MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στην στήλη ΚΛΜΝ ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] από το σημείο Ζ της πλευράς ΚΝ με ταχύτητα \[υ\] που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο διαγράφει κυκλικό τμήμα και εξέρχεται απ’ το όριο ΛΜ του πεδίου με ταχύτητα που σχηματίζει με αυτό γωνία \[60^0\] όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο εξέρχεται απ’ το πεδίο σε χρόνο \[Δt\]. Αν το σωματίδιο εισέρχονταν στο πεδίο απ’ το Ζ με μικρότερη κατά μέτρο ταχύτητα \[υ'\] αλλά ίδιας κατεύθυνσης με την αρχική \[\vec{υ}\] θα εξέρχονταν απ’ το όριο ΚΝ σε χρόνο \[Δt'\]. Για τους χρόνους \[Δt\, , \, Δt' \] ισχύει:
2. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[e\] (στοιχειώδες φορτίο) και ένας πυρήνας ηλίου μάζας \[4m_p\] και φορτίου \[2e\] εκτελούν κυκλικές τροχιές με ακτίνες \[R_p\, , \, R_α\] αντίστοιχα με ίσες κατά μέτρο ταχύτητες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
3. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Ο λόγος των μέτρων των εντάσεων \[\frac{B_1}{B_2}\] είναι:
4. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] επιταχύνεται από την ηρεμία υπό τάση \[V\] και με την ταχύτητα \[υ\] που αποκτά εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που η κάθετη τομή φαίνεται στο παρακάτω σχήμα και εκτείνεται σε απόσταση \[d\] κατά τη διεύθυνση της ταχύτητας εισόδου του σωματιδίου. Η ταχύτητα αυτή είναι κάθετη στο όριο του πεδίου \[yy'\] και στις δυναμικές γραμμές του πεδίου. Για να εξέλθει το σωματίδιο απ’ το ίδιο όριο του πεδίου απ’ το οποίο εισήλθε πρέπει η τάση \[V\] να πληρεί την ανίσωση:
5. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ=60^0\] με τις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή απ’ το μαγνητικό πεδίο. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
6. Η παρακάτω κλειστή διαδρομή \[S\] του σχήματος περιέχει δύο ευθύγραμμους ρευματοφόρους αγωγούς (1), (2) με ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\]. Η φορά του ρεύματος του αγωγού (1) φαίνεται στο σχήμα. Στη διαδρομή \[S\] το άθροισμα των ρευμάτων είναι ίσο με μηδέν. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
7. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε:
8. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, , \, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, ,\, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Για να γίνει το άθροισμα \[∑B\cdot Δ\ell \cdot συνφ\] στη διαδρομή \[S_2\] ίσο με το μηδέν χωρίς ν’ αλλάξει το αντίστοιχο άθροισμα στη διαδρομή \[S_1\] πρέπει:
9. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:
10. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Αν η πρώτη παραμονή του φορτίου στο πεδίο \[(1)\] διαρκεί \[Δt_1\], τότε στο πεδίο \[(2)\] θα διαρκεί \[Δt_2\] όπου:
11. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=2Ι\, ,\, Ι_2=Ι\, ,\, Ι_3=4Ι\] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δl \cdot συνθ\] στη διαδρομή αυτή ισούται με:
12. Στο παρακάτω σχήμα φαίνεται ένας βρόχος κυκλικού σχήματος που περιβάλλει \[2\] ευθύγραμμους ρευματοφόρους αγωγούς που διαρρέονται από ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\] με \[Ι_1=Ι_2\] και φορών που φαίνονται στο σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B \cdot Δ\ell \cdot συνθ\] πάνω σ’ αυτήν τη διαδρομή:
13. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
14. Ένα πρωτόνιο \[p\] και ένα σωμάτιο \[α\] με φορτία \[q_p\] και \[q_α=2q_p\] και μάζες \[m_p\] και \[m_α=4m_p\] αντίστοιχα εκτελούν ομαλή κυκλική κίνηση μέσα στο ίδιο ομογενές μαγνητικό πεδίο με την επίδραση μόνο της δύναμης που δέχονται απ’ το πεδίο. Τα δύο σωματίδια έχουν ίσες κατά μέτρο ταχύτητες . Αν \[R_p\, , \, R_α\] και \[ f_p \, , \, f_α\] είναι οι ακτίνες και οι συχνότητες των κυκλικών τους κινήσεων, ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
15. Δύο φορτισμένα σωματίδια \[(1)\, , \, (2)\] έχουν ίσες μάζες \[m\] και φορτίο \[|q_1 |=2|q_2 |\] με \[ q_1 < 0\] και \[q_2 > 0 \]. Τα σωματίδια εισέρχονται ταυτόχρονα σε ομογενές μαγνητικό πεδίο με ταχύτητες ίδιων κατευθύνσεων και με μέτρα \[υ_1 = 3 υ_2\] αντίστοιχα που είναι κάθετες στο όριο \[yy'\] του πεδίου και στις δυναμικές γραμμές του όπως φαίνεται στο σχήμα. Τα σωματίδια εξέρχονται απ’ το ίδιο όριο του πεδίου και τα σημεία εξόδου τους απέχουν μεταξύ τους απόσταση \[d\]. Οι βαρυτικές και οι ηλεκτροστατικές αλληλεπιδράσεις θεωρούνται αμελητέες. Τη στιγμή που από το πεδίο εξέρχεται το σωματίδιο που έχει τη μικρότερη συχνότητα κυκλικής κίνησης, τότε η απόσταση των δύο σωματιδίων είναι: \[(π^2=10)\]
16. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
17. Ένα πρωτόνιο \[p\] μάζας \[m_p\] και φορτίου \[e\] και ένα σωμάτιο \[α\] μάζας \[m_α=4m_p\] και φορτίου \[q_α=2e\] όπου \[e\] το στοιχειώδες θετικό φορτίο εισέρχονται ταυτόχρονα απ’ το ίδιο σημείο Γ με ταχύτητες \[\vec{υ}_α\, , \, \vec{υ}_p \] σε ομογενές μαγνητικό πεδίο έντασης \[\vec{Β}\] έτσι ώστε οι ταχύτητές τους να είναι κάθετες στις δυναμικές γραμμές του πεδίου και στο όριό του που είναι η ευθεία \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τις δυνάμεις απ’ το μαγνητικό πεδίο που εκτείνεται σε μεγάλη απόσταση πάνω απ’ το όριο του \[xx'\]. Κατά την είσοδό τους στο πεδίο έχουν ίσες κινητικές ενέργειες \[(K_p=K_α )\]. Για τα μέτρα των ρυθμών μεταβολής της ορμής των δύο σωματιδίων κατά την παραμονή τους στο μαγνητικό πεδίο ισχύει:
18. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
19. Να επιλέξετε τη σωστή απάντηση. Σε ποια απ’ τα παρακάτω σχήματα ο ευθύγραμμος ρευματοφόρος αγωγός δέχεται δύναμη Laplace μη μηδενική;
20. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:
21. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Ο χρόνος παραμονής του σωματιδίου μέσα στο πεδίο είναι:
22. Το θετικά φορτισμένο σωματίδιο του παρακάτω σχήματος μάζας \[m\] και φορτίου \[q\] εισέρχεται κάθετα στις δυναμικές γραμμές ομογενούς μαγνητικού πεδίου και κάθετα στο όριο του πεδίου (ευθεία \[ xx'\]). Σε απόσταση \[d\] απ’ την ευθεία \[xx'\] και σε επίπεδο παράλληλο σ’ αυτή έχουμε τοποθετήσει φωτογραφική πλάκα. Το σωματίδιο εισέρχεται στο πεδίο με κινητική ενέργεια \[Κ\] και επιδρά σ’ αυτό μόνο η δύναμη του μαγνητικού πεδίου. Για να μη χτυπήσει το σωματίδιο στη φωτογραφική πλάκα πρέπει να ισχύει για το μέτρο \[B\] της έντασης του μαγνητικού πεδίου:
23. Δύο πρωτόνια \[(1)\, , \, (2)\] με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχονται απ’ το σημείο Γ του ορίου \[xx'\] του ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ίδιες κατά μέτρο ταχύτητες \[υ_1=υ_2=υ\] που οι διευθύνσεις τους είναι κάθετες στις δυναμικές γραμμές του μαγνητικού πεδίου. Το πρωτόνιο \[(1)\] έχει ταχύτητα \[υ_1\] που σχηματίζει γωνία \[φ=30^0\] με το όριο \[xx'\] ενώ η ταχύτητα του πρωτονίου \[(2)\] \[υ_2\] είναι κάθετη στο όριο \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα πρωτόνια δέχονται μόνο τη δύναμη Lorentz του μαγνητικού πεδίου. Τα πρωτόνια εξέρχονται απ’ τα σημεία Δ, Ε του ορίου \[xx'\]. Διερευνήστε σε ποιο απ’ τα πρωτόνια αντιστοιχεί το κάθε σημείο εξόδου. Το μέτρο της μεταβολής της ορμής του πρωτονίου \[(1)\] λόγω της παραμονής του στο πεδίο είναι \[|Δp_1 |\] ενώ του \[(2)\] \[|Δp_2 |\] και ισχύει:
24. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Αν \[S_1\, , \, S_2\] είναι το μήκος των τροχιών που διαγράφει το σωμάτιο \[α\] στο πρώτο και δεύτερο πείραμα αντίστοιχα, ισχύει:
25. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[q_p\] και ένα νετρόνιο \[n\] βάλλονται ταυτόχρονα με κατά μέτρο ίσες ταχύτητες \[(υ_p=υ_n )\] από σημείο Γ της ευθείας \[x' x\] που αποτελεί όριο ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\]. Η ταχύτητα \[\vec{υ}_p\] του πρωτονίου σχηματίζει γωνία \[30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου ενώ η ταχύτητα \[\vec{υ}_n\] του νετρονίου είναι κάθετη στο όριο \[x' x\] και στις δυναμικές γραμμές του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές δυνάμεις αμελούνται. Το πρωτόνιο εξέρχεται αφού έχει διαγράψει κυκλικό τόξο απ’ το σημείο Δ του ορίου \[x' x\] που απέχει απ’ το Γ απόσταση \[d\]. Τη στιγμή της εξόδου του πρωτονίου απ’ το μαγνητικό πεδίο το νετρόνιο απέχει απόσταση \[d_1\] απ’ το όριο \[x' x\] για την οποία ισχύει:
26. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[0 < φ < 90^0 \]) με τις δυναμικές του γραμμές. Το σωματίδιο δέχεται μόνο τη δύναμη απ’ το πεδίο και εκτελεί ελικοειδή κίνηση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή;
27. Δέσμη πρωτονίων μάζας \[m_p\] και φορτίου \[e\] εισέρχεται στον επιλογέα ταχυτήτων ενός φασματογράφου μάζας χωρίς να εκτραπεί απ’ αυτόν. Στη συνέχεια τα πρωτόνια εισέρχονται στο μαγνητικό του πεδίο \[\vec{B}'\] εκτελούν ημικύκλιο μέσα σ’ αυτό και πέφτουν πάνω σε φωτογραφική πλάκα. Το κάθε πρωτόνιο αφήνει ίχνος πάνω στην πλάκα που απέχει \[d_1\] απ’ το σημείο εισόδου του στο πεδίο \[\vec{B}'\]. Στον ίδιο φασματογράφο κατόπιν εισέρχεται δέσμη από ιόντα Νέου που έχουν δημιουργηθεί από τα δύο ισότοπά του και έχουν φορτίο \[q=e\]. Όσα ιόντα δεν εκτρέπονται απ’ τον επιλογέα ταχυτήτων εισέρχονται στο μαγνητικό πεδίο \[\vec{B}' \] και αφού εκτελέσουν ημικυκλικές τροχιές αφήνουν ίχνη σε δύο σημεία της φωτογραφικής πλάκας. Η απόσταση των δύο αυτών ιχνών είναι \[d=2d_1\]. Θεωρούμε ότι η μάζα του νετρονίου είναι ίση με αυτή του πρωτονίου. Το ένα ισότοπο του Νέου έχει απ’ το άλλο: ( Υπόδειξη: Βρείτε το λόγο \[\frac{Δm}{m_p}\] όπου \[Δm\] η διαφορά των μαζών των δύο ισότοπων ατόμων που δημιούργησαν τα ιόντα)
28. Ένα πρωτόνιο με μάζα \[m_p\] και φορτίο \[q_p\] και ένα σωμάτιο \[α\] (πυρήνας ηλίου \[_2^4He\] με φορτίο \[q_α=2q_p\] και \[m_α=4m_p\] εισέρχονται ταυτόχρονα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ίσες ταχύτητες \[\vec{υ}\] που είναι κάθετες στο όριο \[xx'\] του πεδίου και στις δυναμικές γραμμές του όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές και ηλεκτροστατικές αλληλεπιδράσεις θεωρούνται αμελητέες. Τα δύο σωματίδια εξέρχονται απ’ το ίδιο όριο του πεδίου και τα σημεία εξόδου τους πάνω στον \[xx'\] απέχουν μεταξύ τους απόσταση \[d\]. Μετά την έξοδό τους απ’ το πεδίο, τα δύο σωματίδια εκτελούν ευθύγραμμη ομαλή κίνηση. Τη στιγμή που εξέρχεται το σωματίδιο με τη μεγαλύτερη περίοδο κυκλικής κίνησης, τα δύο σωματίδια απέχουν μεταξύ τους απόσταση \[d_1\] που είναι: \[(π^2=10)\]
29. Στο παρακάτω σχήμα φαίνονται δύο ομόκεντροι κυκλικοί ρευματοφόροι αγωγοί \[(1),\, (2)\]. Ο αγωγός \[(1)\] διαρρέεται από σταθερό ρεύμα έντασης \[Ι\] και έχει ακτίνα \[r\]. Ο αγωγός \[(2)\] διαρρέεται από σταθερό ομόρροπο ρεύμα ίδιας έντασης \[Ι\] και έχει ακτίνα \[4r\]. Στο κοινό κέντρο Κ η ένταση του μαγνητικού πεδίου του αγωγού \[(2)\] είναι \[Β_2\]: Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
30. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Ο χρόνος παραμονής στο μαγνητικό πεδίο \[\vec{B}'\] του πρωτίου είναι \[t_π\] και του δευτερίου \[t_δ\]. Για τη διαφορά τους \[t_δ-t_π\] ισχύει:

    +30

    CONTACT US
    CALL US