MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή και είναι κάθετος με τους λείους κατακόρυφους παράλληλους ευθύγραμμους \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των τριών αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που δημιουργούν οι τρεις αγωγοί. Την \[t=0\] δίνουμε μια αρχική ταχύτητα \[υ_0\] κατακόρυφη προς τα πάνω και ο αγωγός αρχίζει να ανέρχεται κατακόρυφα και τα άκρα του διατηρούνται σε επαφή με τους κατακόρυφους αγωγούς. Τη χρονική στιγμή \[t_1\] ο αγωγός ακινητοποιείται στιγμιαία και κατόπιν αρχίζει να κατέρχεται κατακόρυφα με τον ίδιο τρόπο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
2. Η μεταλλική οριζόντια ράβδος ΟΓ του παρακάτω σχήματος έχει μήκος \[\ell\] και στρέφεται σε οριζόντιο επίπεδο ως προς κατακόρυφο άξονα που διέρχεται απ’ το άκρο του Ο με σταθερή γωνιακή ταχύτητα μέτρου \[ω\]. Το σημείο Μ είναι το μέσο της ράβδου. Το τμήμα ΟΜ βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β_1=Β\] ενώ το τμήμα της ΜΛ βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2=2B\] που είναι ομόρροπη με την \[\vec{B}_1\] όπως φαίνεται στο σχήμα. Αν αντιστρέψω τη φορά της \[B_1\] τότε ο λόγος των μέτρων των εντάσεων των μαγνητικών πεδίων \[\frac{B_1}{B_2}\] ώστε αν συνδέσω έναν αντιστάτη στα άκρα Ο, Γ της ράβδου αυτός να μην διαρρέεται από ρεύμα είναι:
3. Το ορθογώνιο μεταλλικό πλαίσιο ΚΛΜΝ και ο ευθύγραμμος αγωγός μεγάλου μήκους βρίσκονται πάνω στο ίδιο οριζόντιο λείο και μονωτικό δάπεδο. Ο ευθύγραμμος αγωγός είναι ακλόνητος και διαρρέεται από ρεύμα έντασης \[Ι\] και φοράς όπως φαίνεται στο σχήμα. Το πλαίσιο αρχικά είναι ακίνητο. Αρχίζω να μετακινώ το πλαίσιο με οριζόντια ταχύτητα \[υ\] που είναι παράλληλη στην πλευρά του ΚΛ και έχει φορά προς τα δεξιά.

Α) Καθώς το πλαίσιο απομακρύνεται απ’ τον ευθύγραμμο αγωγό δημιουργείται στο πλαίσιο:

α) επαγωγικό ρεύμα που έχει την ωρολογιακή φορά.

β) επαγωγικό ρεύμα που έχει την αντιωρολογιακή φορά.

γ) επαγωγική ΗΕΔ αλλά όχι επαγωγικό ρεύμα.

Β) Αν το πλαίσιο είναι ακίνητο στην αρχική  του θέση και αρχίζω να αυξάνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε:

α) το πλαίσιο διαρρέεται από ρεύμα που έχει την ωρολογιακή φορά.

β) το πλαίσιο διαρρέεται από ρεύμα που έχει την αντιωρολογιακή φορά.

γ) το πλαίσιο δεν διαρρέεται από επαγωγικό ρεύμα.

Γ) Αν το πλαίσιο είναι ακίνητο στην αρχική του θέση και αρχίζω να μειώνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε το πλαίσιο:

α) θα έλκεται απ’ τον ευθύγραμμο αγωγό.

β) θα απωθείται απ’ τον ευθύγραμμο αγωγό.

γ) δεν θα δέχεται δύναμη απ’ τον ευθύγραμμο αγωγό.

4. Κλειστό συρμάτινο πλαίσιο αντίστασης \[R\] βρίσκεται εντός ομογενούς μαγνητικού πεδίου με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Η μεταβολή της αλγεβρικής τιμής της έντασης \[B\] του μαγνητικού πεδίου φαίνεται στο παρακάτω διάγραμμα. Το πλαίσιο έχει σχήμα τετραγώνου πλευράς \[α\] και αποτελείται από \[N\] όμοιες σπείρες. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
5. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός έκλυσης θερμότητας στον αντιστάτη \[R\] γίνεται μέγιστος, η τιμή της ενέργειας του μαγνητικού πεδίου που έχει αποθηκευτεί στο πηνίο είναι \[U\]. Τη χρονική στιγμή που η ενέργεια αυτή είχε τιμή \[U' = \frac{U}{4}\], ο ρυθμός αποθήκευσης της ενέργειας αυτής είναι:
6. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ένας αντιστάτης \[R\] όταν στα άκρα του εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=120\sqrt{2} ημωt\] (S.I.)

