MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια απλή αρμονική ταλάντωση για τα μεγέθη απομάκρυνση και ταχύτητα του ταλαντωτή ισχύει:
2. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Η επιτάχυνση σε μια α.α.τ.
3. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
4. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Αρχικά η συχνότητα περιστροφής του διεγέρτη είναι απειροελάχιστη. Αρχίζω ν’ αυξάνω αργά τη συχνότητα του διεγέρτη και τότε:
5. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της απομάκρυνσης του ταλαντωτή απ’ τη Θ.Ι. του σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
6. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης. Ο τροχός έχει σταθερή συχνότητα \[f_1 = 2 f_0\] όπου \[f_0\] είναι η ιδιοσυχνότητα του συστήματος. Για να γίνει κάθε στιγμή ο ρυθμός της απορροφούμενης ενέργειας του ταλαντωτή απ’ το διεγέρτη ίσος με το ρυθμό απώλειας ενέργειας του ταλαντωτή λόγω της αντιτιθέμενης δύναμης χωρίς ν’ αλλάξω τη συχνότητα του διεγέρτη πρέπει η σταθερά του ελατηρίου να μεταβληθεί κατά:
7. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
8. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική ενέργειά του:
9. Υλικό σημείο εκτελεί α.α.τ. με περίοδο \[Τ\]. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac π2\]. Το σχήμα που δείχνει τα διαγράμματα της δυναμικής και της κινητικής ενέργειας του ταλαντωτή σε κοινό σύστημα αξόνων σε συνάρτηση με το χρόνο είναι:
10. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η ιδιοσυχνότητα του συστήματος είναι \[f_0=60\, Hz\]. Αυξάνω αργά τη συχνότητα του διεγέρτη απ’ την τιμή \[f_1=50\, Hz\] ως την τιμή \[f_2=65\, Hz\]. Κατά την αύξηση αυτή:
11. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Η μέγιστη ταχύτητα του ταλαντωτή σε μια α.α.τ. εξαρτάται:
13. Στο παρακάτω σχήμα φαίνεται η μεταβολή της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με το χρόνο. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac{π}{2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Δύο σώματα με μάζες \[m_1, m_2\], όπου \[m_1>m_2\] είναι δεμένα και ισορροπούν ακίνητα στα ελεύθερα κάτω άκρα δύο ιδανικών όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα σε οροφή. Εκτρέπω και τα δύο σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια να αποκτήσουν τα φυσικά τους μήκη. Απ’ τις θέσεις αυτές τα αφήνω ταυτόχρονα ελεύθερα και εκτελούν α.α.τ.
15. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση δεχόμενη δύναμη αντιτιθέμενη στην κίνηση της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για συγκεκριμένη τιμή της σταθεράς απόσβεσης \[b\]:
16. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή προσδίνω στο σώμα ταχύτητα \[υ_0\] που έχει τη διεύθυνση του άξονα του ελατηρίου. Το σύστημα αρχίζει να εκτελεί α.α.τ. Επαναλαμβάνω ακριβώς το ίδιο πείραμα διπλασιάζοντας το μέτρο της \[υ_0\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δύναμης επαναφοράς που δέχεται ένας ταλαντωτής που εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη με μικρή σταθερά απόσβεσης \[b\]. Αρχικά η συχνότητα του διεγέρτη έχει σταθερή τιμή \[f_1\] και το πλάτος της ταλάντωσης έχει σταθερή τιμή \[A_1\]. Αυξάνω αργά τη συχνότητα του διεγέρτη και όταν η συχνότητα του διεγέρτη αποκτά την τιμή \[f_2\] τότε το πλάτος της ταλάντωσης γίνεται πάλι \[Α_1\]. Για την ιδιοσυχνότητα του ταλαντωτή και τη συχνότητα \[f_1\] του διεγέρτη ισχύει:
19. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
20. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
21. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει:

α) \[f_1 < f_2 = f_3\].          β) \[f_2=f_3 <  f_1\].                      γ) \[f_1 = f_2 = f_3\].

Β. Για τις σταθερές των ελατηρίων \[k_2\]  και \[k_3\]  ισχύει:

α) \[k_2 = 8 k_3\].                 β) \[k_2 =4 k_3\].                          γ) \[k_2=16 k_3\].

