MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q < 0\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[Β\] που εκτείνεται σε μεγάλη απόσταση πάνω απ’ το όριό του που είναι η ευθεία \[x' x\]. Το σωματίδιο εισέρχεται απ’ το όριο \[x' x\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ=30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου. Οι βαρυτικές δυνάμεις αμελούνται. Ο χρόνος παραμονής του σωματιδίου στο πεδίο είναι:
2. Ο αγωγός (1) του παρακάτω σχήματος έχει σχήμα τεταρτοκυκλίου ακτίνας \[r\] και κέντρου Κ. Ο αγωγός αυτός διαρρέεται από ρεύμα έντασης \[Ι\] που η φορά της φαίνεται στο σχήμα. Ο αγωγός (2) είναι κυκλικό τμήμα ίδιας ακτίνας \[r\] και ίδιου κέντρου που αντιστοιχεί σε επίκεντρη γωνία \[θ=30^0\]. Ο αγωγός (2) διαρρέεται από ρεύμα \[Ι'\]. Τα επίπεδα των δύο αγωγών ταυτίζονται με αυτό της σελίδας. Αν στο κέντρο Κ η ολική ένταση των μαγνητικών πεδίων των δύο αγωγών είναι μηδενική, τότε ο λόγος \[\frac{Ι'}{ Ι} \] είναι:
3. Ένα ηλεκτρόνιο \[e\] και ένα πρωτόνιο \[p\] εισέρχονται μέσα στο ίδιο ομογενές μαγνητικό πεδίο με ταχύτητες κάθετες στις δυναμικές γραμμές του πεδίου. Για τις μάζες τους ισχύει \[m_p=1836 m_e\]. Τα δύο σωματίδια εισέρχονται στο πεδίο με ίσες κινητικές ενέργειες και δέχονται μόνο τις δυνάμεις του πεδίου. Ο λόγος των μέτρων των επιταχύνσεων \[\frac{α_{κ_e }}{α_{κ_p}}\] που αποκτούν στο μαγνητικό πεδίο είναι:
4. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] με εντάσεις \[\vec{B}_1\, , \, \vec{B}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες. Τα δύο πεδία χωρίζονται απ’ τον άξονα \[x' x\] και εκτείνονται σε μεγάλη απόσταση στα δύο ημιεπίπεδα που ορίζει ο άξονας αυτός. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται την \[t=0\] στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[x' x\] με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές του πεδίου και στον άξονα \[x' x\]. Τη στιγμή \[t_1\] εξέρχεται απ’ το πεδίο \[(1)\], κινείται μέσα στο πεδίο \[(2)\] και τη στιγμή \[t_2\] φτάνει πάλι στο όριο \[x' x\] των δύο πεδίων στο σημείο Δ. Για τις χρονικές στιγμές \[t_1\, ,\, t_2\] ισχύει \[t_2 = 4 t_1\]. Αν \[R_1\, , \, R_2\] οι ακτίνες των κυκλικών τροχιών στα πεδία \[(1)\, , \, (2)\] αντίστοιχα, τότε ισχύει:
5. Οι δύο ευθύγραμμοι αγωγοί (1), (2) του παρακάτω σχήματος έχουν αντίσταση \[R\] ο καθένας. Οι αγωγοί συνδέονται με ιδανική πηγή ΗΕΔ \[\mathcal{E}\]. Αρχικά ο διακόπτης δ είναι ανοικτός και στο σημείο Ζ η ένταση του μαγνητικού πεδίου του αγωγού (1) στο σημείο Ζ έχει μέτρο \[Β\]. Κλείνουμε το διακόπτη δ. Η συνολική ένταση του μαγνητικού πεδίου στο Ζ λόγω των δύο αγωγών έχει μέτρο \[Β'\]. Το σημείο Ζ απέχει \[d\] και απ’ τους δύο αγωγούς η οποία θεωρείται πολύ μικρή σε σχέση με το μήκος τους. Το μέτρο \[Β'\]:
6. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Ευθύγραμμος ρευματοφόρος αγωγός μήκους \[\ell\] διαρρέεται από ρεύμα έντασης \[Ι\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[B\].
