MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[f\] είναι μια συνεχής συνάρτηση σε διάστημα \[Δ\] και \[α\] ένα σημείο του Δ, τότε \[\begin{pmatrix}\int_{α}^x f(t)dt\end{pmatrix}'=f(x)\] , για κάθε \[x \in Δ\].
2. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f^{2}(x)dx=0 \Leftrightarrow f(x)=0\].
3. Αν \[F\] και \[G\] είναι παράγουσες της \[f\] στο διάστημα \[Δ\], τότε οι συναρτήσεις \[F\] και \[G\] διαφέρουν κατά μία σταθερά \[c \in \mathbb{R} \].
4. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
5. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^βf(x)dx\] εκφράζει πάντα το εμβαδόν του χωρίου που περικλείεται απο τη \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\].
6. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^β f(x)dx \ge \int_{α}^β g(x)dx\].
7. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
8. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[\int_{α}^βf(x)dx \ge 0\], τότε κατ'ανάγκη θα είναι \[f(x) \ge 0\], για κάθε \[x \in [α,β]\].
9. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{συν^{2}g(x)}, συνg(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[σφg(x)+c , c \in \mathbb{R}\].
10. Έστω \[f(x)=α^{x}, x \in \mathbb{R}, a>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= α^{x} lna+ c , c \in \mathbb{R}\].
11. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε το \[\int_{α}^β f(x)dx\] δίνει το εμβαδόν \[Ε(Ω)\] του χωρίου \[Ω\] που περικλείεται από τη γραφική παράσταση της \[f\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\]. Δηλαδή\[\int_{α}^β f(x)dx= Ε(Ω)\].
12. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \le \int_{α}^βg(x)dx\].
13. Αν \[F\] είναι μια αρχική της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β F(x)dx= [xF(x)]_{α}^β - \int_{α}^β xf(x)dx\].
14. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και άρτια, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
15. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].
16. Έστω \[f(x)=x^{\nu}, x \in \mathbb{R}, \nu \in \mathbb{N}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= \frac{x^{\nu+1}}{\nu+1}+c, c \in \mathbb{R}\].
17. Έστω \[f\] μια συνεχής συνάρτηση με συνεχή \[f'\], σε ένα διάστημα \[[α,β]\], τότε \[\int_{α}^β f'(x)dx=f(α)-f(β)\].
18. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
19. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές.
20. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.

    +30

    CONTACT US
    CALL US