MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για το \[\int_{α}^β f(x)dx\] ισχύει πάντα ότι \[α<β\].
2. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{συν^{2}g(x)}, συνg(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[σφg(x)+c , c \in \mathbb{R}\].
3. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)+f(x)g'(x)dx=f(β)g(β)-f(α)g(α)\].
4. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.
5. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= (λ+μ)\int_{α}^β (f(x)+g(x))dx\].
6. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{β}^αf(x)dx \le \int_{β}^αg(x)dx\].
7. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \le \int_{α}^βg(x)dx\].
8. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[(\int_{α}^β f(x)dx)'=0\].
9. Όλες οι παράγουσες της συνάρτησης \[f(x)=ημx, x \in \mathbb{R}\], είναι οι συναρτήσεις \[F(x)= συνx+c , c \in \mathbb{R} , x \in \mathbb{R}\].
10. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει αρχική στο διάστημα αυτό.
11. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.
12. Αν \[f\] είναι μια συνεχής συνάρτηση σε διάστημα \[Δ\] και \[α\] ένα σημείο του Δ, τότε \[\begin{pmatrix}\int_{α}^x f(t)dt\end{pmatrix}'=f(x)\] , για κάθε \[x \in Δ\].
13. Αν οι συναρτήσεις \[F,G\] είναι παράγουσες της συνάρτησης \[f\] στο \[Δ\], τότε οι \[ F\] και \[G\] είναι ίσες.
14. Αν η \[F\] είναι μια αρχική της συνάρτησης \[f\] στο διάστημα \[Δ\], τότε \[F'(x)=f(x)\], για κάθε \[x \in Δ\].
15. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, αν \[α=β\], τότε \[\int_{α}^βf(x)dx=0\].
16. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
17. Έστω \[f\] συνεχής στο \[[α,β]\] και \[λ \in \mathbb{R}\], τότε \[\int_{α}^β λ f(x)dx= λ\int_{α}^β f(x)dx\].
18. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].
19. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
20. Κάθε παράγουσα της \[f'(x)g(x)+f(x)g'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)g(x)+c , c \in \mathbb{R}\].

    +30

    CONTACT US
    CALL US