MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Κάθε συνεχής συνάρτηση σε διάστημα \[Δ\] έχει παράγουσα στο διάστημα αυτό.
2. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx \ge 0\].
3. Το εμβαδόν του επίπεδου χωρίου \[Ω\] μιας συνεχούς συνάρτησης \[f\] είναι πάντα μη αρνητικός αριθμός.
4. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x)ημg(x)\] στο \[Δ\] είναι της μορφής \[συνg(x)+c , c \in \mathbb{R}\].
5. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.
6. Έστω \[f(x)= e^{x} , x\in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= e^{x}+c , c \in \mathbb{R}\].
7. Μια παράγουσα της συνάρτησης \[f(x)=x , x \in \mathbb{R}\] είναι η συνάρτηση \[F(x)=1 , x \in \mathbb{R}\].
8. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f^{2}(x)dx \ge 0 \].
9. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει αρχική στο διάστημα αυτό.
10. Έστω \[f,g\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
11. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=0\].
12. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
13. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)+f(x)g'(x)dx=f(β)g(β)-f(α)g(α)\].
14. Κάθε συνεχής συνάρτηση σε ένα διάστημα \[Δ\] έχει παράγουσα στο Δ
15. Αν η \[f\] συνεχής σε διάστημα \[Δ\] και \[α,β,γ \in Δ\], τότε \[\int_{α}^β f(x)dx =\int_{α}^γ f(x)dx+\int_{β}^γ f(x)dx\].
16. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει παράγουσα στο διάστημα αυτό.
17. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
18. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\] και \[f(x) \ge g(x)\] για κάθε \[ x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β(g(x)-f(x))dx\].
19. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x) (g(x))^{ν}, ν \neq -1\] στο \[Δ\] είναι της μορφής \[\frac{[g(x)]^{\nu+1}}{\nu+1} +c , c \in \mathbb{R}\].
20. Αν \[f'(x)\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f'(x)dx=0\].

    +30

    CONTACT US
    CALL US