MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x) (g(x))^{ν}, ν \neq -1\] στο \[Δ\] είναι της μορφής \[\frac{[g(x)]^{\nu+1}}{\nu+1} +c , c \in \mathbb{R}\].
2. Το όριο \[\lim_{ν \to +\infty} {S_{ν}}\] όπου \[S_{ν}=[f(ξ_{1})+f(ξ_{2})+...+f_(ξ_{ν})] \cdot Δx\], \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], υπάρχει στο \[\mathbb{R}\].
3. Όλες οι αρχικές της συνάρτησης \[f\] στο διάστημα \[Δ\] έχουν παράλληλες εφαπτομένες στο \[x_{o} \in Δ\].
4. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
5. Έστω \[f(x)= ημx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=συνx + c, c \in \mathbb{R}\].
6. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f^{2}(x)dx \ge 0 \].
7. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^βf(x)dx=0\], τότε κατ'ανάγκη θα είναι \[f(x)=0\] για κάθε \[x \in [α,β]\].
8. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=\int_{α}^β f(t)dt\].
9. Έστω \[f(x)= e^{x} , x\in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= e^{x}+c , c \in \mathbb{R}\].
10. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= (λ+μ)\int_{α}^β (f(x)+g(x))dx\].
11. Αν \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[Δ\] και \[α\] είναι ένα σημείο του \[Δ\], τότε η συνάρτηση \[F(x)= \int_{α}^x f(t)dt, x \in Δ\] είναι μια παράγουσα της \[f\] στο \[Δ\].
12. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\] και υπάρχει \[x_{o} \in [α,β]\],ώστε \[f(x_{o}) \neq g(x_{o})\], τότε \[\int_{α}^β f(x)dx > \int_{α}^β g(x)dx\].
13. Αν \[f\] συνεχής στο \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από την \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\] είναι \[Ε(Ω)=\int_{α}^βf(x)dx\].
14. Έστω \[f\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Αρχική συνάρτηση ή παράγουσα της \[f\] στο \[Δ\] ονομάζεται κάθε συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)=f(x)\], για κάθε \[x \in Δ\].
15. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
16. Κάθε παράγουσα της \[f'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)+c , c \in \mathbb{R}\].
17. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει παράγουσα στο διάστημα αυτό.
18. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\] τότε κάθε παράγουσα της \[g΄(x)α^{g(x)}, α>0\] στο \[Δ\], είναι της μορφής \[ \frac {α^{g(x)}}{lnα}+c , c \in \mathbb{R}\].
19. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
20. Αν η \[f\] συνεχής σε διάστημα \[Δ\] και \[α,β,γ \in Δ\], τότε \[\int_{α}^β f(x)dx =\int_{α}^γ f(x)dx+\int_{β}^γ f(x)dx\].

    +30

    CONTACT US
    CALL US