MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για τους δύο απλούς αρμονικούς ταλαντωτές του παρακάτω σχήματος ισχύει \[k_2=4k_1\] και \[m_2=\frac{m_1}{4}\]. Απομακρύνουμε τα σώματα κατά τη διεύθυνση του κεκλιμένου επιπέδου προς τα κάτω και τ’ αφήνω ελεύθερα. Κατά την απομάκρυνση των σωμάτων δαπανήσαμε και στα δύο την ίδια ενέργεια.

Α. Αν τα πλάτη των α.α.τ. είναι ,  αντίστοιχα, ισχύει γι’ αυτά:

α. \[Α_1=Α_2\].                 
β. \[Α_1=2Α_2\].              
γ. \[Α_1=\frac{Α_2}{2}\].                  
δ. \[Α_1=\frac{Α_2}{4}\]

Β. Αν  και  είναι οι μέγιστες ορμές που αποκτούν τα σώματα κατά τη διάρκεια των α.α.τ., ισχύει:

α. \[p_{1,max}=p_{2,max}\].                             
β. \[ p_{1,max}=\frac{    p_{2,max} }{ 2}\].      
γ. \[p_{1,max}=2p_{2,max}\].                           
δ. \[p_{1,max}=4p_{2,max}\].

2. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και η Θ.Ι. του ταυτίζεται με τη θέση φυσικού μήκους του ελατηρίου. Το σύστημα εκτελεί α.α.τ. Το ελατήριο έχει σταθερά επαναφοράς \[k\] και το σώμα μάζα \[m\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
3. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. πάνω σε λείο οριζόντιο επίπεδο πλάτους Α και περιόδου \[Τ_1\]. Κάποια στιγμή που περνά απ’ τη Θ.Ι. του συγκρούεται με αρχικά ακίνητο σώμα ίσης μάζας \[m_2=m_1\]. Η κρούση είναι μετωπική και πλαστική. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ. με περίοδο \[T_2\].


Α. Για τις περιόδους \[Τ_1, Τ_2\] των δύο α.α.τ. ισχύει:
α. \[Τ_1=Τ_2\].                  
β. \[Τ_1=2Τ_2\].               
γ. \[Τ_1=4Τ_2\].                
δ. \[Τ_1=\frac{Τ_2 \sqrt{2}}{2}\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά τη διάρκεια της κρούσης είναι:
α. \[π=-50 \%\].           
β. \[π=50 \%\].              
γ. \[π=-25 \%\].           
δ. \[π=25 \%\].

4. Ο δίσκος μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. πλάτους \[Α_1=Δ\ell\] όπου \[Δ \ell\] η συσπείρωση του ελατηρίου στη Θ.Ι. του δίσκου. Όταν ο δίσκος βρίσκεται στην ανώτερη ακραία θέση του, τοποθετούμε σ’ αυτόν δεύτερο σώμα ίσης μάζας \[m_2=m_1\]. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με πλάτος \[A_2\].
Α. Για τα πλάτη  \[Α_1\, , \, Α_2\] ισχύει:

α. \[Α_1=Α_2\].                  β. \[Α_1=\frac{Α_2}{ 2 }  \].                   γ. \[Α_1=3Α_2\].                δ. \[Α_1=2Α_2\].

Β. Για τις μέγιστες δυναμικές ενέργειες του ελατηρίου \[U_{ελ,max,1}\, , \, U_{ελ,max,2}\] ισχύει:

α. \[U_{ελ,max,1}=U_{ελ,max,2}\].                                 
β. \[U_{ελ,max,1}= \frac{  U_{ελ,max,2}   }{    4  }\].
γ. \[U_{ελ,max,1}=\frac{  U_{     ελ,max,2      }   }{      2    }\].                                   
δ. \[U_{ελ,max,1}=\frac{    U_{ελ,max,2}   }{   16   }\].

