MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{β}^αf(x)dx \le \int_{β}^αg(x)dx\].
2. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει παράγουσα στο διάστημα αυτό.
3. Το ορισμένο ολοκλήρωμα της συνεχούς συνάρτησης \[f\] από το \[α\] στο \[β\] είναι ίσο με το όριο του αθροίσματος \[S_{ν}=\sum_{k=1}^\nu f_({ ξ_{κ}})Δx)\]. Δηλαδή \[\int_{α}^β f(x)dx=\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\].
4. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= \int_{α}^β f(x)dx \cdot (g(β)-g(α))\].
5. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^βf(x)dx=0\], τότε κατ'ανάγκη θα είναι \[f(x)=0\] για κάθε \[x \in [α,β]\].
6. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{-g'(x)}{g^{2}(x)}, g(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[\frac{1}{g(x)}+c , c \in \mathbb{R}\].
7. Κάθε παράγουσα της \[f'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)+c , c \in \mathbb{R}\].
8. Για το \[\int_{α}^β f(x)dx\] ισχύει πάντα ότι \[α<β\].
9. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
10. Για το \[\int_{α}^β f(x)dx\] τα \[[α,β]\] λέγονται όρια ολοκλήρωσης.
11. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
12. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
13. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^βf(x)dx\] εκφράζει πάντα το εμβαδόν του χωρίου που περικλείεται απο τη \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\].
14. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα θετικό.
15. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
16. Έστω \[f(x)=x^{\nu}, x \in \mathbb{R}, \nu \in \mathbb{N}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= \frac{x^{\nu+1}}{\nu+1}+c, c \in \mathbb{R}\].
17. Αν \[f\] συνεχής στο \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από την \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\] είναι \[Ε(Ω)=\int_{α}^βf(x)dx\].
18. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε \[\int_{α}^β f(x)dx \ge 0\] .
19. Όλες οι παράγουσες της συνάρτησης \[f(x)=\frac{1}{x}, x>0\], είναι οι συναρτήσεις \[F(x)= lnx+c , c \in \mathbb{R} , x>0\].
20. Αν \[Ι=\int_{α}^β f(x)dx>0\], τότε το \[Ι\] εκφράζει πάντοτε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τη \[C_f\], τον άξονα \[x'x\] και τις ευθείες \[x=α, x=β\].

    +30

    CONTACT US
    CALL US