MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, αν \[α=β\], τότε \[\int_{α}^βf(x)dx=0\].
2. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.
3. Έστω \[f(x)= \frac {1}{\sqrt x}, x>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[(0,+\infty)\] είναι της μορφής \[F(x)= 2 \sqrt x +c , c \in \mathbb{R}\].
4. Ο Υπολογισμός του \[Ε(Ω)=\lim_{ν \to +\infty}{f(ξ_{1})+...+f_(ξ_{ν})} \cdot Δx\] μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], \[Δx=\frac{β-α}{ν}\], εξαρτάται άμεσα από την επιλογή του σημείου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\].
5. Κάθε συνεχής συνάρτηση σε διάστημα \[Δ\] έχει παράγουσα στο διάστημα αυτό.
6. Αν η \[F\] είναι μια αρχική της συνάρτησης \[f\] στο διάστημα \[Δ\], τότε \[F'(x)=f(x)\], για κάθε \[x \in Δ\].
7. Έστω \[f\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Αρχική συνάρτηση ή παράγουσα της \[f\] στο \[Δ\] ονομάζεται κάθε συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)=f(x)\], για κάθε \[x \in Δ\].
8. Έστω \[f\] συνεχής στο \[[α,β]\] και \[λ \in \mathbb{R}\], τότε \[\int_{α}^β λ f(x)dx= λ\int_{α}^β f(x)dx\].
9. Αν μια συνάρτηση \[f\] είναι ορισμένη σε ένα διάστημα \[Δ\] , τότε υπάρχει πάντα συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)= f(x)\], για κάθε \[x\in Δ\].
10. Έστω \[f\] συνεχής στο \[[α,β]\], αν υπάρχει \[x_{o} \in [α,β]\] ώστε \[f(x_{o}) \neq 0\], τότε \[\int_{α}^βf^{2}(x) >0\].
11. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f'(x)+g'(x))dx=f(β)+g(β)-f(α)-g(α)\].
12. Έστω \[f\] συνεχής στο \[ [α,β] \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] και Ω το χωρίο που ορίζεται από τη γραφική παράσταση της \[f\], του άξονα των \[x\] και τις ευθείες \[x=α , χ=β\]. Αν \[S_{ν}=[f(ξ_{1})+...+f_(ξ_{ν})] \cdot Δx\], όπου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], τότε \[\lim_{ν \to +\infty} {S_{ν}}=Ε(Ω)\].
13. Κάθε παράγουσα της \[f'(x)g(x)+f(x)g'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)g(x)+c , c \in \mathbb{R}\].
14. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{-g'(x)}{g^{2}(x)}, g(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[\frac{1}{g(x)}+c , c \in \mathbb{R}\].
15. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
16. Αν \[F\] και \[G\] είναι παράγουσες της \[f\] στο διάστημα \[Δ\], τότε οι συναρτήσεις \[F\] και \[G\] διαφέρουν κατά μία σταθερά \[c \in \mathbb{R} \].
17. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{β}^αf(x)dx \le \int_{β}^αg(x)dx\].
18. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
19. Έστω \[f(x)= \frac {1}{x^{2}}, x \neq 0\]. Κάθε παράγουσα \[F\] της \[f\] για \[x \neq 0\] είναι της μορφής \[F(x)= \frac{1}{x}+c, c \in \mathbb{R}\].
20. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x)ημg(x)\] στο \[Δ\] είναι της μορφής \[συνg(x)+c , c \in \mathbb{R}\].

    +30

    CONTACT US
    CALL US