MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[F\] και \[G\] είναι παράγουσες της \[f\] στο διάστημα \[Δ\], τότε οι συναρτήσεις \[F\] και \[G\] διαφέρουν κατά μία σταθερά \[c \in \mathbb{R} \].
2. Έστω \[f(x)=1, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R} \] είναι της μορφής \[F(x)=x+c\].
3. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].
4. Αν οι συναρτήσεις \[F,G\] είναι παράγουσες της συνάρτησης \[f\] στο \[Δ\], τότε οι \[ F\] και \[G\] είναι ίσες.
5. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)+f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
6. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^βf(x)dx\] εκφράζει πάντα το εμβαδόν του χωρίου που περικλείεται απο τη \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\].
7. Έστω \[f(x)=x^{\nu}, x \in \mathbb{R}, \nu \in \mathbb{N}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= \frac{x^{\nu+1}}{\nu+1}+c, c \in \mathbb{R}\].
8. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, τότε για κάθε \[α \in \mathbb{R}\] ισχύει \[\int_{α}^α f(x)dx=0\].
9. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει αρχική στο διάστημα αυτό.
10. Κάθε συνεχής συνάρτηση σε διάστημα \[Δ\] έχει παράγουσα στο διάστημα αυτό.
11. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε το \[\int_{α}^β f(x)dx\] δίνει το εμβαδόν \[Ε(Ω)\] του χωρίου \[Ω\] που περικλείεται από τη γραφική παράσταση της \[f\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\]. Δηλαδή\[\int_{α}^β f(x)dx= Ε(Ω)\].
12. Ο Υπολογισμός του \[Ε(Ω)=\lim_{ν \to +\infty}{f(ξ_{1})+...+f_(ξ_{ν})} \cdot Δx\] μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], \[Δx=\frac{β-α}{ν}\], εξαρτάται άμεσα από την επιλογή του σημείου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\].
13. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές.
14. Αν \[Ι=\int_{α}^β f(x)dx>0\], τότε το \[Ι\] εκφράζει πάντοτε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τη \[C_f\], τον άξονα \[x'x\] και τις ευθείες \[x=α, x=β\].
15. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\] τότε κάθε παράγουσα της \[g΄(x)α^{g(x)}, α>0\] στο \[Δ\], είναι της μορφής \[ \frac {α^{g(x)}}{lnα}+c , c \in \mathbb{R}\].
16. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{ημ^{2}g(x)}, ημg(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[σφg(x)+c\].
17. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
18. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
19. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β|f(x)-g(x)|dx\].
20. Έστω \[f(x)= \frac {1}{x}, x \neq 0\]. Κάθε παράγουσα \[F\] της \[f\] για \[x \neq 0\] είναι της μορφής \[F(x)=lnx +c, c \in \mathbb{R}\].

    +30

    CONTACT US
    CALL US