MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f(x)= \frac {1}{\sqrt x}, x>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[(0,+\infty)\] είναι της μορφής \[F(x)= 2 \sqrt x +c , c \in \mathbb{R}\].
2. Κάθε παράγουσα της \[f'(x)g(x)+f(x)g'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)g(x)+c , c \in \mathbb{R}\].
3. Το όριο \[\lim_{ν \to +\infty} {S_{ν}}\] όπου \[S_{ν}=[f(ξ_{1})+f(ξ_{2})+...+f_(ξ_{ν})] \cdot Δx\], \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], υπάρχει στο \[\mathbb{R}\].
4. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=\int_{β}^α f(x)dx\].
5. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \ge 0\].
6. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=-\int_{β}^α f(x)dx\].
7. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\] και ισχύει \[f(x) \ge 0\], για κάθε \[x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α, x=β\] και του άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β f(x)dx\]
8. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)dx= [f(x)g(x)]_{α}^β - \int_{α}^β f(x)g'(x)dx\].
9. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η συνάρτηση \[f\] δεν είναι παντού μηδέν στο διάστημα αυτό, τότε \[\int_{α}^β f(x)dx >0\].
10. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= λ\int_{α}^β f(x)dx +μ \int_{α}^β g(x)dx\].
11. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=0\].
12. Όλες οι αρχικές της συνάρτησης \[f\] στο διάστημα \[Δ\] έχουν παράλληλες εφαπτομένες στο \[x_{o} \in Δ\].
13. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
14. Έστω \[f(x)= \frac {1}{x}, x \neq 0\]. Κάθε παράγουσα \[F\] της \[f\] για \[x \neq 0\] είναι της μορφής \[F(x)=lnx +c, c \in \mathbb{R}\].
15. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{1}{2 \sqrt {g(x)}}, g(x)>0 \] για κάθε \[x \in Δ\], είναι της μορφής \[\sqrt {g(x)}+c , c \in \mathbb{R}\].
16. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g΄(x)e^{g(x)}\] στο \[Δ\], είναι της μορφής \[e^{g(x)}+c , c \in \mathbb{R}\].
17. Αν η \[f\] συνεχής σε διάστημα \[Δ\] και \[α,β,γ \in Δ\], τότε \[\int_{α}^β f(x)dx =\int_{α}^γ f(x)dx+\int_{β}^γ f(x)dx\].
18. Έστω \[f\] συνεχής στο \[[α,β]\] και \[λ \in \mathbb{R}\], τότε \[\int_{α}^β λ f(x)dx= λ\int_{α}^β f(x)dx\].
19. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, αν \[α=β\], τότε \[\int_{α}^βf(x)dx=0\].
20. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{ημ^{2}g(x)}, ημg(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[σφg(x)+c\].

    +30

    CONTACT US
    CALL US