MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν οι συναρτήσεις \[F,G\] είναι παράγουσες της συνάρτησης \[f\] στο \[Δ\], τότε οι \[ F\] και \[G\] είναι ίσες.
2. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.
3. Έστω \[f(x)=1, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R} \] είναι της μορφής \[F(x)=x+c\].
4. Έστω \[f(x)= συνx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=ημx + c, c \in \mathbb{R}\].
5. Αν \[f'(x)\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f'(x)dx=0\].
6. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε το \[\int_{α}^β f(x)dx\] δίνει το εμβαδόν \[Ε(Ω)\] του χωρίου \[Ω\] που περικλείεται από τη γραφική παράσταση της \[f\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\]. Δηλαδή\[\int_{α}^β f(x)dx= Ε(Ω)\].
7. Αν μια συνάρτηση \[f\] είναι ορισμένη σε ένα διάστημα \[Δ\] , τότε υπάρχει πάντα συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)= f(x)\], για κάθε \[x\in Δ\].
8. Έστω \[f(x)=α^{x}, x \in \mathbb{R}, a>0\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= α^{x} lna+ c , c \in \mathbb{R}\].
9. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[f+g\] στο \[Δ\] είναι της μορφής \[F(x)+G(x)+c , c \in \mathbb{R}\].
10. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx+\int_{β}^α f(x)dx=0\].
11. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f'(x)g(x)dx= [f(x)g(x)]_{α}^β - \int_{α}^β f(x)g'(x)dx\].
12. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \le \int_{α}^βg(x)dx\].
13. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, αν \[α=β\], τότε \[\int_{α}^βf(x)dx=0\].
14. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx \ge 0\], τότε κατ'ανάγκη θα είναι \[f(x) \ge 0 \] για κάθε \[x \in [α,β]\].
15. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η συνάρτηση \[f\] δεν είναι παντού μηδέν στο διάστημα αυτό, τότε \[\int_{α}^β f(x)dx >0\].
16. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
17. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\] και \[f(x) \ge g(x)\] για κάθε \[ x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β(g(x)-f(x))dx\].
18. Έστω \[f\] συνεχής στο \[[α,β]\], αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx>0\].
19. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\] και υπάρχει \[x_{o} \in [α,β]\],ώστε \[f(x_{o}) \neq g(x_{o})\], τότε \[\int_{α}^β f(x)dx > \int_{α}^β g(x)dx\].
20. Έστω \[f(x)= \frac {1}{ημ^{2}x}, x \in \ (0, π)\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ (0, π)\] είναι της μορφής \[F(x)= σφx +c, c \in \mathbb{R}\].

    +30

    CONTACT US
    CALL US