MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f(x)= συνx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=ημx + c, c \in \mathbb{R}\].
2. Όλες οι αρχικές της συνάρτησης \[f\] στο διάστημα \[Δ\] έχουν παράλληλες εφαπτομένες στο \[x_{o} \in Δ\].
3. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\] και \[f(x) \ge g(x)\] για κάθε \[ x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β(g(x)-f(x))dx\].
4. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)+f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
5. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[\int_{α}^βf(x)dx \ge 0\], τότε κατ'ανάγκη θα είναι \[f(x) \ge 0\], για κάθε \[x \in [α,β]\].
6. Αν \[F\] και \[G\] είναι παράγουσες της \[f\] στο διάστημα \[Δ\], τότε οι συναρτήσεις \[F\] και \[G\] διαφέρουν κατά μία σταθερά \[c \in \mathbb{R} \].
7. Έστω \[f(x)=α^{x}, x \in \mathbb{R}, a>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= α^{x} lna+ c , c \in \mathbb{R}\].
8. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x) \pm μg(x), λ,μ \in \mathbb{R}\] είναι της μορφής \[λF(x) \pm μG(x)+c , c \in \mathbb{R}\].
9. Κάθε παράγουσα της \[\frac {f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}, g(x) \neq 0\] για κάθε \[x \in Δ\] σε διάστημα \[Δ\] είναι της μορφής \[\frac {f(x)}{g(x)}+c , c \in \mathbb{R}\].
10. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= (λ+μ)\int_{α}^β (f(x)+g(x))dx\].
11. Αν \[c>0\], τότε το \[\int_{α}^β c dx\] εκφράζει το εμβαδόν ενός ορθογωνίου με βάση \[β-α\] και ύψος \[c\].
12. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
13. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
14. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= λ\int_{α}^β f(x)dx +μ \int_{α}^β g(x)dx\].
15. Έστω \[f\] συνεχής στο \[[α,β]\] και \[λ \in \mathbb{R}\], τότε \[\int_{α}^β λ f(x)dx= \int_{α}^β λdx \int_{α}^β f(x)dx\].
16. Για το \[\int_{α}^β f(x)dx\] τα \[[α,β]\] λέγονται όρια ολοκλήρωσης.
17. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
18. Έστω \[f,g\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
19. Αν μια συνάρτηση \[f\] είναι ορισμένη σε ένα διάστημα \[Δ\] , τότε υπάρχει πάντα συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)= f(x)\], για κάθε \[x\in Δ\].
20. Αν \[F\] είναι μια αρχική της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β F(x)dx= [xF(x)]_{α}^β - \int_{α}^β xf(x)dx\].

    +30

    CONTACT US
    CALL US