5. Σε μια α.α.τ. πλάτους \[Α\] η επιτάχυνση και η απομάκρυνση έχουν διαφορά φάσης \[π\]. Αυτό σημαίνει ότι αν τη στιγμή \[t_1\] η επιτάχυνση έχει μέγιστη θετική τιμή, την ίδια στιγμή η απομάκρυνση έχει:
6. Σε μια φθίνουσα μηχανική ταλάντωση, η δύναμη που αντιστέκεται στην κίνηση είναι της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Στη διάρκεια μιας περιόδου το μέτρο της αντιτιθέμενης δύναμης \[F_{αν}\]:
7. Σε μια φθίνουσα ταλάντωση η αντιτιθέμενη δύναμη είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητας του ταλαντωτή. Τη χρονική στιγμή \[t_1\] που η ταχύτητα του ταλαντωτή είναι \[υ_1\]. ο στιγμιαίος ρυθμός μεταβολής της ενέργειας της ταλάντωσης τη στιγμή \[t_1\] είναι:
8. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η σταθερά απόσβεσης \[b\] της αντιτιθέμενης δύναμης είναι πολύ μικρή. Αρχικά το σύστημα βρίσκεται σε κατάσταση συντονισμού και η συχνότητα περιστροφής του τροχού είναι \[f_1\]. Αν αντικαταστήσω το ελατήριο με κάποιο άλλο διπλάσιας σταθεράς \[k\], για να βρεθεί το νέο σύστημα πάλι σε κατάσταση συντονισμού η συχνότητα του τροχού μεταβάλλεται στην τιμή \[f_2\]. Για τις συχνότητες \[f_1,\, f_2\] ισχύει:
9. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=0,3e^{-Λt}\] (S.I.) όπου \[Λ\] μια θετική σταθερά. Το πλάτος γίνεται \[Α_1=0,15\, m\] τη χρονική στιγμή \[t_1=2\, s\]. Αν το αρχικό πλάτος στην ίδια ταλάντωση ήταν \[A_0'=0,4\, m\] το χρονικό διάστημα που απαιτείται για να γίνει \[Α_1'=0,2\, m\] είναι:
10. Σύστημα ελατήριο-σώμα εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης με τη βοήθεια διεγέρτη-τροχού. Ο τροχός έχει σταθερή συχνότητα \[f_1\] που φαίνεται στο διάγραμμα του παρακάτω σχήματος. Αν διπλασιάσω τη μάζα του σώματος τότε:

Α. η συχνότητα της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερή.

Β. το πλάτος της ταλάντωσης:

α) θα μειωθεί.             β) θα αυξηθεί.             γ) θα μείνει σταθερό.

11. Η διαφορά φάσης της απομάκρυνσης \[x\] και της επιτάχυνσης \[α\] σε μια α.α.τ., \[Δφ=φ_x-φ_α\] έχει τιμή:
12. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη με μικρή σταθερά απόσβεσης \[b\]. Αρχικά η συχνότητα του διεγέρτη έχει σταθερή τιμή \[f_1\] και το πλάτος της ταλάντωσης έχει σταθερή τιμή \[A_1\]. Αυξάνω αργά τη συχνότητα του διεγέρτη και όταν η συχνότητα του διεγέρτη αποκτά την τιμή \[f_2\] τότε το πλάτος της ταλάντωσης γίνεται πάλι \[Α_1\]. Για την ιδιοσυχνότητα του ταλαντωτή και τη συχνότητα \[f_1\] του διεγέρτη ισχύει:
13. Σώμα εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Για να διπλασιάσω τη μέγιστη δύναμη επαναφοράς πρέπει να προσφέρω επιπλέον ενέργεια στον ταλαντωτή ίση με:
14. Σε μια α.α.τ. ο ταλαντωτής μια χρονική στιγμή \[t_1\] έχει αρνητική επιτάχυνση. Αυτό σημαίνει ότι τη στιγμή \[t_1\]:
15. Τα σώματα \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος ηρεμούν δεμένα στα κάτω άκρα πανομοιότυπων κατακόρυφων ελατηρίων που τα άλλα άκρα τους είναι ακλόνητα στερεωμένα σε οροφή. Τα σώματα έχουν μάζες \[m_1\] και \[m_2=2m_1\] αντίστοιχα. Εκτρέπω τα σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια ν’ αποκτήσουν το φυσικό τους μήκος και απ’ τη θέση αυτή τα αφήνω ελεύθερα να κινηθούν. Τα σώματα εκτελούν α.α.τ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ελατηρίων κατά τη διάρκεια των ταλαντώσεων είναι:
16. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν διπλασιάσω τη μάζα του σώματος χωρίς να μεταβάλω το πλάτος, τότε:
17. Το σώμα \[Σ_1\] μάζας \[m_1\] του διπλανού σχήματος εκτελεί α.α.τ. Στη θέση \[x_0\] πάνω απ’ τη Θ.Ι. του, τη στιγμή που κατέρχεται, συγκρούεται μετωπικά και πλαστικά με σώμα \[Σ_2\] που ανέρχεται με ταχύτητα \[υ_2\]. Αμέσως μετά την κρούση το συσσωμάτωμα ακινητοποιείται στιγμιαία και κατόπιν εκτελεί α.α.τ. Για την α.α.τ. του συσσωματώματος ισχύει:
18. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που το πλάτος της δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος \[t_{\frac 12}\] που απαιτείται ώστε το πλάτος της να γίνει ίσο με \[\frac{Α_0}{2}\] είναι:
19. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Στο παρακάτω διάγραμμα φαίνεται η δυναμική ενέργεια \[U_T\] και η κινητική ενέργεια \[Κ\] της α.α.τ. σε συνάρτηση με την απομάκρυνση του σημείου απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Η μέγιστη ταχύτητα του ταλαντωτή σε μια α.α.τ. εξαρτάται:
21. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
22. Στο θάλαμο της πειραματικής διάταξης για τη μελέτη μιας φθίνουσας ταλάντωσης τοποθετούμε ορισμένη ποσότητα αέρα μέσω της αεραντλίας και θέτουμε το σύστημα ελατήριο-σώμα σε ταλάντωση. Αν η πίεση του αέρα στο θάλαμο παραμένει συνεχώς σταθερή, ποιες από τις παρακάτω προτάσεις είναι σωστές;
23. Σε φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α = Α_0\, e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Για το πηλίκο \[ \frac{ Α_κ } {Α_{κ+1} } \] όπου \[Α_κ\] και \[Α_{κ+1}\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[t_1=κΤ\] και \[t_2=(κ+1)Τ\] (\[κ\] θετικός ακέραιος) ισχύει ότι:
24. Το σώμα μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. με πλάτος \[Α\] και περίοδο \[T\]. Κάποια στιγμή που διέρχεται απ’ τη Θ.Ι. του συγκρούεται πλαστικά με σώμα \[m_2\] ίσης μάζας που πριν την κρούση έχει κατακόρυφη ταχύτητα \[υ_2\]. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ.
Α. Οι σταθερές επαναφοράς ,  των δύο α.α.τ. πριν και μετά την κρούση είναι:

