MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].
2. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= [f(x)g(x)]_{α}^β - \int_{α}^β f'(x)g(x)dx\].
3. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= \int_{α}^β f(x)dx \cdot (g(β)-g(α))\].
4. Έστω \[f\] συνεχής στο \[[α,β]\]. Χωρίζουμε το διάστημα \[[α,β]\] σε \[ν\] ισομήκη διαστήματα μήκους \[Δx=\frac{β-α}{ν}\] με τα σημεία \[α=x_{o}<x_{1}<x_{2}<...<x_{\nu}=β\] και επιλέγουμε αυθαίρετα \[ξ_{κ} \in [x_{κ-1}, x_{κ}]\] για κάθε \[κ \in \{1,2,...,\nu\}\]. Το όριο \[\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\] υπάρχει στο \[\mathbb{R}\] και είναι ανεξάρτητο από την επιλογή των σημείων \[ξ_{κ}\].
5. Αν η \[F\] είναι μια παράγουσα της \[f\] στο \[Δ\], τότε και η \[G(x)=F(x)+c , c \in \mathbb{R} \] είναι παράγουσα της \[f\] στο \[Δ\]
6. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \le \int_{α}^βg(x)dx\].
7. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)+f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
8. Αν οι συναρτήσεις \[f\] και \[g\] είναι συνεχείς σε ένα διάστημα \[[α,β]\] και \[f(x) \ge g(x)\] για κάθε \[ x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τις γραφικές παραστάσεις των \[f,g\] και τις ευθείες \[x=α, x=β\] είναι \[Ε(Ω)=\int_{α}^β(g(x)-f(x))dx\].
9. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
10. Κάθε παράγουσα της \[f'(x)g(x)+f(x)g'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)g(x)+c , c \in \mathbb{R}\].
11. Έστω \[f(x)= ημx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=συνx + c, c \in \mathbb{R}\].
12. Αν \[c>0\], τότε το \[\int_{α}^β c dx\] εκφράζει το εμβαδόν ενός ορθογωνίου με βάση \[β-α\] και ύψος \[c\].
13. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].
14. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α,x=β\] και τον άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β| f(x)|dx\].
15. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
16. Κάθε παράγουσα της \[\frac {f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}, g(x) \neq 0\] για κάθε \[x \in Δ\] σε διάστημα \[Δ\] είναι της μορφής \[\frac {f(x)}{g(x)}+c , c \in \mathbb{R}\].
17. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (\int_{α}^β f(x)dx) f(t)dt=(\int_{α}^β f(x)dx)^{2}\].
18. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η συνάρτηση \[f\] δεν είναι παντού μηδέν στο διάστημα αυτό, τότε \[\int_{α}^β f(x)dx >0\].
19. Κάθε συνεχής συνάρτηση σε ένα διάστημα \[Δ\] έχει παράγουσα στο Δ
20. Έστω \[f\] συνεχής στο \[[α,β]\], αν υπάρχει \[x_{o} \in [α,β]\] ώστε \[f(x_{o}) \neq 0\], τότε \[\int_{α}^βf^{2}(x) >0\].

    +30

    CONTACT US
    CALL US