MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{1}{2 \sqrt {g(x)}}, g(x)>0 \] για κάθε \[x \in Δ\], είναι της μορφής \[\sqrt {g(x)}+c , c \in \mathbb{R}\].
2. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και άρτια, τότε \[\int_{-α}^α f(x)dx=\int_{0}^α f(x)dx\].
3. Έστω \[f(x)= \frac {1}{ημ^{2}x}, x \in \ (0, π)\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, π)\] είναι της μορφής \[F(x)= σφx +c, c \in \mathbb{R}\].
4. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η συνάρτηση \[f\] δεν είναι παντού μηδέν στο διάστημα αυτό, τότε \[\int_{α}^β f(x)dx >0\].
5. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{ημ^{2}g(x)}, ημg(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[σφg(x)+c\].
6. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\] και ισχύει \[f(x) \ge 0\], για κάθε \[x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α, x=β\] και του άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β f(x)dx\]
7. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
8. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{g(x)}, g(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[ln|g(x)|+c, c \in \mathbb{R}\].
9. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές.
10. Όλες οι παράγουσες της συνάρτησης \[f(x)=\frac{1}{x}, x>0\], είναι οι συναρτήσεις \[F(x)= lnx+c , c \in \mathbb{R} , x>0\].
11. Το ορισμένο ολοκλήρωμα της συνεχούς συνάρτησης \[f\] από το \[α\] στο \[β\] είναι ίσο με το όριο του αθροίσματος \[S_{ν}=\sum_{k=1}^\nu f_({ ξ_{κ}})Δx)\]. Δηλαδή \[\int_{α}^β f(x)dx=\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\].
12. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x) \pm μg(x), λ,μ \in \mathbb{R}\] είναι της μορφής \[λF(x) \pm μG(x)+c , c \in \mathbb{R}\].
13. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, τότε για κάθε \[α \in \mathbb{R}\] ισχύει \[\int_{α}^α f(x)dx=0\].
14. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f^{2}(x)dx=0 \Leftrightarrow f(x)=0\].
15. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].
16. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=\int_{β}^α f(x)dx\].
17. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[f+g\] στο \[Δ\] είναι της μορφής \[F(x)+G(x)+c , c \in \mathbb{R}\].
18. Αν για τη συνεχή \[f\] στο \[[α,β]\] ισχύει \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε το εμβαδόν \[Ε(Ω)= \int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός
19. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx \ge 0\].
20. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x)ημg(x)\] στο \[Δ\] είναι της μορφής \[συνg(x)+c , c \in \mathbb{R}\].

    +30

    CONTACT US
    CALL US