MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Να επιλέξετε τη σωστή απάντηση. Σε ποια απ’ τα παρακάτω σχήματα ο ευθύγραμμος ρευματοφόρος αγωγός δέχεται δύναμη Laplace μη μηδενική;
2. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=3Ι\, , \, Ι_2=5Ι\, , \, Ι_3=2Ι \] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δ\ell \cdot συνθ\] στη διαδρομή αυτή ισούται με:
3. Ένα πρωτόνιο με μάζα \[m_p\] και φορτίο \[q_p\] και ένα σωμάτιο \[α\] (πυρήνας ηλίου \[_2^4He\] με φορτίο \[q_α=2q_p\] και \[m_α=4m_p\] εισέρχονται ταυτόχρονα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ίσες ταχύτητες \[\vec{υ}\] που είναι κάθετες στο όριο \[xx'\] του πεδίου και στις δυναμικές γραμμές του όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές και ηλεκτροστατικές αλληλεπιδράσεις θεωρούνται αμελητέες. Τα δύο σωματίδια εξέρχονται απ’ το ίδιο όριο του πεδίου και τα σημεία εξόδου τους πάνω στον \[xx'\] απέχουν μεταξύ τους απόσταση \[d\]. Μετά την έξοδό τους απ’ το πεδίο, τα δύο σωματίδια εκτελούν ευθύγραμμη ομαλή κίνηση. Τη στιγμή που εξέρχεται το σωματίδιο με τη μεγαλύτερη περίοδο κυκλικής κίνησης, τα δύο σωματίδια απέχουν μεταξύ τους απόσταση \[d_1\] που είναι: \[(π^2=10)\]
4. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Η απόσταση \[d\] είναι ίση με:
5. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[q_p\] και ένα νετρόνιο \[n\] βάλλονται ταυτόχρονα με κατά μέτρο ίσες ταχύτητες \[(υ_p=υ_n )\] από σημείο Γ της ευθείας \[x' x\] που αποτελεί όριο ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\]. Η ταχύτητα \[\vec{υ}_p\] του πρωτονίου σχηματίζει γωνία \[30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου ενώ η ταχύτητα \[\vec{υ}_n\] του νετρονίου είναι κάθετη στο όριο \[x' x\] και στις δυναμικές γραμμές του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές δυνάμεις αμελούνται. Το πρωτόνιο εξέρχεται αφού έχει διαγράψει κυκλικό τόξο απ’ το σημείο Δ του ορίου \[x' x\] που απέχει απ’ το Γ απόσταση \[d\]. Τη στιγμή της εξόδου του πρωτονίου απ’ το μαγνητικό πεδίο το νετρόνιο απέχει απόσταση \[d_1\] απ’ το όριο \[x' x\] για την οποία ισχύει:
6. Λεπτή δέσμη ιόντων χλωρίου \[( C\ell^{-1} )\] φορτίου \[q=-e\] (όπου \[e\] το στοιχειώδες θετικό φορτίο) που έχουν δημιουργηθεί από ισότοπα άτομά του, εισάγονται στον επιλογέα ταχυτήτων ενός φασματογράφου μάζας που αποτελείται από ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] και ομογενές ηλεκτρικό πεδίο έντασης μέτρου \[Ε\]. Η δέσμη δεν αποκλίνει κατά το πέρασμά της απ’ τον επιλογέα ταχυτήτων και αμέσως μετά εισάγεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β'\]. Εκεί τα ιόντα εκτελούν ημικυκλική τροχιά και πέφτουν σε δύο διαφορετικά σημεία φωτογραφικής πλάκας αφήνοντας τα ίχνη τους σ’ αυτήν. Η απόσταση των δύο ιχνών μετρήθηκε και βρέθηκε ίση με \[d\]. Η διαφορά μάζας \[Δm\] μεταξύ του βαρύτερου και του ελφρύτερου ιόντος χλωρίου είναι ίση με:
7. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].

8. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εκτελεί ομαλή κυκλική κίνηση μέσα σε ομογενές μαγνητικό πεδίο και επιδρά σ’ αυτό μόνο η δύναμη του πεδίου. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή; Η περίοδος της κυκλικής κίνησης του σωματιδίου αυτού:
9. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B\cdot Δ\ell\cdot συνθ\] σε μια κλειστή διαδρομή \[S\] εξαρτάται:
10. Ηλεκτρόνιο μάζας \[m_e\] και φορτίου \[-e\] (όπου \[e\] το στοιχειώδες φορτίο) εισέρχεται με κινητική ενέργεια Κ σε ομογενές μαγνητικό πεδίο έντασης Β και δέχεται μόνο τη δύναμη απ’ το πεδίο. Το ηλεκτρόνιο εισέρχεται απ’ το σημείο Γ του ορίου ΚΝ του μαγνητικού πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο ΚΝ και στις δυναμικές γραμμές του πεδίου. Σημείο Δ του πεδίου απέχει απ’ το Γ απόσταση \[ΓΔ=d\] και το ευθύγραμμο τμήμα ΓΔ σχηματίζει με τη διεύθυνση της ταχύτητας εισόδου στο πεδίο γωνία \[φ\] όπως φαίνεται στο παρακάτω σχήμα. Για να διέλθει το ηλεκτρόνιο απ’ το σημείο Δ πρέπει το μέτρο της έντασης του μαγνητικού πεδίου να είναι:
11. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, , \, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, ,\, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Για να γίνει το άθροισμα \[∑B\cdot Δ\ell \cdot συνφ\] στη διαδρομή \[S_2\] ίσο με το μηδέν χωρίς ν’ αλλάξει το αντίστοιχο άθροισμα στη διαδρομή \[S_1\] πρέπει:
12. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Για τα μήκη \[ α_1\, , \, α_2\] των πλευρών του τριγώνου και του τετραγώνου αντίστοιχα ισχύει:
13. Απ’ την πυρακτωμένη κάθοδο της διάταξης του πειράματος του Thomson εκπέμπονται ηλεκτρόνια με σχεδόν αμελητέες ταχύτητες. Αυτά επιταχύνονται υπό τάση \[V\], δημιουργούν ευθύγραμμη δέσμη, εισέρχονται στον επιλογέα ταχυτήτων της διάταξης και κινούνται μέσα σ’ αυτόν χωρίς η δέσμη τους να αποκλίνει. Ο επιλογέας ταχυτήτων αποτελείται από δύο πεδία, ένα ομογενές ηλεκτρικό έντασης \[\vec{E}\] και ένα ομογενές μαγνητικό έντασης \[\vec{B}\] που οι δυναμικές τους γραμμές είναι μεταξύ τους κάθετες. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν αυξήσουμε την τάση \[V\] χωρίς να μεταβάλουμε τις \[\vec{B}\, , \, \vec{E}\] τότε:
14. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Όταν εφαρμόζουμε το νόμο του Ampere πάνω σε μια κλειστή διαδρομή, η θετική φορά των ρευμάτων:
15. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Ο αγωγός (1) του παρακάτω σχήματος αποτελείται από δύο συνευθειακούς αγωγούς ΚΜ και ΛΝ πεπερασμένου μήκους και έναν ημικυκλικό αγωγό ακτίνας \[r\] και κέντρου Ο που η διάμετρός του είναι η ΚΛ. Ο αγωγός (1) διαρρέεται από ρεύμα \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος απείρου μήκους παράλληλος στα ευθύγραμμα τμήματα του αγωγού (1) και διαρρέεται από ρεύμα \[Ι'=2Ιπ\] και απέχει α απ’ το κέντρο του ημικυκλίου. Οι αγωγοί (1) και (2) βρίσκονται στο επίπεδο της σελίδας και το ρεύμα του αγωγού (2) έχει φορά προς τα δεξιά. Η ένταση του μαγνητικού πεδίου στο κέντρο Ο του ημικυκλίου είναι μηδενική. Η απόσταση \[α\] του αγωγού (2) είναι:
17. Φορτισμένο σωματίδιο μάζας m και φορτίου q εισέρχεται απ’ το σημείο Κ σε ομογενές μαγνητικό πεδίο έντασης μέτρου Β με ταχύτητα μέτρου υ που είναι κάθετη στις δυναμικές γραμμές του πεδίου και κάθετη στο ευθύγραμμο τμήμα ΑΕ που είναι το όριο του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο δέχεται μόνο τη δύναμη απ’ το μαγνητικό πεδίο και εξέρχεται απ’ το σημείο Λ του ίδιου ορίου ΑΕ του μαγνητικού πεδίου. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η ένταση \[\vec{Β}\] που υπολογίζουμε απ’ το νόμο του Ampere: \[∑B\cdot Δ\ell \cdot συνθ=μ_0 Ι_{εγκ}\] οφείλεται:
19. Στο παρακάτω σχήμα οι οριζόντιοι ευθύγραμμοι αγωγοί (1), (2) έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα, ίδιο μήκος \[\ell\] και αντιστάσεις \[R_1=R\] και \[R_2=2R\]. Οι αγωγοί συγκρατούνται ώστε τα άκρα τους να είναι σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy\] και \[Γy_1\] που έχουν αμελητέα αντίσταση. Ο αγωγός (1) βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}_1\] και ο αγωγός (2) σε αντίστοιχο πεδίο έντασης \[\vec{B}_2\]. Οι δυναμικές γραμμές των δύο πεδίων είναι κάθετες στο επίπεδο που δημιουργούν οι τέσσερις αγωγοί και οι φορές των εντάσεών τους φαίνονται στο σχήμα. Για τα μέτρα των εντάσεων ισχύει \[B_2=2B_1\]. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ιδανική πηγή που έχει ΗΕΔ \[\mathcal{E}\]. Την \[t=0\] αφήνουμε τους αγωγούς ελεύθερους και παρατηρούμε ότι ο αγωγός (1) παραμένει ακίνητος.

Α) Ο αγωγός (2) την \[t=0\]:

α) παραμένει και αυτός ακίνητος.

