MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
2. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{β}^αf(x)dx \le \int_{β}^αg(x)dx\].
3. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
4. Αν \[f\] συνεχής στο \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από την \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\] είναι \[Ε(Ω)=\int_{α}^βf(x)dx\].
5. Έστω \[f\] μια συνεχής συνάρτηση με συνεχή \[f'\], σε ένα διάστημα \[[α,β]\], τότε \[\int_{α}^β f'(x)dx=f(α)-f(β)\].
6. Έστω \[f(x)= \frac {1}{συν^{2}x}, x \in \ (0, \frac{π}{2})\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, \frac{π}{2})\] είναι της μορφής \[F(x)= εφx +c, c \in \mathbb{R}\].
7. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.
8. Αν \[f\] συνεχής στο \[\mathbb{R}\] με \[f(x)>0\] για κάθε \[x \in \mathbb{R}\], τότε \[\int_{α}^β f(x)dx=0 \Leftrightarrow α=β\].
9. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \ge 0\].
10. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\] και ισχύει \[f(x) \le 0 \] για κάθε \[x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α,x=β\] και τον άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β f(x)dx\].
11. Έστω \[f,g\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
12. Κάθε παράγουσα της \[\frac {g'(x)f(x)-f'(x)g(x)}{g^{2}(x)}, g(x) \neq 0\] για κάθε \[x \in Δ\] σε ένα διάστημα \[Δ\] είναι της μορφής \[\frac {f(x)}{g(x)}+c , c \in \mathbb{R}\].
13. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \le \int_{α}^βg(x)dx\].
14. Αν οι συναρτήσεις \[F,G\] είναι παράγουσες της συνάρτησης \[f\] στο \[Δ\], τότε οι \[ F\] και \[G\] είναι ίσες.
15. Το όριο \[\lim_{ν \to +\infty} {S_{ν}}\] όπου \[S_{ν}=[f(ξ_{1})+f(ξ_{2})+...+f_(ξ_{ν})] \cdot Δx\], \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], υπάρχει στο \[\mathbb{R}\].
16. Μια παράγουσα της συνάρτησης \[f(x)=συνx , x \in \mathbb{R}\] είναι η συνάρτηση \[F(x)=ημx , x \in \mathbb{R}\].
17. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(t)\].
18. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\] τότε κάθε παράγουσα της \[g΄(x)α^{g(x)}, α>0\] στο \[Δ\], είναι της μορφής \[ \frac {α^{g(x)}}{lnα}+c , c \in \mathbb{R}\].
19. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx+\int_{β}^α f(x)dx=0\].
20. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].

    +30

    CONTACT US
    CALL US