MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Κάθε παράγουσα της \[\frac {g'(x)f(x)-f'(x)g(x)}{g^{2}(x)}, g(x) \neq 0\] για κάθε \[x \in Δ\] σε ένα διάστημα \[Δ\] είναι της μορφής \[\frac {f(x)}{g(x)}+c , c \in \mathbb{R}\].
2. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
3. Έστω \[f(x)= \frac {1}{ημ^{2}x}, x \in \ (0, π)\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, π)\] είναι της μορφής \[F(x)= σφx +c, c \in \mathbb{R}\].
4. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η συνάρτηση \[f\] δεν είναι παντού μηδέν στο διάστημα αυτό, τότε \[\int_{α}^β f(x)dx >0\].
5. Αν \[f'(x)\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f'(x)dx=0\].
6. Έστω \[f(x)= ημx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=συνx + c, c \in \mathbb{R}\].
7. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=\int_{α}^β f(t)dt\].
8. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx+\int_{β}^α f(x)dx=0\].
9. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές.
10. Μια παράγουσα της συνάρτησης \[f(x)=x , x \in \mathbb{R}\] είναι η συνάρτηση \[F(x)=1 , x \in \mathbb{R}\].
11. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{-g'(x)}{g^{2}(x)}, g(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[\frac{1}{g(x)}+c , c \in \mathbb{R}\].
12. Αν \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[Δ\] και \[α\] είναι ένα σημείο του \[Δ\], τότε η συνάρτηση \[F(x)= \int_{α}^x f(t)dt, x \in Δ\] είναι μια παράγουσα της \[f\] στο \[Δ\].
13. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
14. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β|f(x)-g(x)|dx\].
15. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \le \int_{α}^βg(x)dx\].
16. Έστω \[f(x)= \frac {1}{συν^{2}x}, x \in \ (0, \frac{π}{2})\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, \frac{π}{2})\] είναι της μορφής \[F(x)= εφx +c, c \in \mathbb{R}\].
17. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[(\int_{α}^β f(x)dx)'=0\].
18. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και άρτια, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
19. Το ορισμένο ολοκλήρωμα της συνεχούς συνάρτησης \[f\] από το \[α\] στο \[β\] είναι ίσο με το όριο του αθροίσματος \[S_{ν}=\sum_{k=1}^\nu f_({ ξ_{κ}})Δx)\]. Δηλαδή \[\int_{α}^β f(x)dx=\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\].
20. Αν \[f\] συνεχής στο \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από την \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\] είναι \[Ε(Ω)=\int_{α}^βf(x)dx\].

    +30

    CONTACT US
    CALL US