MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=0\].
2. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g΄(x)e^{g(x)}\] στο \[Δ\], είναι της μορφής \[e^{g(x)}+c , c \in \mathbb{R}\].
3. Αν μια συνάρτηση \[f\] είναι ορισμένη σε ένα διάστημα \[Δ\] , τότε υπάρχει πάντα συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)= f(x)\], για κάθε \[x\in Δ\].
4. Έστω \[f(x)= \frac {1}{ημ^{2}x}, x \in \ (0, π)\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, π)\] είναι της μορφής \[F(x)= σφx +c, c \in \mathbb{R}\].
5. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx \ge 0\], τότε κατ'ανάγκη θα είναι \[f(x) \ge 0 \] για κάθε \[x \in [α,β]\].
6. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
7. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^βf(x)dx\] εκφράζει πάντα το εμβαδόν του χωρίου που περικλείεται απο τη \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\].
8. Έστω \[f(x)= e^{x} , x\in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= e^{x}+c , c \in \mathbb{R}\].
9. Για το \[\int_{α}^β f(x)dx\] τα \[[α,β]\] λέγονται όρια ολοκλήρωσης.
10. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α,x=β\] και τον άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β| f(x)|dx\].
11. Όλες οι αρχικές της συνάρτησης \[f\] στο διάστημα \[Δ\] έχουν παράλληλες εφαπτομένες στο \[x_{o} \in Δ\].
12. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\] και ισχύει \[f(x) \ge 0\], για κάθε \[x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α, x=β\] και του άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β f(x)dx\]
13. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε \[\int_{α}^β f(x)dx \ge 0\] .
14. Κάθε παράγουσα της \[f'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)+c , c \in \mathbb{R}\].
15. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)dx= [f(x)g(x)]_{α}^β - \int_{α}^β f(x)g'(x)dx\].
16. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.
17. Αν \[c>0\], τότε το \[\int_{α}^β c dx\] εκφράζει το εμβαδόν ενός ορθογωνίου με βάση \[β-α\] και ύψος \[c\].
18. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (\int_{α}^β f(x)dx) f(t)dt=(\int_{α}^β f(x)dx)^{2}\].
19. Αν \[f\] συνεχής στο \[\mathbb{R}\] με \[f(x)>0\] για κάθε \[x \in \mathbb{R}\], τότε \[\int_{α}^β f(x)dx=0 \Leftrightarrow α=β\].
20. Έστω \[f(x)= \frac {1}{συν^{2}x}, x \in \ (0, \frac{π}{2})\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, \frac{π}{2})\] είναι της μορφής \[F(x)= εφx +c, c \in \mathbb{R}\].

    +30

    CONTACT US
    CALL US