Γ. Αν γνωρίζω ότι \[k_1=k_2\]  και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\]  αρχικά:

α) θα αυξάνεται.          β) θα μειώνεται.                      γ) θα μένει σταθερό.

22. Ταλαντωτές κινούνται σε διαφορετικά μέσα και η δύναμη αντίστασης που δέχονται σε συνάρτηση με την αλγεβρική τιμή της ταχύτητάς τους είναι της μορφής \[ΣF=-bυ\], όπου \[b\] θετικές σταθερές. Στη δεξιά στήλη έχουν σχεδιαστεί τα χρονοδιαγράμματα των απομακρύνσεων των ταλαντωτών \[x\] απ’ τη Θ.Ι. τους. Να αντιστοιχήσετε τα στοιχεία της πάνω στήλης που συμβολίζονται με αριθμούς και εκφράζουν τον βαθμό της απόσβεσης, με τα διαγράμματα της κάτω στήλης.1. μικρή απόσβεση
2. μεσαία απόσβεση
3. πολύ μεγάλη απόσβεση
4. μηδενική απόσβεση

23. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Αν \[Α_0,\, Α_1,\, Α_2\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[ t=0,\, t_1=T,\, t_2=2T \] αντίστοιχα τότε ισχύει η σχέση:
24. Στο παρακάτω σχήμα το ιδανικό ελατήριο έχει σταθερά \[k\] και το σώμα μάζα \[m\]. Ο ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση μικρής απόσβεσης. Για μια συγκεκριμένη τιμή της συχνότητας \[f_1\] του διεγέρτη η απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι. του δίνεται απ’ τη σχέση \[x=A ημ \frac 13 \sqrt{\frac km} t\].
A. Για δύο διαφορετικές τιμές της περιόδου του διεγέρτη \[ T_1,\, T_2\] με \[ T_1 > T_2 \] παρατηρώ ότι το πλάτος της ταλάντωσης εμφανίζει την ίδια τιμή \[A_1\]. Για την τιμή της \[T_2\]  ισχύει:

α) \[Τ_2=2π\sqrt{\frac mk}\].       β) \[ Τ_2 > 2π\sqrt{ \frac mk } \].       γ) \[ Τ_2 < 2π\sqrt{ \frac mk }\].

B. Για να βρεθεί ο ταλαντωτής σε συντονισμό για τη συχνότητα \[f_1\] του διεγέρτη πρέπει να αντικαταστήσω το ελατήριο με άλλο σταθεράς \[k'\] για την οποία ισχύει:

α) \[k'=\frac{k}{3} \].                   β) \[k'=3k\].                    γ) \[k'=\frac{k}{9}\].                    δ) \[k'=9k\].

25. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

26. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της μεταβολής των φάσεων σε συνάρτηση με το χρόνο για δύο απλούς αρμονικούς ταλαντωτές. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].                                         
β. \[ Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{  2  }\].   
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].                                           
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].

Β. Για τις μέγιστες ταχύτητες  και  ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{  υ_{max,2}   }{  2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]

28. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει μέγιστη θετική επιτάχυνση. Αυτό σημαίνει ότι η αρχική φάση της ταλάντωσης είναι:
29. Σώμα εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η διαφορά φάσης:
30. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. πάνω σε λείο οριζόντιο επίπεδο πλάτους Α και περιόδου \[Τ_1\]. Κάποια στιγμή που περνά απ’ τη Θ.Ι. του συγκρούεται με αρχικά ακίνητο σώμα ίσης μάζας \[m_2=m_1\]. Η κρούση είναι μετωπική και πλαστική. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ. με περίοδο \[T_2\].


Α. Για τις περιόδους \[Τ_1, Τ_2\] των δύο α.α.τ. ισχύει:
α. \[Τ_1=Τ_2\].                  
β. \[Τ_1=2Τ_2\].               
γ. \[Τ_1=4Τ_2\].                
δ. \[Τ_1=\frac{Τ_2 \sqrt{2}}{2}\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά τη διάρκεια της κρούσης είναι:
α. \[π=-50 \%\].           
β. \[π=50 \%\].              
γ. \[π=-25 \%\].           
δ. \[π=25 \%\].


    +30

    CONTACT US
    CALL US