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

7. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο πηνίο είναι \[\left| \frac{di }{ dt} \right|= \frac{E }{2L} \]. Από τη χρονική στιγμή \[t=0\] ως τη στιγμή \[t_1\], η θερμότητα που έχει εκλυθεί από όλους τους αντιστάτες του κυκλώματος είναι:
8. Στο παρακάτω σχήμα ο μαγνήτης την \[t=0\] αρχίζει να κινείται στη διεύθυνση κοινού άξονα σωληνοειδούς μαγνήτη πλησιάζοντας το σωληνοειδές και ακινητοποιείται τη στιγμή \[t_1\] που δεν έχει έρθει ακόμα σε επαφή με το άκρο Κ του σωληνοειδούς. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
9. Ο αγωγός ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και κατέρχεται με σταθερή ταχύτητα μέτρου \[υ\] έχοντας τα άκρα του Κ, Λ σε επαφή με τους λείους ευθύγραμμους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] παραμένοντας συνεχώς κάθετος σ’ αυτούς. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Στα άκρα αντιστάτη αντίστασης \[R=10\, Ω\] εφαρμόζουμε εναλλασσόμενη τάση με εξίσωση \[v=20\sqrt{2}\, ημ100πt\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
12. Δύο όμοιοι αντιστάτες συνδέονται παράλληλα και στα άκρα τους εφαρμόζεται συνεχώς σταθερή τάση \[V_Σ\]. Συνδέουμε τους δύο αντιστάτες σε σειρά και στα άκρα του συστήματός τους εφαρμόζουμε εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Η συνολική θερμότητα και στις δύο περιπτώσεις είναι ίδια. Για την ενεργό τιμή της εναλλασσόμενης τάσης ισχύει:
13. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].


Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:

α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],

β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],

γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],

δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].

B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\]  του ελατηρίου είναι:

α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].

β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].

γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].

δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].

14. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης έχει αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Αν \[i\] η στιγμιαία ένταση του ρεύματος που διαρρέει το κύκλωμα για μια χρονική στιγμή \[t≥0\], το μέτρο του ρυθμού μεταβολής της έντασης του ρεύματος στο κύκλωμα την ίδια χρονική στιγμή \[t\] δίνεται απ’ τη σχέση.
15. Στο παρακάτω σχήμα ο ευθύγραμμος αγωγός ΚΛ μήκους \[\ell\] μπορεί να κινείται χωρίς τριβές με τα άκρα του Κ, Λ να βρίσκονται πάντα σε επαφή με τους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B\] που οι δυναμικές γραμμές του είναι συνεχώς κάθετες στον αγωγό. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] ασκώ στο μέσο του οριζόντια σταθερή δύναμη κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους οριζόντιους αγωγούς μέχρι που αποκτά σταθερή οριακή ταχύτητα \[υ_{ορ}\] τη χρονική στιγμή \[t_1\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Ο ραβδόμορφος μαγνήτης Μ μάζας \[m\] του παρακάτω σχήματος αφήνεται να πέσει κατακόρυφα από ύψος \[h\] απ’ το οριζόντιο έδαφος κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του ακλόνητου κυκλικού δακτυλίου Δ. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\]. Όταν ο μαγνήτης φτάνει στο ύψος \[h'=\frac{h}{3}\] απ’ το έδαφος, η θερμότητα που έχει εκλυθεί απ’ τον αντιστάτη του Δ λόγω φαινομένου Joule είναι \[Q=\frac{mgh}{6}\]. Στο ύψος \[h'\] ο μαγνήτης έχει ταχύτητα:
17. Ο δίσκος του Faraday ακτίνας \[r\] στο παρακάτω σχήμα στρέφεται με σταθερή γωνιακή ταχύτητα γύρω από άξονα \[xx'\] που περνά απ’ το κέντρο του και είναι κάθετο στο επίπεδό του. Δύο ολισθαίνουσες επαφές (ψήκτρες) έχουν τοποθετηθεί όπως φαίνεται στο σχήμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Στη διάταξη του παρακάτω σχήματος οι οριζόντιοι λείοι αγωγοί \[Αx\] και \[Γy\] είναι παράλληλοι, έχουν αμελητέα αντίσταση και τα άκρα τους Α, Γ συνδέονται με αντιστάτη \[R_1=2R\]. Ο οριζόντιος αγωγός ΚΛ είναι κάθετος στους δύο αγωγούς, έχει αντίσταση \[R\], μήκος \[\ell\] και τα άκρα του βρίσκονται σε επαφή με αυτούς. Αρχικά ο αγωγός ΚΛ είναι ακίνητος. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνουμε στον αγωγό ΚΛ οριζόντια αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο αγωγούς ενώ ταυτόχρονα ασκούμε στο μέσο σταθερή δύναμη μέτρου \[F\] και κατεύθυνσης ομόρροπης της \[υ_0\].
A) Αν το μέτρο της \[υ_0\] είναι \[υ_0 > \frac{ 3FR }{ B^2 \ell^2 }\], τότε ο αγωγός ΚΛ μετά την \[t=0\]:

