MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε:
2. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:
3. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
4. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
5. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Αν \[S_1\, , \, S_2\] είναι το μήκος των τροχιών που διαγράφει το σωμάτιο \[α\] στο πρώτο και δεύτερο πείραμα αντίστοιχα, ισχύει:
6. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Αν \[t_{π_1} \, , \, t_{π_2}\] οι χρόνοι παραμονής του ιόντος μέσα στο μαγνητικό πεδίο του κάθε πειράματος, τότε ισχύει:
7. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[e\] (στοιχειώδες φορτίο) και ένας πυρήνας ηλίου μάζας \[4m_p\] και φορτίου \[2e\] εκτελούν κυκλικές τροχιές με ακτίνες \[R_p\, , \, R_α\] αντίστοιχα με ίσες κατά μέτρο ταχύτητες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
8. Δύο φορτισμένα σωματίδια \[(1)\, , \, (2)\] έχουν ίσες μάζες \[m\] και φορτίο \[|q_1 |=2|q_2 |\] με \[ q_1 < 0\] και \[q_2 > 0 \]. Τα σωματίδια εισέρχονται ταυτόχρονα σε ομογενές μαγνητικό πεδίο με ταχύτητες ίδιων κατευθύνσεων και με μέτρα \[υ_1 = 3 υ_2\] αντίστοιχα που είναι κάθετες στο όριο \[yy'\] του πεδίου και στις δυναμικές γραμμές του όπως φαίνεται στο σχήμα. Τα σωματίδια εξέρχονται απ’ το ίδιο όριο του πεδίου και τα σημεία εξόδου τους απέχουν μεταξύ τους απόσταση \[d\]. Οι βαρυτικές και οι ηλεκτροστατικές αλληλεπιδράσεις θεωρούνται αμελητέες. Τη στιγμή που από το πεδίο εξέρχεται το σωματίδιο που έχει τη μικρότερη συχνότητα κυκλικής κίνησης, τότε η απόσταση των δύο σωματιδίων είναι: \[(π^2=10)\]
9. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].

10. Στο παρακάτω σχήμα φαίνεται η κατακόρυφη τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] η οποία περιορίζεται μέσα στο ορθογώνιο παραλληλόγραμμο ΚΛΜΝ. Αρνητικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Γ του ορίου ΚΛ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΚΛ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί κυκλική κίνηση περιόδου \[T\] επιδρώντας σ’ αυτό μόνο το βάρος του και εξέρχεται τη χρονική στιγμή \[t_1 = \frac{T}{6}\] απ’ το σημείο Δ του ορίου ΛΜ του πεδίου. Το μήκος της πλευράς ΚΛ είναι ΚΛ\[=d\]. Η κατακόρυφη απόκλιση του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[y\]. Αν \[R\] είναι η ακτίνα της κυκλικής τροχιάς του σωματιδίου, τότε η απόκλισή του \[y\] είναι:
11. Ηλεκτρόνιο μάζας \[m_e\] και φορτίου \[-e\] (όπου \[e\] το στοιχειώδες φορτίο) εισέρχεται με κινητική ενέργεια Κ σε ομογενές μαγνητικό πεδίο έντασης Β και δέχεται μόνο τη δύναμη απ’ το πεδίο. Το ηλεκτρόνιο εισέρχεται απ’ το σημείο Γ του ορίου ΚΝ του μαγνητικού πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο ΚΝ και στις δυναμικές γραμμές του πεδίου. Σημείο Δ του πεδίου απέχει απ’ το Γ απόσταση \[ΓΔ=d\] και το ευθύγραμμο τμήμα ΓΔ σχηματίζει με τη διεύθυνση της ταχύτητας εισόδου στο πεδίο γωνία \[φ\] όπως φαίνεται στο παρακάτω σχήμα. Για να διέλθει το ηλεκτρόνιο απ’ το σημείο Δ πρέπει το μέτρο της έντασης του μαγνητικού πεδίου να είναι:
12. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=2Ι\, ,\, Ι_2=Ι\, ,\, Ι_3=4Ι\] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δl \cdot συνθ\] στη διαδρομή αυτή ισούται με:
13. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Ο χρόνος παραμονής στο μαγνητικό πεδίο \[\vec{B}'\] του πρωτίου είναι \[t_π\] και του δευτερίου \[t_δ\]. Για τη διαφορά τους \[t_δ-t_π\] ισχύει:
14. Ένα πρωτόνιο \[p\] και ένα σωμάτιο \[α\] με φορτία \[q_p\] και \[q_α=2q_p\] και μάζες \[m_p\] και \[m_α=4m_p\] αντίστοιχα εκτελούν ομαλή κυκλική κίνηση μέσα στο ίδιο ομογενές μαγνητικό πεδίο με την επίδραση μόνο της δύναμης που δέχονται απ’ το πεδίο. Τα δύο σωματίδια έχουν ίσες κατά μέτρο ταχύτητες . Αν \[R_p\, , \, R_α\] και \[ f_p \, , \, f_α\] είναι οι ακτίνες και οι συχνότητες των κυκλικών τους κινήσεων, ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
15. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[q_p\] και ένα νετρόνιο \[n\] βάλλονται ταυτόχρονα με κατά μέτρο ίσες ταχύτητες \[(υ_p=υ_n )\] από σημείο Γ της ευθείας \[x' x\] που αποτελεί όριο ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\]. Η ταχύτητα \[\vec{υ}_p\] του πρωτονίου σχηματίζει γωνία \[30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου ενώ η ταχύτητα \[\vec{υ}_n\] του νετρονίου είναι κάθετη στο όριο \[x' x\] και στις δυναμικές γραμμές του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές δυνάμεις αμελούνται. Το πρωτόνιο εξέρχεται αφού έχει διαγράψει κυκλικό τόξο απ’ το σημείο Δ του ορίου \[x' x\] που απέχει απ’ το Γ απόσταση \[d\]. Τη στιγμή της εξόδου του πρωτονίου απ’ το μαγνητικό πεδίο το νετρόνιο απέχει απόσταση \[d_1\] απ’ το όριο \[x' x\] για την οποία ισχύει:
17. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Αν η πρώτη παραμονή του φορτίου στο πεδίο \[(1)\] διαρκεί \[Δt_1\], τότε στο πεδίο \[(2)\] θα διαρκεί \[Δt_2\] όπου:
18. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:
19. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στην στήλη ΚΛΜΝ ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] από το σημείο Ζ της πλευράς ΚΝ με ταχύτητα \[υ\] που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο διαγράφει κυκλικό τμήμα και εξέρχεται απ’ το όριο ΛΜ του πεδίου με ταχύτητα που σχηματίζει με αυτό γωνία \[60^0\] όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο εξέρχεται απ’ το πεδίο σε χρόνο \[Δt\]. Αν το σωματίδιο εισέρχονταν στο πεδίο απ’ το Ζ με μικρότερη κατά μέτρο ταχύτητα \[υ'\] αλλά ίδιας κατεύθυνσης με την αρχική \[\vec{υ}\] θα εξέρχονταν απ’ το όριο ΚΝ σε χρόνο \[Δt'\]. Για τους χρόνους \[Δt\, , \, Δt' \] ισχύει:
20. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ=60^0\] με τις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή απ’ το μαγνητικό πεδίο. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
21. Ο αγωγός (1) του παρακάτω σχήματος αποτελείται από δύο συνευθειακούς αγωγούς ΚΜ και ΛΝ πεπερασμένου μήκους και έναν ημικυκλικό αγωγό ακτίνας \[r\] και κέντρου Ο που η διάμετρός του είναι η ΚΛ. Ο αγωγός (1) διαρρέεται από ρεύμα \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος απείρου μήκους παράλληλος στα ευθύγραμμα τμήματα του αγωγού (1) και διαρρέεται από ρεύμα \[Ι'=2Ιπ\] και απέχει α απ’ το κέντρο του ημικυκλίου. Οι αγωγοί (1) και (2) βρίσκονται στο επίπεδο της σελίδας και το ρεύμα του αγωγού (2) έχει φορά προς τα δεξιά. Η ένταση του μαγνητικού πεδίου στο κέντρο Ο του ημικυκλίου είναι μηδενική. Η απόσταση \[α\] του αγωγού (2) είναι:
22. Δύο φορτισμένα σωματίδια (1), (2) έχουν ίσες κατά μέτρο ορμές, μάζες \[m_1=2m_2\] και ίσα φορτία. Τα σωματίδια εισέρχονται στο ίδιο ομογενές μαγνητικό πεδίο και εκτελούν σ’ αυτό ομαλή κυκλική κίνηση με ακτίνες \[R_1, R_2\] και περιόδων \[T_1, T_2\] αντίστοιχα με την επίδραση μόνο της δύναμης Lorentz που δέχονται απ’ το πεδίο. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για τις ακτίνες και τις περιόδους των κυκλικών κινήσεων των δύο σωματιδίων ισχύει:
23. Απ’ την πυρακτωμένη κάθοδο της διάταξης του πειράματος του Thomson εκπέμπονται ηλεκτρόνια με σχεδόν αμελητέες ταχύτητες. Αυτά επιταχύνονται υπό τάση \[V\], δημιουργούν ευθύγραμμη δέσμη, εισέρχονται στον επιλογέα ταχυτήτων της διάταξης και κινούνται μέσα σ’ αυτόν χωρίς η δέσμη τους να αποκλίνει. Ο επιλογέας ταχυτήτων αποτελείται από δύο πεδία, ένα ομογενές ηλεκτρικό έντασης \[\vec{E}\] και ένα ομογενές μαγνητικό έντασης \[\vec{B}\] που οι δυναμικές τους γραμμές είναι μεταξύ τους κάθετες. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν αυξήσουμε την τάση \[V\] χωρίς να μεταβάλουμε τις \[\vec{B}\, , \, \vec{E}\] τότε:
24. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Ο χρόνος παραμονής του σωματιδίου μέσα στο πεδίο είναι:
25. Ο αγωγός του παρακάτω σχήματος ισορροπεί οριζόντιος μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Ο αγωγός ακουμπά χωρίς τριβές σε δύο αγώγιμες κατακόρυφες ράβδους που στα άκρα τους έχουμε συνδέσει ηλεκτρική πηγή. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
26. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
27. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Η απόσταση \[d\] είναι ίση με:
28. Να επιλέξετε τη σωστή απάντηση. Σε ποια απ’ τα παρακάτω σχήματα ο ευθύγραμμος ρευματοφόρος αγωγός δέχεται δύναμη Laplace μη μηδενική;
29. Ένα πρωτόνιο με μάζα \[m_p\] και φορτίο \[q_p\] και ένα σωμάτιο \[α\] (πυρήνας ηλίου \[_2^4He\] με φορτίο \[q_α=2q_p\] και \[m_α=4m_p\] εισέρχονται ταυτόχρονα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ίσες ταχύτητες \[\vec{υ}\] που είναι κάθετες στο όριο \[xx'\] του πεδίου και στις δυναμικές γραμμές του όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές και ηλεκτροστατικές αλληλεπιδράσεις θεωρούνται αμελητέες. Τα δύο σωματίδια εξέρχονται απ’ το ίδιο όριο του πεδίου και τα σημεία εξόδου τους πάνω στον \[xx'\] απέχουν μεταξύ τους απόσταση \[d\]. Μετά την έξοδό τους απ’ το πεδίο, τα δύο σωματίδια εκτελούν ευθύγραμμη ομαλή κίνηση. Τη στιγμή που εξέρχεται το σωματίδιο με τη μεγαλύτερη περίοδο κυκλικής κίνησης, τα δύο σωματίδια απέχουν μεταξύ τους απόσταση \[d_1\] που είναι: \[(π^2=10)\]
30. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου με \[ 0 < φ < 90^0 \]. Το σωματίδιο εκτελεί ελικοειδή κίνηση περιόδου \[Τ\] και ακτίνας \[R\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US