7. Θετικά φορτισμένα σωματίδια μάζας \[m\] και φορτίου \[q\] επιταχύνονται απ’ την ηρεμία υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων μαγνητικού πεδίου έντασης \[ \vec{B} \] και ηλεκτρικού πεδίου έντασης \[\vec{E}\] όπως φαίνεται στο παρακάτω σχήμα. Για να μην εκτραπεί απ’ την αρχική διεύθυνση κίνησης το σωματίδιο πρέπει η τάση που το επιταχύνει να είναι:
8. Για τα μέτρα των εντάσεων \[Β\] του μαγνητικού πεδίου ρευματοφόρου αγωγού που διαρρέεται από σταθερό ρεύμα στα σημεία του άξονα \[xx'\] που διέρχεται από τον αγωγό και είναι κάθετος σε αυτόν σε συνάρτηση με την θέση \[x\] των σημείων δίνονται από τα διαγράμματα:
Το σωστό διάγραμμα δίνεται στο σχήμα:
9. Ο αγωγός του παρακάτω σχήματος είναι τμήμα κύκλου ακτίνας \[r\] και κέντρου Κ. Η επίκεντρη γωνία που του αντιστοιχεί είναι \[Δθ\] μετρημένη σε \[rad\]. Ο αγωγός διαρρέεται από ρεύμα έντασης \[Ι\] που η φορά του φαίνεται στο σχήμα. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η ένταση του μαγνητικού πεδίου του αγωγού στο κέντρο του Κ:
10. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
11. Στο παρακάτω σχήμα φαίνεται η κατακόρυφη τομή του ρευματοφόρου σωληνοειδούς. Η μαγνητική βελόνα που τοποθετείται στο εσωτερικό του σωληνοειδούς προσανατολίζεται μόνο λόγω των δυνάμεων που δέχεται από το μαγνητικό πεδίο του σωληνοειδούς. Επιλέξτε τη σωστή απάντηση. Ο προσανατολισμός της μαγνητικής βελόνας φαίνεται στην περίπτωση:
12. Η κάθετη τομή ομογενούς μαγνητικού πεδίου έντασης \[Β\] είναι το τετράγωνο ΚΛΜΝ πλευράς \[α\]. Ένα ηλεκτρόνιο εισέρχεται στο πεδίο απ’ την κορυφή Κ με ταχύτητα \[\vec{υ}\] που η διεύθυνσή της ταυτίζεται με το όριο ΚΛ. Το ηλεκτρόνιο εξέρχεται απ’ την κορυφή Μ του τετραγώνου και κατά την κίνησή του οι βαρυτικές δυνάμεις αμελούνται. Το φορτίο του ηλεκτρονίου είναι \[-e\] (όπου \[e\] το στοιχειώδες θετικό φορτίο) και η μάζα του \[m_e\]. Το μέτρο της μεταβολής της ορμής του ηλεκτρονίου λόγω της παραμονής του στο πεδίο \[ \left| Δ\vec{p} \right|\] είναι:
13. Κόβουμε ένα σωληνοειδές \[Σ\] σε τρία κομμάτια και δημιουργώ τρία νέα σωληνοειδή \[Σ_1,\, Σ_2,\, Σ_3 \] με μήκη \[\ell_1,\, \ell_2,\, \ell_3\] αντίστοιχα για τα οποία ισχύει \[\ell_1 > \ell_2> \ell_3\]. Ποια απ’ τις παρακάτω προτάσεις είναι η σωστή; Αν συνδέσω τα τρία σωληνοειδή σε σειρά και στα άκρα του συστήματός τους εφαρμόσω σταθερή τάση \[V\], για τα μέτρα των εντάσεων των μαγνητικών πεδίων των σωληνοειδών στο κέντρο τους ισχύει:
14. Ο αγωγός ΚΛ του παρακάτω σχήματος α αποτελείται από δύο πανομοιότυπους ευθύγραμμους αγωγούς ΚΟ και ΟΛ που έχουν συγκολληθεί κάθετα στο κοινό τους άκρο Ο. Ο κάθε αγωγός έχει μήκος \[\ell\]. Ο αγωγός ΚΟΛ διαρρέεται από ρεύμα έντασης \[Ι\] και αρχικά είναι τοποθετημένος όπως στο σχήμα 1 μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\]. Η δύναμη Laplace που δέχεται ο αγωγός ΚΟΛ έχει μέτρο \[F_1\].


Α) Αν στρέψω τον αγωγό ΚΟΛ κατά \[90^0\]  ως προς άξονα κάθετο στο επίπεδό του που διέρχεται απ’ το σημείο Ο, τότε αυτός θα δέχεται δύναμη Laplace μέτρου \[F_2\]  με:

α) \[F_2=F_1\],                β) \[F_2=\frac{F_1}{2}\],                         γ) \[F_2=2F_1\].

B) Αν στρέψω τον αγωγό κατά γωνία \[30^0\] ως προς τον ίδιο άξονα περιστροφής, τότε αυτός θα δέχεται δύναμη Laplace μέτρου \[F_3\] με:

α) \[F_3=\frac{  \sqrt{3}-1 }{2} F_1  \],              β) \[F_3=\frac{F_1}{2}\],                         γ) \[F_3=2F_1\].

15. Δύο φορτισμένα σωματίδια \[(1)\, , \, (2)\] με μάζες \[m_1\, , \, m_2\] και φορτία \[ q_1 < 0\, , \, q_2 > 0\] αντίστοιχα εισέρχονται με ταχύτητες \[\vec{υ}_1\, , \, \vec{υ} _2\] στο μαγνητικό πεδίο απ’ το ίδιο σημείο Α του ορίου του πεδίου που είναι η ευθεία \[xx'\]. Οι ταχύτητες \[\vec{υ}_1\, , \, \vec{υ}_2\] είναι κάθετες στην ευθεία \[xx'\] και στις δυναμικές γραμμές του πεδίου ενώ για τα μέτρα τους ισχύει \[υ_2=2υ_1\]. Τα σωματίδια εξέρχονται απ’ το ίδιο όριο \[xx'\] και το σημείο εξόδου του \[(1)\] είναι το σημείο Γ και του \[(2)\] το σημείο Δ. Για τις αποστάσεις ισχύει ΓΔ=6ΑΓ. Βαρυτικές και ηλεκτροστατικές δυνάμεις θεωρούνται αμελητέες. Αν \[t_{π_1}\] και \[t_{π_2}\] είναι οι χρόνοι παραμονής των δύο σωματιδίων μέσα στο πεδίο ισχύει:
16. Δύο πρωτόνια \[(1)\, , \, (2)\] με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχονται απ’ το σημείο Γ του ορίου \[xx'\] του ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ίδιες κατά μέτρο ταχύτητες \[υ_1=υ_2=υ\] που οι διευθύνσεις τους είναι κάθετες στις δυναμικές γραμμές του μαγνητικού πεδίου. Το πρωτόνιο \[(1)\] έχει ταχύτητα \[υ_1\] που σχηματίζει γωνία \[φ=30^0\] με το όριο \[xx'\] ενώ η ταχύτητα του πρωτονίου \[(2)\] \[υ_2\] είναι κάθετη στο όριο \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα πρωτόνια δέχονται μόνο τη δύναμη Lorentz του μαγνητικού πεδίου. Τα πρωτόνια εξέρχονται απ’ τα σημεία Δ, Ε του ορίου \[xx'\]. Διερευνήστε σε ποιο απ’ τα πρωτόνια αντιστοιχεί το κάθε σημείο εξόδου. Αν η απόσταση ΓΔ είναι ΓΔ\[=d\] τότε η απόσταση ΔΕ είναι:
17. Στο παρακάτω σχήμα ο αγωγός (1) είναι κυκλικό τμήμα με ακτίνα \[r\] κέντρου Κ που βαίνει σε γωνία \[θ\] και διαρρέεται από ρεύμα έντασης \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος μεγάλου μήκους, διαρρέεται από ρεύμα \[Ι'=\frac{π}{12} Ι\] και απέχει απ’ το κέντρο Κ απόσταση \[α=\frac{r}{2}\]. Οι δύο αγωγοί βρίσκονται στο επίπεδο της σελίδας και οι φορές των ρευμάτων τους φαίνονται στο σχήμα. Στο κέντρο Κ το μέτρο της έντασης του μαγνητικού πεδίου που οφείλεται και στους δύο αγωγούς είναι διπλάσιο απ’ το μέτρο της έντασης που οφείλεται μόνο στον ευθύγραμμο. Η γωνία \[θ\] που βαίνει ο αγωγός (1) είναι:
18. Τρία διαφορετικά αρνητικά ιόντα βάλλονται ταυτόχρονα την \[t=0\] μέσα σε ομογενές μαγνητικό πεδίο με ταχύτητες μέτρων \[ υ_1 > υ_2 > υ_3\] αντίστοιχα που είναι κάθετες στις δυναμικές γραμμές του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Τα ιόντα αφού διαγράψουν από έναν πλήρη κύκλο ακτίνων \[ R_1\, , \, R_2 \, , \, R_3\] αντίστοιχα, επιστρέφουν για πρώτη φορά στο σημείο βολής τους την ίδια χρονική στιγμή επιδρώντας σ’ αυτά μόνο οι δυνάμεις που δέχονται απ’ το μαγνητικό πεδίο. Για το ειδικό φορτίο \[ \frac{|q| }{ m }\] των τριών ιόντων ισχύει:
19. Στο πείραμα του Thomson μέσα στον καθοδικό σωλήνα απ’ την πυρακτωμένη κάθοδο εκπέμπονται ηλεκτρόνια που επιταχύνονται υπό τάση \[V\] που δημιουργείται μεταξύ της καθόδου και των δύο ανόδων Α, Α΄. Έτσι δημιουργείται μια δέσμη ηλεκτρονίων που κατόπιν περνούν μέσα από φίλτρο ταχυτήτων της διάταξης χωρίς ν’ αποκλίνουν της αρχικής τους πορείας και καταλήγουν στη φθορίζουσα οθόνη. Αν τετραπλασιάσουμε την τάση που επιταχύνει τα ηλεκτρόνια, για να μην αποκλίνει η δέσμη μέσα στο φίλτρο ταχυτήτων πρέπει:
20. Δύο σωμάτια \[α\] (πυρήνες ηλίου \[_2^4 He\]) (1), (2) εκτελούν κυκλική κίνηση μέσα στο ίδιο ομογενές μαγνητικό πεδίο υπό την επίδραση μόνο της δύναμης που δέχονται απ’ το πεδίο αυτό. Για τα μέτρα των ταχυτήτων τους \[υ_1\, , \, υ_2\] αντίστοιχα ισχύει \[ υ_1 > υ_2 \]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Κατά την κίνηση των σωματιδίων στο μαγνητικό πεδίο ισχύει:
21. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q < 0\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[Β\] που εκτείνεται σε μεγάλη απόσταση πάνω απ’ το όριό του που είναι η ευθεία \[x' x\]. Το σωματίδιο εισέρχεται απ’ το όριο \[x' x\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ=30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου. Οι βαρυτικές δυνάμεις αμελούνται. Το μέτρο της μεταβολής της ορμής του σωματιδίου λόγω της παραμονής του στο πεδίο είναι:
22. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Ο Thomson συμπέρανε ότι τα ηλεκτρόνια είναι κοινό συστατικό όλων των υλικών σωμάτων γιατί έβρισκε την ίδια τιμή για το πηλίκο \[\frac{e}{m}\] όταν:
23. Το πλαίσιο ΚΛΜΝ του παρακάτω σχήματος είναι σχήματος ορθογωνίου παραλληλογράμμου πλευρών \[ΚΛ=α\] και \[ΛΜ=2α\] αντίστοιχα και διαρρέεται από ρεύμα έντασης \[I\] που έχει τη φορά των δεικτών του ρολογιού. Το πλαίσιο βρίσκεται πάνω σε οριζόντιο λείο επίπεδο και το μισό βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\]. Στο ίδιο οριζόντιο επίπεδο βρίσκεται ευθύγραμμος ρευματοφόρος αγωγός (1) που διαρρέεται από ρεύμα έντασης \[I_1=I\] που είναι ομόρροπο με το ρεύμα που διαρρέει την πλευρά ΚΛ. Ο αγωγός (1) απέχει \[α\] απ’ την πλευρά ΚΛ του πλαισίου. Το πλαίσιο αφήνεται ελεύθερο να κινηθεί και παρατηρούμε ότι παραμένει ακίνητο. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Για το μέτρο και τη φορά της \[\vec{B}\] του ομογενούς μαγνητικού πεδίου ισχύει:
24. Τα τρία πρωτόνια (1), (2), (3) του παρακάτω σχήματος εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Α ομογενούς μαγνητικού πεδίου με ταχύτητες μέτρων \[υ_1\, , \, υ_2\, , \, υ_3\] αντίστοιχα που είναι κάθετες στις δυναμικές γραμμές του πεδίου. Τα πρωτόνια επιστρέφουν για πρώτη φορά στο σημείο βολής τους αφού το καθένα έχει διαγράψει μια πλήρη περιστροφή και θεωρούμε ότι ασκείται σ’ αυτά μόνο η δύναμη Lorentz απ’ το μαγνητικό πεδίο. Στο σχήμα φαίνονται οι τροχιές που διαγράφουν τα πρωτόνια μέσα στο μαγνητικό πεδίο. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το διάνυσμα (α) είναι:
25. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στο παρακάτω σχήμα το στοιχειώδες τμήμα \[Δ\ell\] ρευματοφόρου αγωγού που διαρρέεται από ρεύμα έντασης \[Ι\] δημιουργεί στο σημείο Α του επιπέδου της σελίδας ένταση \[Δ\vec{B}\]. Ο αγωγός βρίσκεται και αυτός πάνω στο επίπεδο της σελίδας. Το μέτρο της έντασης \[ΔΒ\] είναι:
26. Τα δύο σωληνοειδή \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος έχουν τα άκρα τους πολύ κοντά μεταξύ τους. Το σωληνοειδές \[Σ_1\] έχει μήκος \[\ell\] και αποτελείται από \[N_1=N\] σπείρες, ενώ το δεύτερο σωληνοειδές \[Σ_2\] έχει μήκος \[\ell\] και αποτελείται από \[Ν_2=2Ν\] σπείρες. Τα σωληνοειδή διαρρέονται από ρεύματα εντάσεων \[Ι_1,\, Ι_2\] με \[Ι_1=Ι\] και \[Ι_2=2Ι\]. Ο αβαρής αγωγός ΚΛ έχει μήκος \[\ell'\], διαρρέεται από ρεύμα έντασης \[Ι\] που η φορά του φαίνεται στο σχήμα και προσδένεται στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το πάνω άκρο του είναι στερεωμένο σε οροφή. Ο αγωγός ΚΛ τοποθετείται οριζόντια μεταξύ των γειτονικών άκρων των δύο πηνίων ώστε να είναι κάθετος στις δυναμικές γραμμές των μαγνητικών τους πεδίων. Ο αγωγός ΚΛ ισορροπεί ακίνητος όταν διαρρέεται από ρεύμα.

Α) Στη θέση ισορροπίας του αγωγού ΚΛ το ελατήριο:

α) είναι επιμηκυμένο,

β) είναι συσπειρωμένο,

γ) έχει το φυσικό του μήκος.

Β) Στη θέση ισορροπίας του αγωγού ΚΛ η παραμόρφωση \[Δ\ell\] του ελατηρίου είναι:

α) \[\frac{3 μ_0 N Ι^2 \ell'}{2k \ell}\],                  
β) \[\frac{3μ_0 NΙ^2 \ell'}{k \ell}\],                     
γ) \[\frac{5μ_0 NΙ^2 \ell'}{2k \ell}  \].

Γ) Αλλάζω τις εντάσεις των ρευμάτων των ρευμάτων που διαρρέουν τα δύο σωληνοειδή σε \[I_1'\]  και \[Ι_2'\]  αντίστοιχα και τώρα ο αγωγός ΚΛ ισορροπεί όταν το ελατήριο έχει το φυσικό του μήκος. Ο λόγος  \[\frac{I_1'}{I_2'}\]  είναι:

α) \[2\],                                         β) \[4\],                             γ) \[\frac{1}{2}\].

27. Ο αγωγός του παρακάτω σχήματος διαρρέεται από ρεύμα έντασης \[Ι\]. Ένα σημείο Α απέχει \[r\] απ’ το στοιχειώδες τμήμα \[Δ\ell\] του αγωγού. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το διάνυσμα της έντασης \[Δ\vec{B}\] στο σημείο Α λόγω του τμήματος \[Δ\ell\]:
28. Ένα πρωτόνιο \[p\] μάζας \[m_p\] και φορτίου \[e\] και ένα σωμάτιο \[α\] μάζας \[m_α=4m_p\] και φορτίου \[q_α=2e\] όπου \[e\] το στοιχειώδες θετικό φορτίο εισέρχονται ταυτόχρονα απ’ το ίδιο σημείο Γ με ταχύτητες \[\vec{υ}_α\, , \, \vec{υ}_p \] σε ομογενές μαγνητικό πεδίο έντασης \[\vec{Β}\] έτσι ώστε οι ταχύτητές τους να είναι κάθετες στις δυναμικές γραμμές του πεδίου και στο όριό του που είναι η ευθεία \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τις δυνάμεις απ’ το μαγνητικό πεδίο που εκτείνεται σε μεγάλη απόσταση πάνω απ’ το όριο του \[xx'\]. Κατά την είσοδό τους στο πεδίο έχουν ίσες ορμές \[\vec{p}_p = \vec{p}_α \]. Τα σωματίδια εκτελούν κυκλικές τροχιές ακτίνων \[ R_1\, , \, R_2\] και παραμένουν στο πεδίο για χρονικά διαστήματα \[ Δt_1 \, , \, Δt_2\] αντίστοιχα. Για τα πηλίκα των ακτίνων και των χρονικών διαστημάτων ισχύει:
29. Σωληνοειδές διαρρέεται από ρεύμα \[Ι\] και η ένταση στο κέντρο του έχει μέτρο \[B_K\] ενώ σε ένα άκρο του έχει μέτρο \[Β_Α\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η διαφορά των μέτρων \[Β_Κ-Β_Α\] είναι ίση με:
30. Στο παρακάτω σχήμα οι ευθύγραμμοι παράλληλοι αγωγοί (1), (2) βρίσκονται στο ίδιο οριζόντιο επίπεδο, είναι στερεωμένοι σε απόσταση r ώστε να παραμένουν ακίνητοι και διαρρέονται από αντίρροπα ρεύματα εντάσεων \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_2 > I_1\]. Τρίτος ευθύγραμμος ρευματοφόρος αγωγός τοποθετείται παράλληλα με τους δύο πρώτους και πάνω στο ίδιο οριζόντιο επίπεδο με αυτούς. Αν η συνισταμένη δύναμη Laplace ανά μονάδα μήκους που δέχεται ο αγωγός (3) απ’ τους άλλους δύο είναι μηδενική:

Α) ο αγωγός (3) πρέπει να τοποθετηθεί:

α) μεταξύ των αγωγών.

β) πιο κοντά στον αγωγό (1).

γ) πιο κοντά στον αγωγό (2).

Β) Ο αγωγός (3) τοποθετείται σε απόσταση  \[\frac{   r  }{  3 }\]  απ’ τον αγωγό (1), τότε η συνισταμένη δύναμη Laplace ανά μονάδα μήκους που δέχεται ο (3) απ’ τους άλλους δύο είναι μηδενική. Τότε για τις εντάσεις των ρευμάτων των (1), (2) και τη φορά του ρεύματος του αγωγού (3) ισχύει:

α) \[\frac{I_1}{I_2} =\frac{1}{2}\]  και πρέπει οπωσδήποτε το ρεύμα του (3) να είναι ομόρροπο του ρεύματος του (1).

β) \[\frac{Ι_1}{Ι_2} =\frac{1}{2}\]  και το ρεύμα του (3) μπορεί να έχει οποιαδήποτε φορά.

γ) \[\frac{Ι_1}{Ι_2} =\frac{1}{4}\]  και πρέπει οπωσδήποτε το ρεύμα του (3) να είναι ομόρροπο του ρεύματος του (2).

δ) \[\frac{Ι_1}{Ι_2} =\frac{1}{4}\]  και το ρεύμα του (3) μπορεί να έχει οποιαδήποτε φορά.


    +30

    CONTACT US
    CALL US