α) θα εκτελέσει ομαλά επιβραδυνόμενη κίνηση μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 < υ_0\].

β) θα εκτελέσει επιταχυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 > υ_0\].

γ) θα εκτελέσει επιβραδυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει ταχύτητα μέτρου \[ υ_1 < υ_0 \].

δ) θα εκτελέσει Ε.Ο.Κ. με ταχύτητα \[υ_0\].

B) Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\] που ο αγωγός ΚΛ  έχει σταθερή ταχύτητα \[\vec{υ}_1\], το έργο της δύναμης \[F\]:

α) έχει γίνει αύξηση της κινητικής του αγωγού.

β) είναι ίση με τη συνολική θερμότητα που εκλύεται στους αντιστάτες μέχρι τη στιγμή \[t_1\].

γ) και η μείωση της κινητικής του ενέργειας του αγωγού ΚΛ μέχρι τη στιγμή \[t_1\] μας δίνουν μαζί την θερμότητα που εκλύεται συνολικά στους αντιστάτες μέχρι τη στιγμή \[t_1\].

19. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=0,6\, mH\] αποτελείται από \[300\] σπείρες. Το πηνίο διαρρέεται από ρεύμα σταθερής έντασης με τιμή ίση με \[2\, Α\]. Η μαγνητική ροή που διέρχεται από την κάθε σπείρα του πηνίου είναι
20. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Τα γειτονικά σωληνοειδή του παρακάτω σχήματος \[Σ_1,\, Σ_2\] έχουν αντιστάσεις \[R_{Σ_1 }, \, R_{Σ_2}\] και αρχικά ο διακόπτης δ είναι ανοικτός ενώ οι άξονες τους ταυτίζονται. Την \[t=0\] κλείνω το διακόπτη δ. Κατά το κλείσιμο του διακόπτη στο σωληνοειδές \[Σ_2\] δημιουργείται επαγωγικό ρεύμα που η φορά πάνω στον αντιστάτη \[R\]:
22. Στο παρακάτω σχήμα στο εσωτερικό του σωληνοειδούς Σ υπάρχει σιδηρομαγνητικό υλικό που σ’ ένα σημείο έχουμε τοποθετήσει ελαφρύ αγώγιμο δακτύλιο Δ. Όταν κλείσουμε το διακόπτη δ, τότε ο δακτύλιος:
23. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της αποθηκευμένης ενέργειας στο πηνίο είναι:
24. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει αντίσταση \[R\], μήκος \[\ell\] και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα. Ο αγωγός κινείται με σταθερή ταχύτητα πάνω στους λείους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και αμελητέας αντίστασης που τα άκρα τους Α, Γ είναι συνδεμένα με αντιστάτη αντίστασης \[R_1=R\]. Ο αγωγός ΚΛ ακουμπά στους αγωγούς μεγάλου μήκους στα σημεία Ν, Ζ που έχουν απόσταση \[ΝΖ=\frac{ \ell } { 2 }\] ενώ τα τμήματα του αγωγού που προεξέχουν απ’ τους αγωγούς \[Αx_1\] και \[Γx_2\] έχουν ίδιο μήκος. Το σύστημα όλων των αγωγών βρίσκεται σε ομογενές κατακόρυφο μαγνητικό πεδίο έντασης μέτρου \[\vec{B}\] που περιορίζεται στο χώρο μεταξύ των αγωγών \[Ax_1\] και \[Γx_2\] και οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Το μέτρο της οριζόντιας εξωτερικής δύναμης \[F\] που πρέπει να ασκούμε στο μέσο Μ του αγωγού ΚΛ και κάθετα στη διεύθυνσή του ώστε αυτός να διατηρεί σταθερή την ταχύτητά του είναι:
25. Στο παρακάτω σχήμα το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=2R\]. Ο αντιστάτης \[R\] έχει αντίσταση \[R\], η πηγή έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Το ρεύμα σταθεροποιείται σε μέγιστη τιμή έντασης \[Ι\]. Τη χρονική στιγμή \[t_1\] η ένταση που διαρρέει το πηνίο είναι \[I_1 = \frac{I}{4}\]. Απ’ τη στιγμή που η ένταση στο κύκλωμα σταθεροποιείται, ο ρυθμός κατανάλωσης της ηλεκτρικής ενέργειας στο πηνίο είναι:
26. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι μεγάλου μήκους και έχουν αμελητέα αντίσταση ενώ για τις αντιστάσεις ισχύει \[R_1=R_2=R\]. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=1,5 R_1\] μάζας \[m\], μήκος \[\ell\] και μπορεί να κινείται χωρίς τριβές κατά μήκος των κατακόρυφων αγωγών. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] δίνουμε σ’ αυτόν μια κατακόρυφη ταχύτητα μέτρου \[υ_0\] με φορά προς τα πάνω. Η επιτάχυνση της βαρύτητας είναι \[g\].
A) Μετά τη στιγμή \[t_0=0\]:

α) ο αγωγός επιβραδύνεται ομαλά μέχρι να σταματήσει στιγμιαία και μετά εκτελεί ελεύθερη πτώση.

β) επιβραδύνεται μη ομαλά μέχρι να σταματήσει στιγμιαία και κατόπιν επιταχύνεται μη ομαλά μέχρι να αποκτήσει σταθερή ταχύτητα.

γ) ο αγωγός επιβραδύνεται μη ομαλά μέχρι που σταματά και εκεί ακινητοποιείται μόνιμα.

Β) Κάποια στιγμή \[t_1\]  ο αγωγός αποκτά οριακή ταχύτητα \[υ_1\]  που έχει:

α) μέτρο \[υ_1= \frac{ m g R }{ B^2  \ell^2 }\]  και φορά προς τα πάνω.

β) μέτρο \[ υ_1=\frac{mg2R}{B^2 \ell^2 }\]  και φορά προς τα κάτω.

γ) μέτρο \[υ_1=\frac{ mg5R}{ B^2 \ell^2 }\]  και φορά προς τα κάτω.

27. Το σωληνοειδές Σ του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], εμβαδόν σπείρας \[S\], αριθμό σπειρών \[N\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που οι δυναμικές γραμμές είναι παράλληλες με τον άξονα του σωληνοειδούς. Τα άκρα του σωληνοειδούς συνδέονται μέσω κατακόρυφων συρμάτων αμελητέας αντίστασης με μεταλλικό ευθύγραμμο οριζόντιο αγωγό ΖΛ που έχει μήκος \[\ell\], αντίσταση \[R\] και βάρος μέτρου \[w\]. Ο αγωγός ΖΛ είναι προσδεμένος στο κέντρο του με ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\]. Ο αγωγός ΖΛ βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που οι δυναμικές του γραμμές είναι κάθετες στον αγωγό αυτό. Αν το μέτρο της έντασης του \[B_1\] μεταβάλλεται σύμφωνα με τη σχέση \[Β_1=3+2t\] (S.I.) χωρίς να μεταβάλλεται η φορά της, τότε ο αγωγός ΖΛ ισορροπεί οριζόντιος και το ελατήριο έχει το φυσικό του μήκος.


Α) Οι δυναμικές γραμμές του μαγνητικού πεδίου  έντασης \[B_2\]  έχουν φορά:

α) απ’ τον αναγνώστη προς τη σελίδα.

β) απ’ τη σελίδα προς τον αναγνώστη.

γ) μη προσδιορίσιμη με τα δεδομένα της άσκησης.

Β) Το μέτρο της έντασης \[Β_2\]  με όλα τα μεγέθη μετρημένα στο S.I. είναι:

α) \[Β_2=\frac{ w (R_Σ+R) }{ 2 N S  \ell }\],                  
β) \[Β_2=\frac{w (R_Σ+R) }{ 3NS \ell }\],    
γ) \[Β_2=\frac{ w (R_Σ+R) }{ N S \ell } \].

28. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Ο αγωγός έχει αρχική ταχύτητα \[υ_0\] που είναι παράλληλη στους αγωγούς \[Αx_1,\, Γx_2\]. Την \[t=0\] ασκούμε στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ίδιας διεύθυνσης με τη \[υ_0\] και τέτοια ώστε ο αγωγός να αρχίσει να επιβραδύνεται ομαλά μέχρι να σταματήσει. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=2\, mH\] διαρρέεται από ρεύμα μεταβλητής έντασης όπως απεικονίζεται στο σχήμα. Το πηνίο αποτελείται από \[1000\] σπείρες. Ο ρυθμός μεταβολής της ροής που διέρχεται από την κάθε σπείρα του πηνίου είναι
30. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US