MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
2. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)+f(x)g'(x)dx=f(β)g(β)-f(α)g(α)\].
3. Έστω \[f\] συνεχής στο \[[α,β]\]. Χωρίζουμε το διάστημα \[[α,β]\] σε \[ν\] ισομήκη διαστήματα μήκους \[Δx=\frac{β-α}{ν}\] με τα σημεία \[α=x_{o}<x_{1}<x_{2}<...<x_{\nu}=β\] και επιλέγουμε αυθαίρετα \[ξ_{κ} \in [x_{κ-1}, x_{κ}]\] για κάθε \[κ \in \{1,2,...,\nu\}\]. Το όριο \[\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\] υπάρχει στο \[\mathbb{R}\] και είναι ανεξάρτητο από την επιλογή των σημείων \[ξ_{κ}\].
4. Αν \[F\] και \[G\] είναι παράγουσες της \[f\] στο διάστημα \[Δ\], τότε οι συναρτήσεις \[F\] και \[G\] διαφέρουν κατά μία σταθερά \[c \in \mathbb{R} \].
5. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x)ημg(x)\] στο \[Δ\] είναι της μορφής \[συνg(x)+c , c \in \mathbb{R}\].
6. Ο Υπολογισμός του \[Ε(Ω)=\lim_{ν \to +\infty}{f(ξ_{1})+...+f_(ξ_{ν})} \cdot Δx\] μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], \[Δx=\frac{β-α}{ν}\], εξαρτάται άμεσα από την επιλογή του σημείου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\].
7. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει αρχική στο διάστημα αυτό.
8. Έστω \[f(x)= \frac {1}{x}, x \neq 0\]. Κάθε παράγουσα \[F\] της \[f\] για \[x \neq 0\] είναι της μορφής \[F(x)=lnx +c, c \in \mathbb{R}\].
9. Κάθε παράγουσα της \[f'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)+c , c \in \mathbb{R}\].
10. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\] και \[f(x) \ge g(x)\] για κάθε \[ x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β(g(x)-f(x))dx\].
11. Έστω \[f(x)= συνx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=ημx + c, c \in \mathbb{R}\].
12. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
13. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= [f(x)g(x)]_{α}^β - \int_{α}^β f'(x)g(x)dx\].
14. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x) \pm μg(x), λ,μ \in \mathbb{R}\] είναι της μορφής \[λF(x) \pm μG(x)+c , c \in \mathbb{R}\].
15. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g'(x)dx=f(β)g(β)-f(α)g(α)\].
16. Έστω \[f,g\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
17. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.
18. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
19. Αν οι συναρτήσεις \[F,G\] είναι παράγουσες της συνάρτησης \[f\] στο \[Δ\], τότε οι \[ F\] και \[G\] είναι ίσες.
20. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, τότε για κάθε \[α \in \mathbb{R}\] ισχύει \[\int_{α}^α f(x)dx=0\].

    +30

    CONTACT US
    CALL US