνω άκρα κατακόρυφων ιδανικών ελατηρίων σταθεράς \[k_1\, ,\, k_2\] που τα άλλα άκρα τους είναι στερεωμένα σε οριζόντιο δάπεδο. Τα σώματα έχουν ίσες μάζες. Εκτοξεύω τα δύο σώματα απ’ τις Θ.Ι. τους με κατακόρυφες ταχύτητες μέτρων \[υ_1\] και \[υ_2=\frac{υ_1}{2}\] αντίστοιχα και αυτά αρχίζουν να εκτελούν α.α.τ. Παρατηρώ ότι τη στιγμή που το \[Σ_1\] επιστρέφει στη Θ.Ι. του για 1η φορά μετά την εκτόξευση του, το \[Σ_2\] ακινητοποιείται για πρώτη φορά.

Α. Για τις σταθερές των ελατηρίων \[k_1\, ,\,  k_2\]  ισχύει:
α. \[k_1=k_2 \sqrt{2}\].                        
β. \[k_1=4k_2\].               
γ. \[k_1=\frac{k_2}{4}\].      
δ. \[k_1=\frac{k_2}{   \sqrt{2}   }\].

Β. Για τις μέγιστες επιταχύνσεις των σωμάτων \[α_{max,1}\, ,\, α_{max,2}\] ισχύει:
α. \[α_{max,1}=α_{max,2}\].                                        
β. \[α_{max,1}=2α_{max,2}\].              
γ. \[α_{max,1}=4α_{max,2}\].                                      
δ. \[α_{max,1}=\sqrt{2} α_{max,2}\].

15. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει:

α) \[f_1 < f_2 = f_3\].          β) \[f_2=f_3 <  f_1\].                      γ) \[f_1 = f_2 = f_3\].

Β. Για τις σταθερές των ελατηρίων \[k_2\]  και \[k_3\]  ισχύει:

α) \[k_2 = 8 k_3\].                 β) \[k_2 =4 k_3\].                          γ) \[k_2=16 k_3\].

Γ. Αν γνωρίζω ότι \[k_1=k_2\]  και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\]  αρχικά:

α) θα αυξάνεται.          β) θα μειώνεται.                      γ) θα μένει σταθερό.

16. Υλικό σημείο εκτελεί απλή αρμονική ταλάντωση περιόδου \[Τ\]. Ο χρόνος μεταξύ δύο διαδοχικών φορών που η δυναμική ενέργεια της α.α.τ. γίνεται ίση με την κινητική είναι:
17. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ. για τα μεγέθη απομάκρυνση και επιτάχυνση ισχύει:
18. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Στο παρακάτω διάγραμμα φαίνεται η δυναμική ενέργεια \[U_T\] και η κινητική ενέργεια \[Κ\] της α.α.τ. σε συνάρτηση με την απομάκρυνση του σημείου απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Σε μια φθίνουσα μηχανική ταλάντωση που η δύναμη αντίστασης στην κίνηση συνδέεται με την ταχύτητα του ταλαντωτή σύμφωνα με τη σχέση \[F_{αν}=-bυ\], η περίοδος της φθίνουσας ταλάντωσης:
20. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
21. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Αν \[Α_0,\, Α_1,\, Α_2\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[ t=0,\, t_1=T,\, t_2=2T \] αντίστοιχα τότε ισχύει η σχέση:
22. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή δίνεται απ’ τη σχέση \[υ=υ_{max}\; ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
23. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της επιτάχυνσης του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
24. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική του ενέργεια:
25. Ο χρόνος υποδιπλασιασμού της ενέργειας σε μια φθίνουσα μηχανική ταλάντωση που το πλάτος της μειώνεται με το χρόνο σύμφωνα με τη σχέση \[ Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά είναι:
26. Ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\] έχει το πάνω άκρο του ελεύθερο σε δάπεδο ενώ το άλλο άκρο του είναι στερεωμένο σε οριζόντιο δάπεδο όπως φαίνεται στο παρακάτω σχήμα. Αρχικά τοποθετώ στο πάνω άκρο του ελατηρίου σώμα μάζας \[m\] και το αφήνω ελεύθερο απ’ τη Θ.Φ.Μ. του ελατηρίου. Το σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max_1}\]. Επαναλαμβάνω το ίδιο ακριβώς πείραμα με σώμα μάζας \[4m\] και κατόπιν πάλι εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max_2 }\].

Ο λόγος των μέγιστων ταχυτήτων  είναι:

27. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής επιβραδύνεται, η δύναμη επαναφοράς που δέχεται είναι αρνητική, ενώ η κινητική του ενέργεια είναι τριπλάσια της δυναμικής. Η αρχική φάση της α.α.τ. είναι:
28. Ταλαντωτής εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Για να υποδιπλασιάσουμε το πλάτος \[Α\] της α.α.τ. θα πρέπει να αφαιρέσουμε απ’ τον ταλαντωτή ενέργεια:
29. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
30. Στο παρακάτω σχήμα το ιδανικό ελατήριο έχει σταθερά \[k\] και το σώμα μάζα \[m\]. Ο ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση μικρής απόσβεσης. Για μια συγκεκριμένη τιμή της συχνότητας \[f_1\] του διεγέρτη η απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι. του δίνεται απ’ τη σχέση \[x=A ημ \frac 13 \sqrt{\frac km} t\].
A. Για δύο διαφορετικές τιμές της περιόδου του διεγέρτη \[ T_1,\, T_2\] με \[ T_1 > T_2 \] παρατηρώ ότι το πλάτος της ταλάντωσης εμφανίζει την ίδια τιμή \[A_1\]. Για την τιμή της \[T_2\]  ισχύει:

α) \[Τ_2=2π\sqrt{\frac mk}\].       β) \[ Τ_2 > 2π\sqrt{ \frac mk } \].       γ) \[ Τ_2 < 2π\sqrt{ \frac mk }\].

B. Για να βρεθεί ο ταλαντωτής σε συντονισμό για τη συχνότητα \[f_1\] του διεγέρτη πρέπει να αντικαταστήσω το ελατήριο με άλλο σταθεράς \[k'\] για την οποία ισχύει:

α) \[k'=\frac{k}{3} \].                   β) \[k'=3k\].                    γ) \[k'=\frac{k}{9}\].                    δ) \[k'=9k\].


    +30

    CONTACT US
    CALL US