MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Το ορισμένο ολοκλήρωμα της συνεχούς συνάρτησης \[f\] από το \[α\] στο \[β\] είναι ίσο με το όριο του αθροίσματος \[S_{ν}=\sum_{k=1}^\nu f_({ ξ_{κ}})Δx)\]. Δηλαδή \[\int_{α}^β f(x)dx=\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\].
2. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(t)\].
3. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x) (g(x))^{ν}, ν \neq -1\] στο \[Δ\] είναι της μορφής \[\frac{[g(x)]^{\nu+1}}{\nu+1} +c , c \in \mathbb{R}\].
4. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[(\int_{α}^β f(x)dx)'=0\].
5. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α,x=β\] και τον άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β| f(x)|dx\].
6. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g(x)dx= [f(x)g(x)] _{α}^β + \int_{α}^β f'(x)g(x)dx\].
7. Έστω \[f(x)=α^{x}, x \in \mathbb{R}, a>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= α^{x} lna+ c , c \in \mathbb{R}\].
8. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.
9. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\] και υπάρχει \[x_{o} \in [α,β]\],ώστε \[f(x_{o}) \neq g(x_{o})\], τότε \[\int_{α}^β f(x)dx > \int_{α}^β g(x)dx\].
10. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε το \[\int_{α}^β f(x)dx\] δίνει το εμβαδόν \[Ε(Ω)\] του χωρίου \[Ω\] που περικλείεται από τη γραφική παράσταση της \[f\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\]. Δηλαδή\[\int_{α}^β f(x)dx= Ε(Ω)\].
11. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \ge 0\].
12. Έστω \[f(x)= e^{x} , x\in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= e^{x}+c , c \in \mathbb{R}\].
13. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)+f(x)g'(x)dx=f(β)g(β)-f(α)g(α)\].
14. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= \int_{α}^β f(x)dx \cdot (g(β)-g(α))\].
15. Ο Υπολογισμός του \[Ε(Ω)=\lim_{ν \to +\infty}{f(ξ_{1})+...+f_(ξ_{ν})} \cdot Δx\] μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], \[Δx=\frac{β-α}{ν}\], εξαρτάται άμεσα από την επιλογή του σημείου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\].
16. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)+f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
17. Έστω \[f(x)= \frac {1}{\sqrt x}, x>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[(0,+\infty)\] είναι της μορφής \[F(x)= 2 \sqrt x +c , c \in \mathbb{R}\].
18. Για το \[\int_{α}^β f(x)dx\] τα \[[α,β]\] λέγονται όρια ολοκλήρωσης.
19. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{1}{2 \sqrt {g(x)}}, g(x)>0 \] για κάθε \[x \in Δ\], είναι της μορφής \[\sqrt {g(x)}+c , c \in \mathbb{R}\].
20. Αν \[F\] και \[G\] είναι παράγουσες της \[f\] στο διάστημα \[Δ\], τότε οι συναρτήσεις \[F\] και \[G\] διαφέρουν κατά μία σταθερά \[c \in \mathbb{R} \].

    +30

    CONTACT US
    CALL US