MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= λ\int_{α}^β f(x)dx +μ \int_{α}^β g(x)dx\].
2. Έστω \[f(x)=1, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R} \] είναι της μορφής \[F(x)=x+c\].
3. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx+\int_{β}^α f(x)dx=0\].
4. Αν η \[f\] συνεχής σε διάστημα \[Δ\] και \[α,β,γ \in Δ\], τότε \[\int_{α}^β f(x)dx =\int_{α}^γ f(x)dx+\int_{β}^γ f(x)dx\].
5. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\] τότε κάθε παράγουσα της \[g΄(x)α^{g(x)}, α>0\] στο \[Δ\], είναι της μορφής \[ \frac {α^{g(x)}}{lnα}+c , c \in \mathbb{R}\].
6. Για το \[\int_{α}^β f(x)dx\] τα \[[α,β]\] λέγονται όρια ολοκλήρωσης.
7. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(β)-G(α)\].
8. Αν η \[F\] είναι μια αρχική της συνάρτησης \[f\] στο διάστημα \[Δ\], τότε \[F'(x)=f(x)\], για κάθε \[x \in Δ\].
9. Αν \[F\] είναι μια αρχική της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β F(x)dx= [xF(x)]_{α}^β - \int_{α}^β xf(x)dx\].
10. Το όριο \[\lim_{ν \to +\infty} {S_{ν}}\] όπου \[S_{ν}=[f(ξ_{1})+f(ξ_{2})+...+f_(ξ_{ν})] \cdot Δx\], \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], υπάρχει στο \[\mathbb{R}\].
11. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.
12. Έστω \[f\] συνεχής στο \[[α,β]\], αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx>0\].
13. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)+f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
14. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\] και \[f(x) \ge g(x)\] για κάθε \[ x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β(g(x)-f(x))dx\].
15. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(t)\].
16. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε \[\int_{α}^β f(x)dx \ge 0\] .
17. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και άρτια, τότε \[\int_{-α}^α f(x)dx=\int_{0}^α f(x)dx\].
18. Έστω \[f\] συνεχής στο \[ [α,β] \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] και Ω το χωρίο που ορίζεται από τη γραφική παράσταση της \[f\], του άξονα των \[x\] και τις ευθείες \[x=α , χ=β\]. Αν \[S_{ν}=[f(ξ_{1})+...+f_(ξ_{ν})] \cdot Δx\], όπου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], τότε \[\lim_{ν \to +\infty} {S_{ν}}=Ε(Ω)\].
19. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
20. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=-\int_{β}^α f(x)dx\].

    +30

    CONTACT US
    CALL US