MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Το σώμα μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. με πλάτος \[Α\] και περίοδο \[T\]. Κάποια στιγμή που διέρχεται απ’ τη Θ.Ι. του συγκρούεται πλαστικά με σώμα \[m_2\] ίσης μάζας που πριν την κρούση έχει κατακόρυφη ταχύτητα \[υ_2\]. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ.
Α. Οι σταθερές επαναφοράς ,  των δύο α.α.τ. πριν και μετά την κρούση είναι:

α. \[D_1=2D_2\].               β. \[D_1=4D_2\].               γ. \[D_1=D_2\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά την κρούση είναι:

α. \[π=-25 \%\].            β. \[π=-50 \%\].            γ. \[π=-75 \%\].            δ. \[π=30 \%\].

2. Η σταθερά επαναφοράς \[D\] ενός απλού αρμονικού ταλαντωτή:
3. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η ιδιοσυχνότητα του συστήματος είναι \[f_0=60\, Hz\]. Αυξάνω αργά τη συχνότητα του διεγέρτη απ’ την τιμή \[f_1=50\, Hz\] ως την τιμή \[f_2=65\, Hz\]. Κατά την αύξηση αυτή:
4. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή προσδίνω στο σώμα ταχύτητα \[υ_0\] που έχει τη διεύθυνση του άξονα του ελατηρίου. Το σύστημα αρχίζει να εκτελεί α.α.τ. Επαναλαμβάνω ακριβώς το ίδιο πείραμα διπλασιάζοντας το μέτρο της \[υ_0\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Ταλαντωτής εκτελεί ταλάντωση με συχνότητα \[f_α\]. Η δυναμική και η κινητική ενέργεια της α.α.τ. μεταβάλλονται περιοδικά με συχνότητα \[f_β\]. Η σχέση που συνδέει τις \[f_α\] και \[f_β\] είναι:
6. Σε μια φθίνουσα μηχανική ταλάντωση η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\]. Η μονάδα μέτρησης της θετικής σταθεράς \[Λ\] στο S.I. είναι:
7. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης. Ο τροχός έχει σταθερή συχνότητα \[f_1 = 2 f_0\] όπου \[f_0\] είναι η ιδιοσυχνότητα του συστήματος. Για να γίνει κάθε στιγμή ο ρυθμός της απορροφούμενης ενέργειας του ταλαντωτή απ’ το διεγέρτη ίσος με το ρυθμό απώλειας ενέργειας του ταλαντωτή λόγω της αντιτιθέμενης δύναμης χωρίς ν’ αλλάξω τη συχνότητα του διεγέρτη πρέπει η σταθερά του ελατηρίου να μεταβληθεί κατά:
8. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
9. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η σταθερά απόσβεσης \[b\] της αντιτιθέμενης δύναμης είναι πολύ μικρή. Αρχικά το σύστημα βρίσκεται σε κατάσταση συντονισμού και η συχνότητα περιστροφής του τροχού είναι \[f_1\]. Αν αντικαταστήσω το ελατήριο με κάποιο άλλο διπλάσιας σταθεράς \[k\], για να βρεθεί το νέο σύστημα πάλι σε κατάσταση συντονισμού η συχνότητα του τροχού μεταβάλλεται στην τιμή \[f_2\]. Για τις συχνότητες \[f_1,\, f_2\] ισχύει:
10. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Σε μια α.α.τ. η δύναμη επαναφοράς:
11. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος της την \[t=0\] είναι \[A_0\] και μεταβάλλεται με το χρόνο σύμφωνα με την \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] μια θετική σταθερά. Αν την \[t=κT\] (όπου \[κ\] θετικός ακέραιος) το πλάτος της ταλάντωσης είναι \[Α_κ\] και την \[t=(κ+1)T\] το πλάτος γίνεται \[Α_{κ+1}\], τότε το πηλίκο \[ \frac{ Α_κ } { A_{κ+1} }\] :
12. Τρία σώματα με ίσες μάζες \[m_1 = m_2 = m_3 = 1\, kg\] έχουν προσδεθεί στα κάτω άκρα κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους στερεώνονται σε οριζόντια μεταλλική ράβδο όπως φαίνεται στο παρακάτω σχήμα. Τα ελατήρια έχουν σταθερές \[k_1 = 25 \frac Nm,\, k_2=100 \frac Nm\] και \[k_3=200 \frac Nm\] αντίστοιχα. Με τη βοήθεια κατακόρυφης περιοδικής δύναμης που ασκώ στη ράβδο, εξαναγκάζω τα τρία συστήματα σε ταλάντωση. Η συχνότητα της διεγείρουσας δύναμης είναι σταθερή και ίση με \[f_δ=\frac{5}{π} Hz\], ενώ η ράβδος παραμένει συνεχώς οριζόντια. Η σταθερά απόσβεσης είναι μικρή και για τα τρία συστήματα.

