MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[c>0\], τότε το \[\int_{α}^β c dx\] εκφράζει το εμβαδόν ενός ορθογωνίου με βάση \[β-α\] και ύψος \[c\].
2. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\] και ισχύει \[f(x) \ge 0\], για κάθε \[x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α, x=β\] και του άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β f(x)dx\]
3. Έστω \[f\] μια συνεχής συνάρτηση στο \[[α,β]\]. Το ολοκλήρωμα \[\int_{α}^βf(x)dx\] είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από τον άξονα \[x'x\] μείον το άθροισμα των εμβαδών των χωρίων, που βρίσκονται κάτω από τον άξονα \[x'x\].
4. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{συν^{2}g(x)}, συνg(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[σφg(x)+c , c \in \mathbb{R}\].
5. Έστω \[f\] συνεχής στο \[[α,β]\], αν υπάρχει \[x_{o} \in [α,β]\] ώστε \[f(x_{o}) \neq 0\], τότε \[\int_{α}^βf^{2}(x) >0\].
6. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[(\int_{α}^β f(x)dx)'=0\].
7. Έστω \[f(x)= \frac {1}{\sqrt x}, x>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[(0,+\infty)\] είναι της μορφής \[F(x)= 2 \sqrt x +c , c \in \mathbb{R}\].
8. Αν \[f\] είναι μια συνεχής συνάρτηση σε διάστημα \[Δ\] και \[α\] ένα σημείο του Δ, τότε \[\begin{pmatrix}\int_{α}^x f(t)dt\end{pmatrix}'=f(x)\] , για κάθε \[x \in Δ\].
9. Για το \[\int_{α}^β f(x)dx\] τα \[[α,β]\] λέγονται όρια ολοκλήρωσης.
10. Κάθε παράγουσα της \[f'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)+c , c \in \mathbb{R}\].
11. Αν η \[F\] είναι μια αρχική της συνάρτησης \[f\] στο διάστημα \[Δ\], τότε \[F'(x)=f(x)\], για κάθε \[x \in Δ\].
12. Έστω \[f,g\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
13. Μια παράγουσα της συνάρτησης \[f(x)=x , x \in \mathbb{R}\] είναι η συνάρτηση \[F(x)=1 , x \in \mathbb{R}\].
14. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= \int_{α}^β f(x)dx \cdot (g(β)-g(α))\].
15. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
16. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx \ge 0\], τότε κατ'ανάγκη θα είναι \[f(x) \ge 0 \] για κάθε \[x \in [α,β]\].
17. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (\int_{α}^β f(x)dx) f(t)dt=(\int_{α}^β f(x)dx)^{2}\].
18. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[\int_{α}^βf(x)dx \ge 0\], τότε κατ'ανάγκη θα είναι \[f(x) \ge 0\], για κάθε \[x \in [α,β]\].
19. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= (λ+μ)\int_{α}^β (f(x)+g(x))dx\].
20. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f^{2}(x)dx \ge 0 \].

    +30

    CONTACT US
    CALL US