β) αποκτά επιτάχυνση μέτρου  \[ \frac{3g}{2} \]  κατακόρυφη προς τα κάτω (όπου \[g\] το μέτρο της επιτάχυνσης της βαρύτητας).

γ) αποκτά επιτάχυνση \[3g\] με φορά κατακόρυφη προς τα κάτω.

Β) Αν η ένταση \[B_2\]  είχε αντίθετη φορά απ’ αυτή του σχήματος, τότε ο αγωγός (2) την \[t=0\]:

α) θα ισορροπούσε.

β) θα αποκτούσε επιτάχυνση μέτρου \[g\] κατακόρυφη προς τα πάνω.

γ) θα αποκτούσε επιτάχυνση  \[ \frac{g}  {2}  \]  κατακόρυφη προς τα κάτω.

δ) θα αποκτούσε επιτάχυνση \[ g \] κατακόρυφη προς τα κάτω.

20. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
21. Η κάθετη τομή ενός ομογενούς τριγώνου είναι το τρίγωνο ΑΓΔ με \[\hat{Α} =30^0\] και θετικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Κ της πλευράς ΑΓ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εξέρχεται απ’ το σημείο Λ της πλευράς ΑΔ με ταχύτητα κάθετη στην πλευρά αυτή. Η απόσταση ΑΚ είναι ΑΚ\[=d\]. Ο χρόνος κίνησης του σωματιδίου στο μαγνητικό πεδίο είναι:
22. Ένα πρωτόνιο \[p\] και ένα σωμάτιο \[α\] με φορτία \[q_p\] και \[q_α=2q_p\] και μάζες \[m_p\] και \[m_α=4m_p\] αντίστοιχα εκτελούν ομαλή κυκλική κίνηση μέσα στο ίδιο ομογενές μαγνητικό πεδίο με την επίδραση μόνο της δύναμης που δέχονται απ’ το πεδίο. Τα δύο σωματίδια έχουν ίσες κατά μέτρο ταχύτητες . Αν \[R_p\, , \, R_α\] και \[ f_p \, , \, f_α\] είναι οι ακτίνες και οι συχνότητες των κυκλικών τους κινήσεων, ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
23. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στην στήλη ΚΛΜΝ ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] από το σημείο Ζ της πλευράς ΚΝ με ταχύτητα \[υ\] που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο διαγράφει κυκλικό τμήμα και εξέρχεται απ’ το όριο ΛΜ του πεδίου με ταχύτητα που σχηματίζει με αυτό γωνία \[60^0\] όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο εξέρχεται απ’ το πεδίο σε χρόνο \[Δt\]. Αν το σωματίδιο εισέρχονταν στο πεδίο απ’ το Ζ με μικρότερη κατά μέτρο ταχύτητα \[υ'\] αλλά ίδιας κατεύθυνσης με την αρχική \[\vec{υ}\] θα εξέρχονταν απ’ το όριο ΚΝ σε χρόνο \[Δt'\]. Για τους χρόνους \[Δt\, , \, Δt' \] ισχύει:
24. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:
25. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
26. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
27. Δύο ισότοπα του ίδιου ιόντος (έχουν ίσα φορτία) αφού περάσουν απ’ τον επιλογέα ταχυτήτων χωρίς να αποκλίνουν της ευθύγραμμης τροχιάς τους εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] ενός φασματογράφου μάζας. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Τα δύο ιόντα:
28. Το τετράγωνο πλαίσιο ΚΛΜΝ μάζας \[m\] του παρακάτω σχήματος έχει πλευρά \[α\], βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και διαρρέεται από ρεύμα έντασης \[Ι\] που έχει τη φορά των δεικτών του ρολογιού. Στο ίδιο οριζόντιο επίπεδο και παράλληλα με τις πλευρές του πλαισίου ΚΛ και ΜΝ βρίσκονται δύο ευθύγραμμοι αγωγοί (1), (2) μεγάλου μήκους που διαρρέονται από ρεύμα εντάσεων \[Ι_1\] και \[Ι_2=3Ι_1\] αντίστοιχα που οι φορές τους και οι αποστάσεις των ευθύγραμμων αγωγών από το πλαίσιο φαίνεται στο παρακάτω σχήμα. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\] και η συνολική μάζα του πλαισίου είναι \[m\]. Αν αφήσουμε το πλαίσιο ελεύθερο να κινηθεί, αυτό:
29. Απ’ την πυρακτωμένη κάθοδο της πειραματικής διάταξης του Thomson εκπέμπονται ηλεκτρόνια με αμελητέα ταχύτητα και επιταχύνονται υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων με ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να διπλασιάσουμε το μέτρο της ταχύτητας εισόδου στο φίλτρο ταχυτήτων πρέπει η τάση που επιταχύνει τα ηλεκτρόνια να γίνει:
30. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] με τις δυναμικές του γραμμές \[(0 < φ < 90^0)\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν αυξήσω τη γωνία \[φ\] κατά την είσοδο του σωματιδίου στο πεδίο διατηρώντας την μεταξύ των τιμών \[0 < φ < 90^0\] τότε:

    +30

    CONTACT US
    CALL US