MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. πάνω σε λείο οριζόντιο επίπεδο πλάτους Α και περιόδου \[Τ_1\]. Κάποια στιγμή που περνά απ’ τη Θ.Ι. του συγκρούεται με αρχικά ακίνητο σώμα ίσης μάζας \[m_2=m_1\]. Η κρούση είναι μετωπική και πλαστική. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ. με περίοδο \[T_2\].


Α. Για τις περιόδους \[Τ_1, Τ_2\] των δύο α.α.τ. ισχύει:
α. \[Τ_1=Τ_2\].                  
β. \[Τ_1=2Τ_2\].               
γ. \[Τ_1=4Τ_2\].                
δ. \[Τ_1=\frac{Τ_2 \sqrt{2}}{2}\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά τη διάρκεια της κρούσης είναι:
α. \[π=-50 \%\].           
β. \[π=50 \%\].              
γ. \[π=-25 \%\].           
δ. \[π=25 \%\].

2. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
3. Το σύστημα ιδανικού ελατηρίου-σώματος του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης \[b\]. Η εξίσωση της διεγείρουσας δύναμης είναι \[F_δ=F_0\, συν10t\] (S.I.) όπου \[F_0\] η μέγιστη τιμή της. Το ελατήριο έχει σταθερά \[k= 50 \frac{N}{m}\], ενώ το σώμα έχει μάζα \[m=2 kg\]. Για να απορροφά το σύστημα από το διεγέρτη ενέργεια με το βέλτιστο τρόπο χωρίς ν’ αλλάξουμε τη συχνότητα του διεγέρτη πρέπει η μάζα του σώματος να μεταβληθεί κατά:
4. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του:
5. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Εκτρέπω το σώμα απ’ τη Θ.Ι. του κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και την \[t=0\] το αφήνω ελεύθερο να κινηθεί. Το σύστημα εκτελεί α.α.τ. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
6. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

7. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του:
8. Σύστημα ελατήριο-σώμα εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης με τη βοήθεια διεγέρτη-τροχού. Ο τροχός έχει σταθερή συχνότητα \[f_1\] που φαίνεται στο διάγραμμα του παρακάτω σχήματος. Αν διπλασιάσω τη μάζα του σώματος τότε:

Α. η συχνότητα της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερή.

Β. το πλάτος της ταλάντωσης:

α) θα μειωθεί.             β) θα αυξηθεί.             γ) θα μείνει σταθερό.

9. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\], το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Αν \[Ε_{Τ,κ}\] και \[Ε_{Τ,κ+1}\] η ενέργεια της ταλάντωσης τις χρονικές στιγμές \[t_1=κT\] και \[t_2=(κ+1)T\] (όπου \[κ\] θετικός ακέραιος), ποιες από τις παρακάτω προτάσεις είναι σωστές; Για το πηλίκο \[ \frac{ Ε_{Τ,κ} } { Ε_{Τ,κ+1} } \] ισχύει ότι:
10. Σώμα ισορροπεί ακίνητο δεμένο στο ένα άκρο ιδανικού οριζόντιου ελατηρίου που το άλλο του άκρο είναι ακλόνητα στερεωμένο. Η Θ.Ι. του σώματος ταυτίζεται με τη θέση που το ελατήριο έχει το φυσικό του μήκος. Ασκώ στο σώμα σταθερή οριζόντια δύναμη μέτρου \[F\] κατά τη διεύθυνση του άξονα του ελατηρίου και αυτό αρχίζει να επιμηκύνεται μέχρι το σώμα να σταματήσει στιγμιαία για πρώτη φορά στη θέση \[x_0\]. Ακριβώς τη στιγμή αυτή προσδίνω στο σώμα ταχύτητα μέτρου \[υ_0\], ομόρροπη της δύναμης και ταυτόχρονα καταργώ τη δύναμη αυτή. Το σώμα εκτελεί α.α.τ. Η ενέργεια της α.α.τ. είναι:
11. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν τετραπλασιάσω την ενέργεια της ταλάντωσης, τότε:
12. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Σε μια α.α.τ. η δύναμη επαναφοράς:
13. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής επιβραδύνεται, η δύναμη επαναφοράς που δέχεται είναι αρνητική, ενώ η κινητική του ενέργεια είναι τριπλάσια της δυναμικής. Η αρχική φάση της α.α.τ. είναι:
14. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Το χρονικό διάστημα για την απ’ ευθείας μετάβαση από τη Θ.Ι. στη θέση \[x_1=\frac{A}{2}\] για πρώτη φορά είναι \[Δt_1\] ενώ το αντίστοιχο χρονικό διάστημα απ’ τη θέση \[x_1=\frac{A}{2}\] στη θέση \[x_2=A\] είναι \[Δt_2\]. Για τα \[Δt_1, Δt_2\] ισχύει:
15. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ. για τα μεγέθη απομάκρυνση και επιτάχυνση ισχύει:
16. Σε μια α.α.τ. πλάτους \[Α\] η επιτάχυνση και η απομάκρυνση έχουν διαφορά φάσης \[π\]. Αυτό σημαίνει ότι αν τη στιγμή \[t_1\] η επιτάχυνση έχει μέγιστη θετική τιμή, την ίδια στιγμή η απομάκρυνση έχει:
17. Το σώμα \[Σ_1\] μάζας \[m_1\] του διπλανού σχήματος εκτελεί α.α.τ. Στη θέση \[x_0\] πάνω απ’ τη Θ.Ι. του, τη στιγμή που κατέρχεται, συγκρούεται μετωπικά και πλαστικά με σώμα \[Σ_2\] που ανέρχεται με ταχύτητα \[υ_2\]. Αμέσως μετά την κρούση το συσσωμάτωμα ακινητοποιείται στιγμιαία και κατόπιν εκτελεί α.α.τ. Για την α.α.τ. του συσσωματώματος ισχύει:
18. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ. για τα μεγέθη ταχύτητα και επιτάχυνση του ταλαντωτή ισχύει:
19. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της επιτάχυνσης του ταλαντωτή σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=-ωΑ συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της επιτάχυνσής του είναι:
21. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη αντίστασης στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[Α_0\], ενώ τη χρονική στιγμή \[t_1=4\, s\] το πλάτος του γίνεται \[Α_1=\frac{Α_0}{2}\]. Η χρονική διάρκεια \[Δt\] απ’ την \[t_1\] ως τη στιγμή \[t_2\] που το πλάτος γίνεται \[Α_2=\frac{Α_0}{8}\] είναι:
22. Σε μια α.α.τ. τη χρονική στιγμή \[t_1\] η φάση είναι \[φ_1=\frac{25π}{6}\]. Τη στιγμή αυτή ισχύει:
23. Σε μια φθίνουσα μηχανική ταλάντωση η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\]. Η μονάδα μέτρησης της θετικής σταθεράς \[Λ\] στο S.I. είναι:
24. Τα σώματα Α, Β είναι προσδεμένα σε όμοια ελατήρια σταθεράς \[k\] και εκτελούν α.α.τ. Ο ταλαντωτής Α έχει περίοδο \[Τ_1=2π\, s\] ενώ ο Β \[Τ_2=6π\, sec\]. Αν προσδέσω μέσω νήματος τα δύο σώματα, τότε το σύστημά τους θα εκτελεί α.α.τ. δεμένο σε όμοιο με τα αρχικά ελατήριο με περίοδο \[T\] και ισχύει:
25. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή δίνεται απ’ τη σχέση \[υ=υ_{max}\; ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
26. Ποιες από τις παρακάτω προτάσεις που αφορούν την α.α.τ. είναι σωστές;
27. Σε μια α.α.τ. η χρονοεξίσωση της επιτάχυνσης του ταλαντωτή είναι \[α=ω^2 Α ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητάς του είναι:
28. Υλικό σημείο εκτελεί α.α.τ. μεταξύ δύο ακραίων θέσεων Κ και Λ. Στη θέση Κ μηδενίζονται:
29. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Η σταθερά επαναφοράς του συστήματος:
30. Ο δίσκος μάζας \[M\] είναι στερεωμένος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] και ισορροπεί όπως φαίνεται στο παρακάτω σχήμα. Το άλλο άκρο του ελατηρίου είναι στερεωμένο στο έδαφος. Στο δίσκο τοποθετούμε χωρίς αρχική ταχύτητα σώμα μάζας \[m\]. Το σύστημα εκτελεί α.α.τ. Η ενέργεια της α.α.τ. είναι:

    +30

    CONTACT US
    CALL US