Α. Για τις συχνότητες ταλάντωσης των τριών συστημάτων ισχύει:

α) \[f_3 > f_2 > f_1\].          β) \[ f_1 > f_2 > f_3\].          γ) \[ f_1 = f_2 = f_3\].

B. Για τα πλάτη ταλάντωσης των τριών συστημάτων ισχύει:

α) το Σ1 έχει το μεγαλύτερο πλάτος.

β) το Σ2 έχει το μεγαλύτερο πλάτος.

γ) το Σ3 έχει το μεγαλύτερο πλάτος.

δ) και τα τρία σώματα έχουν ίσα πλάτη.

Γ. Αν αυξήσω τη συχνότητα της διεγείρουσας δύναμης, τότε το πλάτος του σώματος Σ1:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερό.

13. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;

Η α.α.τ. έχει αρχική φάση .

14. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή δίνεται απ’ τη σχέση \[υ=υ_{max}\; ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
15. Σε μια φθίνουσα μηχανική ταλάντωση η αντιτιθέμενη δύναμη δίνεται απ’ τη σχέση \[F_{αν}=-bυ\]. Σε χρονικό διάστημα \[Δt\] ο ταλαντωτής έχει διανύσει διάστημα \[s\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
16. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ. για τα μεγέθη ταχύτητα και επιτάχυνση του ταλαντωτή ισχύει:
17. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του:
18. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
19. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Η μέγιστη ταχύτητα του ταλαντωτή σε μια α.α.τ. εξαρτάται:
21. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που το πλάτος της δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος \[t_{\frac 12}\] που απαιτείται ώστε το πλάτος της να γίνει ίσο με \[\frac{Α_0}{2}\] είναι:
22. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν διπλασιάσω τη μάζα του σώματος χωρίς να μεταβάλω το πλάτος, τότε:
23. Σύστημα ελατήριο-σώμα δέχεται αντιτιθέμενη δύναμη στην κίνησή του της μορφής \[F_{αν}=-bυ\] και περιοδική δύναμη \[F=F_0\, συνωt\] με \[ω\] που μπορεί να μεταβάλλεται. Τότε:
24. Σε μια α.α.τ. πλάτους \[Α\] η επιτάχυνση και η απομάκρυνση έχουν διαφορά φάσης \[π\]. Αυτό σημαίνει ότι αν τη στιγμή \[t_1\] η επιτάχυνση έχει μέγιστη θετική τιμή, την ίδια στιγμή η απομάκρυνση έχει:
25. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
26. Σε μια φθίνουσα μηχανική ταλάντωση που η δύναμη αντίστασης στην κίνηση συνδέεται με την ταχύτητα του ταλαντωτή σύμφωνα με τη σχέση \[F_{αν}=-bυ\], η περίοδος της φθίνουσας ταλάντωσης:
27. Στο παρακάτω σχήμα φαίνεται η μεταβολή της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με το χρόνο. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac{π}{2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Στο παρακάτω σχήμα το ιδανικό ελατήριο έχει σταθερά \[k\] και το σώμα μάζα \[m\]. Ο ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση μικρής απόσβεσης. Για μια συγκεκριμένη τιμή της συχνότητας \[f_1\] του διεγέρτη η απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι. του δίνεται απ’ τη σχέση \[x=A ημ \frac 13 \sqrt{\frac km} t\].
A. Για δύο διαφορετικές τιμές της περιόδου του διεγέρτη \[ T_1,\, T_2\] με \[ T_1 > T_2 \] παρατηρώ ότι το πλάτος της ταλάντωσης εμφανίζει την ίδια τιμή \[A_1\]. Για την τιμή της \[T_2\]  ισχύει:

α) \[Τ_2=2π\sqrt{\frac mk}\].       β) \[ Τ_2 > 2π\sqrt{ \frac mk } \].       γ) \[ Τ_2 < 2π\sqrt{ \frac mk }\].

B. Για να βρεθεί ο ταλαντωτής σε συντονισμό για τη συχνότητα \[f_1\] του διεγέρτη πρέπει να αντικαταστήσω το ελατήριο με άλλο σταθεράς \[k'\] για την οποία ισχύει:

α) \[k'=\frac{k}{3} \].                   β) \[k'=3k\].                    γ) \[k'=\frac{k}{9}\].                    δ) \[k'=9k\].

29. Το κτίριο στη διάρκεια ενός σεισμού κινδυνεύει να καταστραφεί όταν:
30. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:

    +30

    CONTACT US
    CALL US