MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
2. Έστω \[f\] συνεχής στο \[[α,β]\]. Αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \ge 0\].
3. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].
4. Αν \[f'\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx = [xf(x)]_{α}^β - \int_{α}^β xf'(x)dx\].
5. Έστω \[f\] συνεχής στο \[ [α,β] \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] και Ω το χωρίο που ορίζεται από τη γραφική παράσταση της \[f\], του άξονα των \[x\] και τις ευθείες \[x=α , χ=β\]. Αν \[S_{ν}=[f(ξ_{1})+...+f_(ξ_{ν})] \cdot Δx\], όπου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], τότε \[\lim_{ν \to +\infty} {S_{ν}}=Ε(Ω)\].
6. Αν \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[Δ\] και \[α\] είναι ένα σημείο του \[Δ\], τότε η συνάρτηση \[F(x)= \int_{α}^x f(t)dt, x \in Δ\] είναι μια παράγουσα της \[f\] στο \[Δ\].
7. Κάθε παράγουσα της \[\frac {f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}, g(x) \neq 0\] για κάθε \[x \in Δ\] σε διάστημα \[Δ\] είναι της μορφής \[\frac {f(x)}{g(x)}+c , c \in \mathbb{R}\].
8. Το ορισμένο ολοκλήρωμα της συνεχούς συνάρτησης \[f\] από το \[α\] στο \[β\] είναι ίσο με το όριο του αθροίσματος \[S_{ν}=\sum_{k=1}^\nu f_({ ξ_{κ}})Δx)\]. Δηλαδή \[\int_{α}^β f(x)dx=\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\].
9. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(t)\].
10. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^βf(x)dx\] εκφράζει πάντα το εμβαδόν του χωρίου που περικλείεται απο τη \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\].
11. Αν μια συνάρτηση \[f\] είναι ορισμένη σε ένα διάστημα \[Δ\] , τότε υπάρχει πάντα συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)= f(x)\], για κάθε \[x\in Δ\].
12. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g'(x)ημg(x)\] στο \[Δ\] είναι της μορφής \[συνg(x)+c , c \in \mathbb{R}\].
13. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές.
14. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.
15. Έστω \[f\] συνεχής στο \[[α,β]\], αν υπάρχει \[x_{o} \in [α,β]\] ώστε \[f(x_{o}) \neq 0\], τότε \[\int_{α}^βf^{2}(x) >0\].
16. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
17. Αν για τη συνεχή \[f\] στο \[[α,β]\] ισχύει \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε το εμβαδόν \[Ε(Ω)= \int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός
18. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\] τότε κάθε παράγουσα της \[g΄(x)α^{g(x)}, α>0\] στο \[Δ\], είναι της μορφής \[ \frac {α^{g(x)}}{lnα}+c , c \in \mathbb{R}\].
19. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{1}{2 \sqrt {g(x)}}, g(x)>0 \] για κάθε \[x \in Δ\], είναι της μορφής \[\sqrt {g(x)}+c , c \in \mathbb{R}\].
20. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=0\].

    +30

    CONTACT US
    CALL US