MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σε μια απλή φθίνουσα αρμονική ταλάντωση σώματος μάζας \[m\], η δύναμη της αντίστασης \[F_{αν}\] με την ταχύτητα του ταλαντωτή \[υ\] συνδέονται απ’ τη σχέση \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η γωνιακή συχνότητα της φθίνουσας ταλάντωσης δίνεται απ’ τη σχέση \[ ω = \sqrt{ \frac{D}{m}-\left( \frac{b}{2m} \right)^2 }\] όπου \[D\] η σταθερά επαναφοράς της ταλάντωσης. Σύμφωνα με τη σχέση αυτή μπορούμε να ταυτίσουμε προσεγγιστικά την περίοδο της φθίνουσας ταλάντωσης με την περίοδο \[T_0\] που θα είχε ο ταλαντωτής όταν εκτελούσε α.α.τ. αν:
2. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Αν \[Α_0,\, Α_1,\, Α_2\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[ t=0,\, t_1=T,\, t_2=2T \] αντίστοιχα τότε ισχύει η σχέση:
3. Το έργο της δύναμης επαναφοράς \[F_{επ}\] κατά τη διαδρομή ΚΛ σε μια α.α.τ. είναι ίσο:
4. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
5. Το σύστημα ιδανικού ελατηρίου-σώματος του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης \[b\]. Η εξίσωση της διεγείρουσας δύναμης είναι \[F_δ=F_0\, συν10t\] (S.I.) όπου \[F_0\] η μέγιστη τιμή της. Το ελατήριο έχει σταθερά \[k= 50 \frac{N}{m}\], ενώ το σώμα έχει μάζα \[m=2 kg\]. Για να απορροφά το σύστημα από το διεγέρτη ενέργεια με το βέλτιστο τρόπο χωρίς ν’ αλλάξουμε τη συχνότητα του διεγέρτη πρέπει η μάζα του σώματος να μεταβληθεί κατά:
6. Σύστημα ελατήριο-σώμα ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης με τη βοήθεια τροχού-διεγέρτη που έχει σταθερή συχνότητα περιστροφής \[f_1 < f_0\]. Αν αντικαταστήσω το ελατήριο με άλλο μεγαλύτερης σταθεράς \[k\] τότε:

Α. η περίοδος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα παραμείνει σταθερή.

Β. το πλάτος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.      γ) θα παραμείνει σταθερό.

7. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις των φάσεων δύο α.α.τ. σε συνάρτηση με το χρόνο. Οι ευθείες των διαγραμμάτων είναι παράλληλες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
8. Υλικό σημείο εκτελεί α.α.τ. με περίοδο \[Τ\]. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac π2\]. Το σχήμα που δείχνει τα διαγράμματα της δυναμικής και της κινητικής ενέργειας του ταλαντωτή σε κοινό σύστημα αξόνων σε συνάρτηση με το χρόνο είναι:
9. Ταλαντωτής εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Αν διπλασιάσω τη μέγιστη ταχύτητα του ταλαντωτή, η ενέργεια της ταλάντωσής του γίνεται \[Ε_Τ'\]. Ο λόγος \[\frac{Ε_Τ'}{Ε_Τ}\] είναι ίσος με:
10. Σε μια φθίνουσα αρμονική ταλάντωση το πλάτος μεταβάλλεται σύμφωνα με τη σχέση \[ Α= 0,64 \, e^{-Λt} \] (S.I.). Την \[t_1=2\, s\] το πλάτος γίνεται \[Α_1=0,32\, m\]. Σε χρονικό διάστημα \[Δt=6\, sec\] μετά τη χρονική στιγμή \[t_1\] το πλάτος γίνεται \[A_2\] όπου:
11. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
12. Ταλαντωτές κινούνται σε διαφορετικά μέσα και η δύναμη αντίστασης που δέχονται σε συνάρτηση με την αλγεβρική τιμή της ταχύτητάς τους είναι της μορφής \[ΣF=-bυ\], όπου \[b\] θετικές σταθερές. Στη δεξιά στήλη έχουν σχεδιαστεί τα χρονοδιαγράμματα των απομακρύνσεων των ταλαντωτών \[x\] απ’ τη Θ.Ι. τους. Να αντιστοιχήσετε τα στοιχεία της πάνω στήλης που συμβολίζονται με αριθμούς και εκφράζουν τον βαθμό της απόσβεσης, με τα διαγράμματα της κάτω στήλης.1. μικρή απόσβεση
2. μεσαία απόσβεση
3. πολύ μεγάλη απόσβεση
4. μηδενική απόσβεση

13. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν διπλασιάσω τη μάζα του σώματος χωρίς να μεταβάλω το πλάτος, τότε:
14. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της μεταβολής των φάσεων σε συνάρτηση με το χρόνο για δύο απλούς αρμονικούς ταλαντωτές. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Σε μια φθίνουσα μηχανική ταλάντωση η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\]. Η μονάδα μέτρησης της θετικής σταθεράς \[Λ\] στο S.I. είναι:
16. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
17. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που το πλάτος της δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος \[t_{\frac 12}\] που απαιτείται ώστε το πλάτος της να γίνει ίσο με \[\frac{Α_0}{2}\] είναι:
18. Σε μια εξαναγκασμένη ταλάντωση όταν η συχνότητα του διεγέρτη γίνει πάρα πολύ μεγάλη:
19. Στο παρακάτω σχήμα φαίνεται η μεταβολή της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με το χρόνο. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac{π}{2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\], το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Αν \[Ε_{Τ,κ}\] και \[Ε_{Τ,κ+1}\] η ενέργεια της ταλάντωσης τις χρονικές στιγμές \[t_1=κT\] και \[t_2=(κ+1)T\] (όπου \[κ\] θετικός ακέραιος), ποιες από τις παρακάτω προτάσεις είναι σωστές; Για το πηλίκο \[ \frac{ Ε_{Τ,κ} } { Ε_{Τ,κ+1} } \] ισχύει ότι:
21. Υλικό σημείο εκτελεί α.α.τ. μεταξύ των ακραίων θέσεων Κ, Λ γύρω απ’ τη θέση ισορροπίας Ο. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς:
22. Υλικό σημείο εκτελεί α.α.τ. μεταξύ δύο ακραίων θέσεων Κ και Λ. Στη θέση Κ μηδενίζονται:
23. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του:
24. Σώμα μάζας \[m=0,5\, kg\] εκτελεί φθίνουσα μηχανική ταλάντωση και δέχεται αντιτιθέμενη δύναμη \[F_{αν}\] στην κίνησή του. Αν η σταθερά επαναφοράς του ταλαντωτή είναι \[D = 100 \frac{N}{m}\] και οι αλγεβρικές τιμές της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης του σώματος είναι \[x,\, υ,\, α\] αντίστοιχα, τότε η αλγεβρική τιμή της \[F_{αν}\] δίνεται απ’ τη σχέση:
25. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].                                         
β. \[ Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{  2  }\].   
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].                                           
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].

Β. Για τις μέγιστες ταχύτητες  και  ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{  υ_{max,2}   }{  2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]

26. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος με το χρόνο δίνεται απ’ τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου το \[Α_0\] είναι το πλάτος της στιγμής \[t=0\] και \[Λ\] μια θετική σταθερά. Για συγκεκριμένη τιμή της σταθεράς \[Λ\], η περίοδος της ταλάντωσης:
27. Το σώμα μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. με πλάτος \[Α\] και περίοδο \[T\]. Κάποια στιγμή που διέρχεται απ’ τη Θ.Ι. του συγκρούεται πλαστικά με σώμα \[m_2\] ίσης μάζας που πριν την κρούση έχει κατακόρυφη ταχύτητα \[υ_2\]. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ.
Α. Οι σταθερές επαναφοράς ,  των δύο α.α.τ. πριν και μετά την κρούση είναι:

α. \[D_1=2D_2\].               β. \[D_1=4D_2\].               γ. \[D_1=D_2\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά την κρούση είναι:

α. \[π=-25 \%\].            β. \[π=-50 \%\].            γ. \[π=-75 \%\].            δ. \[π=30 \%\].

28. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
29. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει μέγιστη θετική επιτάχυνση. Αυτό σημαίνει ότι η αρχική φάση της ταλάντωσης είναι:
30. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής έχει αρνητική επιτάχυνση και επιταχύνεται ενώ την ίδια στιγμή η δυναμική του ενέργεια είναι ίση με την κινητική. Η αρχική φάση της α.α.τ. είναι:

    +30

    CONTACT US
    CALL US