2. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος με το χρόνο δίνεται απ’ τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου το \[Α_0\] είναι το πλάτος της στιγμής \[t=0\] και \[Λ\] μια θετική σταθερά. Για συγκεκριμένη τιμή της σταθεράς \[Λ\], η περίοδος της ταλάντωσης: 4. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\], το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο ν’ αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω να εκτελέσει α.α.τ. Η επιμήκυνση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 9. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική ενέργειά του: 12. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Η επιτάχυνση σε μια α.α.τ. 13. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις των φάσεων δύο α.α.τ. σε συνάρτηση με το χρόνο. Οι ευθείες των διαγραμμάτων είναι παράλληλες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
18. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής: 19. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση δεχόμενη δύναμη αντιτιθέμενη στην κίνηση της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για συγκεκριμένη τιμή της σταθεράς απόσβεσης \[b\]: 20. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Σε μια α.α.τ. η δύναμη επαναφοράς: 21. Σε μια α.α.τ. τη χρονική στιγμή \[t_1\] η φάση είναι \[φ_1=\frac{25π}{6}\]. Τη στιγμή αυτή ισχύει: 23. Αν μια ομάδα ατόμων κινηθεί πάνω σε μια γέφυρα με κοινό βηματισμό τότε η γέφυρα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Η γέφυρα κινδυνεύει να καταστραφεί: 25. Δύο σώματα με μάζες \[m_1, m_2\] όπου \[m_1 > m_2\] ισορροπούν ακίνητα δεμένα στα ελεύθερα κάτω άκρα όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα ακλόνητα σε οροφή. Εκτρέπω και τα δύο σώματα κατά \[d\] κατακόρυφα προς τα κάτω και τα αφήνω ταυτόχρονα ελεύθερα απ’ τις θέσεις αυτές. Τα σώματα εκτελούν α.α.τ. 27. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].
β. \[ Ε_{Τ,1}=\frac{ Ε_{Τ,2} }{ 2 }\].
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].
Β. Για τις μέγιστες ταχύτητες και ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{ υ_{max,2} }{ 2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]
29. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει: α) \[f_1 < f_2 = f_3\]. β) \[f_2=f_3 < f_1\]. γ) \[f_1 = f_2 = f_3\].
Β. Για τις σταθερές των ελατηρίων \[k_2\] και \[k_3\] ισχύει:
α) \[k_2 = 8 k_3\]. β) \[k_2 =4 k_3\]. γ) \[k_2=16 k_3\].
Γ. Αν γνωρίζω ότι \[k_1=k_2\] και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\] αρχικά:
α) θα αυξάνεται. β) θα μειώνεται. γ) θα μένει σταθερό.