MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
2. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x)ημg(x)\] στο \[Δ\] είναι της μορφής \[συνg(x)+c , c \in \mathbb{R}\].
3. Έστω \[f(x)= \frac {1}{ημ^{2}x}, x \in \ (0, π)\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, π)\] είναι της μορφής \[F(x)= σφx +c, c \in \mathbb{R}\].
4. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= \int_{α}^β f(x)dx \cdot (g(β)-g(α))\].
5. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
6. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx \ge 0\].
7. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^βf(x)dx=0\], τότε κατ'ανάγκη θα είναι \[f(x)=0\] για κάθε \[x \in [α,β]\].
8. Το όριο \[\lim_{ν \to +\infty} {S_{ν}}\] όπου \[S_{ν}=[f(ξ_{1})+f(ξ_{2})+...+f_(ξ_{ν})] \cdot Δx\], \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], υπάρχει στο \[\mathbb{R}\].
9. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
10. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)dx= [f(x)g(x)]_{α}^β - \int_{α}^β f(x)g'(x)dx\].
11. Έστω \[f(x)=1, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R} \] είναι της μορφής \[F(x)=x+c\].
12. Έστω \[f(x)= \frac {1}{x}, x \neq 0\]. Κάθε παράγουσα \[F\] της \[f\] για \[x \neq 0\] είναι της μορφής \[F(x)=lnx +c, c \in \mathbb{R}\].
13. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \ge 0\].
14. Όλες οι παράγουσες της συνάρτησης \[f(x)=ημx, x \in \mathbb{R}\], είναι οι συναρτήσεις \[F(x)= συνx+c , c \in \mathbb{R} , x \in \mathbb{R}\].
15. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^β f(x)dx \ge \int_{α}^β g(x)dx\].
16. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
17. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και άρτια, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
18. Έστω \[f\] συνεχής στο \[[α,β]\] και \[λ \in \mathbb{R}\], τότε \[\int_{α}^β λ f(x)dx= λ\int_{α}^β f(x)dx\].
19. Αν \[c>0\], τότε το \[\int_{α}^β c dx\] εκφράζει το εμβαδόν ενός ορθογωνίου με βάση \[β-α\] και ύψος \[c\].
20. Κάθε παράγουσα της \[f'(x)g(x)+f(x)g'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)g(x)+c , c \in \mathbb{R}\].

    +30

    CONTACT US
    CALL US