α. \[D_1=2D_2\].               β. \[D_1=4D_2\].               γ. \[D_1=D_2\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά την κρούση είναι:

α. \[π=-25 \%\].            β. \[π=-50 \%\].            γ. \[π=-75 \%\].            δ. \[π=30 \%\].

25. Σώμα εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η διαφορά φάσης:
26. Σε μια απλή φθίνουσα αρμονική ταλάντωση σώματος μάζας \[m\], η δύναμη της αντίστασης \[F_{αν}\] με την ταχύτητα του ταλαντωτή \[υ\] συνδέονται απ’ τη σχέση \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η γωνιακή συχνότητα της φθίνουσας ταλάντωσης δίνεται απ’ τη σχέση \[ ω = \sqrt{ \frac{D}{m}-\left( \frac{b}{2m} \right)^2 }\] όπου \[D\] η σταθερά επαναφοράς της ταλάντωσης. Σύμφωνα με τη σχέση αυτή μπορούμε να ταυτίσουμε προσεγγιστικά την περίοδο της φθίνουσας ταλάντωσης με την περίοδο \[T_0\] που θα είχε ο ταλαντωτής όταν εκτελούσε α.α.τ. αν:
27. Σε μια εξαναγκασμένη ταλάντωση όταν η συχνότητα του διεγέρτη γίνει πάρα πολύ μεγάλη:
28. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=-ωΑ συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της επιτάχυνσής του είναι:
29. Στο παρακάτω σχήμα φαίνεται η μεταβολή της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με το χρόνο. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac{π}{2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
30. Τρία σώματα με ίσες μάζες \[m_1 = m_2 = m_3 = 1\, kg\] έχουν προσδεθεί στα κάτω άκρα κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους στερεώνονται σε οριζόντια μεταλλική ράβδο όπως φαίνεται στο παρακάτω σχήμα. Τα ελατήρια έχουν σταθερές \[k_1 = 25 \frac Nm,\, k_2=100 \frac Nm\] και \[k_3=200 \frac Nm\] αντίστοιχα. Με τη βοήθεια κατακόρυφης περιοδικής δύναμης που ασκώ στη ράβδο, εξαναγκάζω τα τρία συστήματα σε ταλάντωση. Η συχνότητα της διεγείρουσας δύναμης είναι σταθερή και ίση με \[f_δ=\frac{5}{π} Hz\], ενώ η ράβδος παραμένει συνεχώς οριζόντια. Η σταθερά απόσβεσης είναι μικρή και για τα τρία συστήματα.

Α. Για τις συχνότητες ταλάντωσης των τριών συστημάτων ισχύει:

α) \[f_3 > f_2 > f_1\].          β) \[ f_1 > f_2 > f_3\].          γ) \[ f_1 = f_2 = f_3\].

B. Για τα πλάτη ταλάντωσης των τριών συστημάτων ισχύει:

α) το Σ1 έχει το μεγαλύτερο πλάτος.

β) το Σ2 έχει το μεγαλύτερο πλάτος.

γ) το Σ3 έχει το μεγαλύτερο πλάτος.

δ) και τα τρία σώματα έχουν ίσα πλάτη.

Γ. Αν αυξήσω τη συχνότητα της διεγείρουσας δύναμης, τότε το πλάτος του σώματος Σ1:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερό.


    +30

    CONTACT US
    CALL US