MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[f(x)= ημx, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R}\] είναι της μορφής \[F(x)=συνx + c, c \in \mathbb{R}\].
2. Αν \[Ι=\int_{α}^β f(x)dx>0\], τότε το \[Ι\] εκφράζει πάντοτε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από τη \[C_f\], τον άξονα \[x'x\] και τις ευθείες \[x=α, x=β\].
3. Αν \[f',g'\] συνεχείς συναρτήσεις στο \[[α,β]\], τότε \[\int_{α}^β f(x)g'(x)dx= \int_{α}^β f(x)dx \cdot (g(β)-g(α))\].
4. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[α,β]\] και ισχύει \[f(x) \ge 0\], για κάθε \[x \in [α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=α, x=β\] και του άξονα \[x'x\] είναι \[Ε(Ω)= \int_{α}^β f(x)dx\]
5. Κάθε συνάρτηση \[f\] που είναι ορισμένη σε ένα διάστημα \[Δ\], έχει παράγουσα στο διάστημα αυτό.
6. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^βf(x)dx\] εκφράζει πάντα το εμβαδόν του χωρίου που περικλείεται απο τη \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\].
7. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\] και υπάρχει \[x_{o} \in [α,β]\],ώστε \[f(x_{o}) \neq g(x_{o})\], τότε \[\int_{α}^β f(x)dx > \int_{α}^β g(x)dx\].
8. Αν για τη συνεχή \[f\] στο \[[α,β]\] ισχύει \[f(x) \ge 0\] για κάθε \[x \in [α,β]\], τότε το εμβαδόν \[Ε(Ω)= \int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός
9. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.
10. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(t)\].
11. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx \ge 0\].
12. Αν \[f\] συνεχής στο \[[α,β]\], τότε το εμβαδόν του χωρίου \[Ω\] που περικλείεται από την \[C_{f}\], τον άξονα \[x'x\] και τις ευθείες \[x=α\] και \[x=β\] είναι \[Ε(Ω)=\int_{α}^βf(x)dx\].
13. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[(\int_{α}^β f(x)dx)'=0\].
14. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=\int_{α}^β f(t)dt\].
15. Το όριο \[\lim_{ν \to +\infty} {S_{ν}}\] όπου \[S_{ν}=[f(ξ_{1})+f(ξ_{2})+...+f_(ξ_{ν})] \cdot Δx\], \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], υπάρχει στο \[\mathbb{R}\].
16. Αν \[f',g'\] συνεχείς στο \[[α,β]\], τότε \[\int_{α}^β (f'(x)+g'(x))dx=f(β)+g(β)-f(α)-g(α)\].
17. Κάθε παράγουσα της \[f'(x)g(x)+f(x)g'(x)\] σε ένα διάστημα \[Δ\] είναι της μορφής \[f(x)g(x)+c , c \in \mathbb{R}\].
18. Αν \[F\] μια παράγουσα της \[f\] και \[G\] μια παράγουσα της \[g\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x) \pm μg(x), λ,μ \in \mathbb{R}\] είναι της μορφής \[λF(x) \pm μG(x)+c , c \in \mathbb{R}\].
19. Αν η \[f\] συνεχής σε διάστημα \[Δ\] και \[α,β,γ \in Δ\], τότε \[\int_{α}^β f(x)dx =\int_{α}^γ f(x)dx+\int_{γ}^β f(x)dx\].
20. Αν \[f\] συνεχής στο \[[α,β]\], τότε το \[\int_{α}^β f(x)dx\] είναι πάντα μη αρνητικός αριθμός.

    +30

    CONTACT US
    CALL US