1. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].
β. \[ Ε_{Τ,1}=\frac{ Ε_{Τ,2} }{ 2 }\].
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].
Β. Για τις μέγιστες ταχύτητες και ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{ υ_{max,2} }{ 2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]
2. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του: 3. Δύο σώματα με μάζες \[m_1, m_2\], όπου \[m_1>m_2\] είναι δεμένα και ισορροπούν ακίνητα στα ελεύθερα κάτω άκρα δύο ιδανικών όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα σε οροφή. Εκτρέπω και τα δύο σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια να αποκτήσουν τα φυσικά τους μήκη. Απ’ τις θέσεις αυτές τα αφήνω ταυτόχρονα ελεύθερα και εκτελούν α.α.τ. 4. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει: α) \[f_1 < f_2 = f_3\]. β) \[f_2=f_3 < f_1\]. γ) \[f_1 = f_2 = f_3\].
Β. Για τις σταθερές των ελατηρίων \[k_2\] και \[k_3\] ισχύει:
α) \[k_2 = 8 k_3\]. β) \[k_2 =4 k_3\]. γ) \[k_2=16 k_3\].
Γ. Αν γνωρίζω ότι \[k_1=k_2\] και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\] αρχικά:
α) θα αυξάνεται. β) θα μειώνεται. γ) θα μένει σταθερό.
6. Ποιες από τις παρακάτω προτάσεις που αφορούν την α.α.τ. είναι σωστές; 9. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.
Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:
α. \[ \frac{ω_1}{ω_2} =\sqrt{3} \].
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3} }{3}\].
γ. \[ \frac{ω_1}{ω_2} =3\].
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3} \].
Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:
α. \[\frac{ Ε_{Τ,1} }{ Ε_{Τ,2} } =\frac{1}{2}\].
β. \[ \frac{ Ε_{Τ,1} }{ Ε_{Τ,2} } =\frac{ 3}{ 2}\].
γ. \[ \frac{ Ε_{Τ,1} } {Ε_{Τ,2} } =\frac{2}{3} \].
δ. \[ \frac{ Ε_{Τ,1} }{Ε_{Τ,2} } =\frac{9}{2} \].
10. Τα σώματα \[Σ_1\], \[Σ_2\] ισορροπούν στα πάνω άκρα κατακόρυφων ιδανικών ελατηρίων σταθεράς \[k_1\, ,\, k_2\] που τα άλλα άκρα τους είναι στερεωμένα σε οριζόντιο δάπεδο. Τα σώματα έχουν ίσες μάζες. Εκτοξεύω τα δύο σώματα απ’ τις Θ.Ι. τους με κατακόρυφες ταχύτητες μέτρων \[υ_1\] και \[υ_2=\frac{υ_1}{2}\] αντίστοιχα και αυτά αρχίζουν να εκτελούν α.α.τ. Παρατηρώ ότι τη στιγμή που το \[Σ_1\] επιστρέφει στη Θ.Ι. του για 1η φορά μετά την εκτόξευση του, το \[Σ_2\] ακινητοποιείται για πρώτη φορά.Α. Για τις σταθερές των ελατηρίων \[k_1\, ,\, k_2\] ισχύει:
α. \[k_1=k_2 \sqrt{2}\].
β. \[k_1=4k_2\].
γ. \[k_1=\frac{k_2}{4}\].
δ. \[k_1=\frac{k_2}{ \sqrt{2} }\].
Β. Για τις μέγιστες επιταχύνσεις των σωμάτων \[α_{max,1}\, ,\, α_{max,2}\] ισχύει:
α. \[α_{max,1}=α_{max,2}\].
β. \[α_{max,1}=2α_{max,2}\].
γ. \[α_{max,1}=4α_{max,2}\].
δ. \[α_{max,1}=\sqrt{2} α_{max,2}\].
11. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση δεχόμενη δύναμη αντιτιθέμενη στην κίνηση της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για συγκεκριμένη τιμή της σταθεράς απόσβεσης \[b\]: 12. Το σώμα \[Σ_1\] μάζας \[m_1\] του διπλανού σχήματος εκτελεί α.α.τ. Στη θέση \[x_0\] πάνω απ’ τη Θ.Ι. του, τη στιγμή που κατέρχεται, συγκρούεται μετωπικά και πλαστικά με σώμα \[Σ_2\] που ανέρχεται με ταχύτητα \[υ_2\]. Αμέσως μετά την κρούση το συσσωμάτωμα ακινητοποιείται στιγμιαία και κατόπιν εκτελεί α.α.τ. Για την α.α.τ. του συσσωματώματος ισχύει:
14. Σύστημα ιδανικό ελατήριο σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη που στρέφεται με συχνότητα \[ f_δ \]. Η ταλάντωση γίνεται σε περιβάλλον μικρής απόσβεσης. Αρχικά ισχύει \[f_δ > f_0\]. Για να απορροφά ο ταλαντωτής ενέργεια απ’ το διεγέρτη με το βέλτιστο τρόπο, τότε πρέπει: 17. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος με το χρόνο δίνεται απ’ τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου το \[Α_0\] είναι το πλάτος της στιγμής \[t=0\] και \[Λ\] μια θετική σταθερά. Για συγκεκριμένη τιμή της σταθεράς \[Λ\], η περίοδος της ταλάντωσης: 21. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Όταν μεταβάλλω τη συχνότητα του διεγέρτη μεταβάλλεται: 27. Ταλαντωτής εκτελεί φθίνουσα ταλάντωση με αρχικό πλάτος \[Α_0\] που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Αν ο ίδιος ταλαντωτής εκτελούσε ίδιας μορφής ταλάντωση με ίδιο αρχικό πλάτος αλλά με μεγαλύτερη σταθερά απόσβεσης τότε: