MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Δύο σώματα με μάζες \[m_1, m_2\], όπου \[m_1>m_2\] είναι δεμένα και ισορροπούν ακίνητα στα ελεύθερα κάτω άκρα δύο ιδανικών όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα σε οροφή. Εκτρέπω και τα δύο σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια να αποκτήσουν τα φυσικά τους μήκη. Απ’ τις θέσεις αυτές τα αφήνω ταυτόχρονα ελεύθερα και εκτελούν α.α.τ.
2. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=0,3e^{-Λt}\] (S.I.) όπου \[Λ\] μια θετική σταθερά. Το πλάτος γίνεται \[Α_1=0,15\, m\] τη χρονική στιγμή \[t_1=2\, s\]. Αν το αρχικό πλάτος στην ίδια ταλάντωση ήταν \[A_0'=0,4\, m\] το χρονικό διάστημα που απαιτείται για να γίνει \[Α_1'=0,2\, m\] είναι:
3. Σε μια φθίνουσα αρμονική ταλάντωση το πλάτος μεταβάλλεται σύμφωνα με τη σχέση \[ Α= 0,64 \, e^{-Λt} \] (S.I.). Την \[t_1=2\, s\] το πλάτος γίνεται \[Α_1=0,32\, m\]. Σε χρονικό διάστημα \[Δt=6\, sec\] μετά τη χρονική στιγμή \[t_1\] το πλάτος γίνεται \[A_2\] όπου:
4. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και η Θ.Ι. του ταυτίζεται με τη θέση φυσικού μήκους του ελατηρίου. Το σύστημα εκτελεί α.α.τ. Το ελατήριο έχει σταθερά επαναφοράς \[k\] και το σώμα μάζα \[m\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
5. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς είναι:
6. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

7. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δύναμης επαναφοράς που δέχεται ένας ταλαντωτής που εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Τρία σώματα με ίσες μάζες \[m_1 = m_2 = m_3 = 1\, kg\] έχουν προσδεθεί στα κάτω άκρα κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους στερεώνονται σε οριζόντια μεταλλική ράβδο όπως φαίνεται στο παρακάτω σχήμα. Τα ελατήρια έχουν σταθερές \[k_1 = 25 \frac Nm,\, k_2=100 \frac Nm\] και \[k_3=200 \frac Nm\] αντίστοιχα. Με τη βοήθεια κατακόρυφης περιοδικής δύναμης που ασκώ στη ράβδο, εξαναγκάζω τα τρία συστήματα σε ταλάντωση. Η συχνότητα της διεγείρουσας δύναμης είναι σταθερή και ίση με \[f_δ=\frac{5}{π} Hz\], ενώ η ράβδος παραμένει συνεχώς οριζόντια. Η σταθερά απόσβεσης είναι μικρή και για τα τρία συστήματα.

Α. Για τις συχνότητες ταλάντωσης των τριών συστημάτων ισχύει:

α) \[f_3 > f_2 > f_1\].          β) \[ f_1 > f_2 > f_3\].          γ) \[ f_1 = f_2 = f_3\].

B. Για τα πλάτη ταλάντωσης των τριών συστημάτων ισχύει:

α) το Σ1 έχει το μεγαλύτερο πλάτος.

β) το Σ2 έχει το μεγαλύτερο πλάτος.

γ) το Σ3 έχει το μεγαλύτερο πλάτος.

δ) και τα τρία σώματα έχουν ίσα πλάτη.

Γ. Αν αυξήσω τη συχνότητα της διεγείρουσας δύναμης, τότε το πλάτος του σώματος Σ1:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερό.

9. Στο θάλαμο της πειραματικής διάταξης για τη μελέτη μιας φθίνουσας ταλάντωσης τοποθετούμε ορισμένη ποσότητα αέρα μέσω της αεραντλίας και θέτουμε το σύστημα ελατήριο-σώμα σε ταλάντωση. Αν η πίεση του αέρα στο θάλαμο παραμένει συνεχώς σταθερή, ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
11. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του:
12. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που το πλάτος της δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος \[t_{\frac 12}\] που απαιτείται ώστε το πλάτος της να γίνει ίσο με \[\frac{Α_0}{2}\] είναι:
13. Σε μια α.α.τ. η χρονοεξίσωση της επιτάχυνσης του ταλαντωτή είναι \[α=ω^2 Α ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητάς του είναι:
14. Σώμα μάζας \[m=0,5\, kg\] εκτελεί φθίνουσα μηχανική ταλάντωση και δέχεται αντιτιθέμενη δύναμη \[F_{αν}\] στην κίνησή του. Αν η σταθερά επαναφοράς του ταλαντωτή είναι \[D = 100 \frac{N}{m}\] και οι αλγεβρικές τιμές της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης του σώματος είναι \[x,\, υ,\, α\] αντίστοιχα, τότε η αλγεβρική τιμή της \[F_{αν}\] δίνεται απ’ τη σχέση:
15. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\], το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Αν \[Ε_{Τ,κ}\] και \[Ε_{Τ,κ+1}\] η ενέργεια της ταλάντωσης τις χρονικές στιγμές \[t_1=κT\] και \[t_2=(κ+1)T\] (όπου \[κ\] θετικός ακέραιος), ποιες από τις παρακάτω προτάσεις είναι σωστές; Για το πηλίκο \[ \frac{ Ε_{Τ,κ} } { Ε_{Τ,κ+1} } \] ισχύει ότι:
16. Ταλαντωτής εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Για να υποδιπλασιάσουμε το πλάτος \[Α\] της α.α.τ. θα πρέπει να αφαιρέσουμε απ’ τον ταλαντωτή ενέργεια:
17. Σε μια α.α.τ. ο ταλαντωτής μια χρονική στιγμή \[t_1\] έχει αρνητική επιτάχυνση. Αυτό σημαίνει ότι τη στιγμή \[t_1\]:
18. Ταλαντωτής εκτελεί ταλάντωση με συχνότητα \[f_α\]. Η δυναμική και η κινητική ενέργεια της α.α.τ. μεταβάλλονται περιοδικά με συχνότητα \[f_β\]. Η σχέση που συνδέει τις \[f_α\] και \[f_β\] είναι:
19. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Αρχικά η συχνότητα περιστροφής του διεγέρτη είναι απειροελάχιστη. Αρχίζω ν’ αυξάνω αργά τη συχνότητα του διεγέρτη και τότε:
20. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Όταν μεταβάλλω τη συχνότητα του διεγέρτη μεταβάλλεται:
21. Σύστημα ελατήριο-σώμα ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης με τη βοήθεια τροχού-διεγέρτη που έχει σταθερή συχνότητα περιστροφής \[f_1 < f_0\]. Αν αντικαταστήσω το ελατήριο με άλλο μεγαλύτερης σταθεράς \[k\] τότε:

Α. η περίοδος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα παραμείνει σταθερή.

Β. το πλάτος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.      γ) θα παραμείνει σταθερό.

22. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
23. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\], το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο ν’ αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω να εκτελέσει α.α.τ. Η επιμήκυνση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
24. Σε μια φθίνουσα μηχανική ταλάντωση με περίοδο \[T\], το πλάτος μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η αρχική ενέργεια της ταλάντωσης είναι \[E_{T,0}\]. Αν \[Ε_{Τ,1},\, Ε_{Τ,2},\, Ε_{Τ,κ},\, Ε_{Τ,κ+1}\] είναι οι ενέργειες της ταλάντωσης τις χρονικές στιγμές \[t_1=T,\, t_2=2T,\, t_κ=κT,\, t_{κ+1}=(κ+1)Τ\] (όπου \[κ\] θετικός ακέραιος) αντίστοιχα, τότε ισχύει: \[\frac{ Ε_{Τ,0} }{ Ε_{Τ,1} } =\frac{ Ε_{Τ,1} }{ Ε_{Τ,2} }=⋯=\frac{ Ε_{Τ,κ} }{ Ε_{Τ,κ+1} } =λ_2\]. Η σταθερά \[λ_2\] είναι:
25. Το κτίριο στη διάρκεια ενός σεισμού κινδυνεύει να καταστραφεί όταν:
26. Σε μια φθίνουσα μηχανική ταλάντωση που την \[t=0\] το πλάτος της είναι \[A_0\], η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η σταθερά \[Λ\] εξαρτάται:
27. Δύο σώματα με μάζες \[m_1, m_2\] όπου \[m_1 > m_2\] ισορροπούν ακίνητα δεμένα στα ελεύθερα κάτω άκρα όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα ακλόνητα σε οροφή. Εκτρέπω και τα δύο σώματα κατά \[d\] κατακόρυφα προς τα κάτω και τα αφήνω ταυτόχρονα ελεύθερα απ’ τις θέσεις αυτές. Τα σώματα εκτελούν α.α.τ.
28. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν διπλασιάσω τη μάζα του σώματος, τότε η σταθερά επαναφοράς της α.α.τ.:
29. Για τους δύο απλούς αρμονικούς ταλαντωτές του παρακάτω σχήματος ισχύει \[k_2=4k_1\] και \[m_2=\frac{m_1}{4}\]. Απομακρύνουμε τα σώματα κατά τη διεύθυνση του κεκλιμένου επιπέδου προς τα κάτω και τ’ αφήνω ελεύθερα. Κατά την απομάκρυνση των σωμάτων δαπανήσαμε και στα δύο την ίδια ενέργεια.

Α. Αν τα πλάτη των α.α.τ. είναι ,  αντίστοιχα, ισχύει γι’ αυτά:

α. \[Α_1=Α_2\].                 
β. \[Α_1=2Α_2\].              
γ. \[Α_1=\frac{Α_2}{2}\].                  
δ. \[Α_1=\frac{Α_2}{4}\]

Β. Αν  και  είναι οι μέγιστες ορμές που αποκτούν τα σώματα κατά τη διάρκεια των α.α.τ., ισχύει:

α. \[p_{1,max}=p_{2,max}\].                             
β. \[ p_{1,max}=\frac{    p_{2,max} }{ 2}\].      
γ. \[p_{1,max}=2p_{2,max}\].                           
δ. \[p_{1,max}=4p_{2,max}\].

30. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης. Ο τροχός έχει σταθερή συχνότητα \[f_1 = 2 f_0\] όπου \[f_0\] είναι η ιδιοσυχνότητα του συστήματος. Για να γίνει κάθε στιγμή ο ρυθμός της απορροφούμενης ενέργειας του ταλαντωτή απ’ το διεγέρτη ίσος με το ρυθμό απώλειας ενέργειας του ταλαντωτή λόγω της αντιτιθέμενης δύναμης χωρίς ν’ αλλάξω τη συχνότητα του διεγέρτη πρέπει η σταθερά του ελατηρίου να μεταβληθεί κατά:

    +30

    CONTACT US
    CALL US