MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Μια παράγουσα της συνάρτησης \[f(x)=συνx , x \in \mathbb{R}\] είναι η συνάρτηση \[F(x)=ημx , x \in \mathbb{R}\].
2. Αν \[F\] και \[G\] είναι παράγουσες της \[f\] στο διάστημα \[Δ\], τότε οι συναρτήσεις \[F\] και \[G\] διαφέρουν κατά μία σταθερά \[c \in \mathbb{R} \].
3. Αν μια συνάρτηση \[f\] είναι ορισμένη σε ένα διάστημα \[Δ\] , τότε υπάρχει πάντα συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)= f(x)\], για κάθε \[x\in Δ\].
4. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
5. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\] και υπάρχει \[x_{o} \in [α,β]\],ώστε \[f(x_{o}) \neq g(x_{o})\], τότε \[\int_{α}^β f(x)dx > \int_{α}^β g(x)dx\].
6. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\] και ισχύει \[f(x) \le 0 \] για κάθε \[x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α,x=β\] και τον άξονα \[x'x\] είναι \[Ε(Ω)= \int_{β}^α f(x)dx\].
7. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f^{2}(x)dx \ge 0 \].
8. Έστω \[f(x)= ημx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=συνx + c, c \in \mathbb{R}\].
9. Κάθε παράγουσα της \[\frac {g'(x)f(x)-f'(x)g(x)}{g^{2}(x)}, g(x) \neq 0\] για κάθε \[x \in Δ\] σε ένα διάστημα \[Δ\] είναι της μορφής \[\frac {f(x)}{g(x)}+c , c \in \mathbb{R}\].
10. Έστω \[f(x)=1, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R} \] είναι της μορφής \[F(x)=x+c\].
11. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
12. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
13. Έστω \[f\] συνεχής στο \[[α,β]\]. Χωρίζουμε το διάστημα \[[α,β]\] σε \[ν\] ισομήκη διαστήματα μήκους \[Δx=\frac{β-α}{ν}\] με τα σημεία \[α=x_{o}<x_{1}<x_{2}<...<x_{\nu}=β\] και επιλέγουμε αυθαίρετα \[ξ_{κ} \in [x_{κ-1}, x_{κ}]\] για κάθε \[κ \in \{1,2,...,\nu\}\]. Το όριο \[\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\] υπάρχει στο \[\mathbb{R}\] και είναι ανεξάρτητο από την επιλογή των σημείων \[ξ_{κ}\].
14. Έστω \[f\] συνεχής στο \[[α,β]\], αν υπάρχει \[x_{o} \in [α,β]\] ώστε \[f(x_{o}) \neq 0\], τότε \[\int_{α}^βf^{2}(x) >0\].
15. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=\int_{α}^β f(t)dt\].
16. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και άρτια, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
17. Αν \[f'(x)\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f'(x)dx=0\].
18. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].
19. Έστω \[f\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Αρχική συνάρτηση ή παράγουσα της \[f\] στο \[Δ\] ονομάζεται κάθε συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)=f(x)\], για κάθε \[x \in Δ\].
20. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{β}^αf(x)dx \le \int_{β}^αg(x)dx\].

    +30

    CONTACT US
    CALL US