MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[f\] συνεχής στο \[\mathbb{R}\] με \[f(x)>0\] για κάθε \[x \in \mathbb{R}\], τότε \[\int_{α}^β f(x)dx=0 \Leftrightarrow α=β\].
2. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε το \[\int_{α}^β f(x)dx\] δίνει το εμβαδόν \[Ε(Ω)\] του χωρίου \[Ω\] που περικλείεται από τη γραφική παράσταση της \[f\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\]. Δηλαδή\[\int_{α}^β f(x)dx= Ε(Ω)\].
3. Για το \[\int_{α}^β f(x)dx\] τα \[[α,β]\] λέγονται όρια ολοκλήρωσης.
4. Αν \[f\] συνεχής στο \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από την \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\] είναι \[Ε(Ω)=\int_{α}^βf(x)dx\].
5. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\] και υπάρχει \[x_{o} \in [α,β]\],ώστε \[f(x_{o}) \neq g(x_{o})\], τότε \[\int_{α}^β f(x)dx > \int_{α}^β g(x)dx\].
6. Έστω \[f(x)= e^{x} , x\in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= e^{x}+c , c \in \mathbb{R}\].
7. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
8. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x) (g(x))^{ν}, ν \neq -1\] στο \[Δ\] είναι της μορφής \[\frac{[g(x)]^{\nu+1}}{\nu+1} +c , c \in \mathbb{R}\].
9. Το εμβαδόν του επίπεδου χωρίου \[Ω\] μιας συνεχούς συνάρτησης \[f\] είναι πάντα μη αρνητικός αριθμός.
10. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[f+g\] στο \[Δ\] είναι της μορφής \[F(x)+G(x)+c , c \in \mathbb{R}\].
11. Έστω \[f(x)= ημx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=συνx + c, c \in \mathbb{R}\].
12. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x) \pm μg(x), λ,μ \in \mathbb{R}\] είναι της μορφής \[λF(x) \pm μG(x)+c , c \in \mathbb{R}\].
13. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \ge 0\].
14. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[(\int_{α}^β f(x)dx)'=0\].
15. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει αρχική στο διάστημα αυτό.
16. Για το \[\int_{α}^β f(x)dx\] ισχύει πάντα ότι \[α<β\].
17. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f'(x)+g'(x))dx=f(β)+g(β)-f(α)-g(α)\].
18. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α,x=β\] και τον άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β| f(x)|dx\].
19. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f^{2}(x)dx=0 \Leftrightarrow f(x)=0\].
20. Αν για τη συνεχή \[f\] στο \[[α,β]\] ισχύει \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε το εμβαδόν \[Ε(Ω)= \int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός

    +30

    CONTACT US
    CALL US