MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα φαίνονται δύο ομόκεντροι κυκλικοί ρευματοφόροι αγωγοί \[(1),\, (2)\]. Ο αγωγός \[(1)\] διαρρέεται από σταθερό ρεύμα έντασης \[Ι\] και έχει ακτίνα \[r\]. Ο αγωγός \[(2)\] διαρρέεται από σταθερό ομόρροπο ρεύμα ίδιας έντασης \[Ι\] και έχει ακτίνα \[4r\]. Στο κοινό κέντρο Κ η ένταση του μαγνητικού πεδίου του αγωγού \[(2)\] είναι \[Β_2\]: Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
2. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, , \, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, ,\, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Για να γίνει το άθροισμα \[∑B\cdot Δ\ell \cdot συνφ\] στη διαδρομή \[S_2\] ίσο με το μηδέν χωρίς ν’ αλλάξει το αντίστοιχο άθροισμα στη διαδρομή \[S_1\] πρέπει:
3. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Όταν εφαρμόζουμε το νόμο του Ampere πάνω σε μια κλειστή διαδρομή, η θετική φορά των ρευμάτων:
4. Να επιλέξετε τη σωστή απάντηση. Σε ποια απ’ τα παρακάτω σχήματα ο ευθύγραμμος ρευματοφόρος αγωγός δέχεται δύναμη Laplace μη μηδενική;
5. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B\cdot Δ\ell\cdot συνθ\] σε μια κλειστή διαδρομή \[S\] εξαρτάται:
6. Ένα πρωτόνιο \[p\] μάζας \[m_p\] και φορτίου \[e\] και ένα σωμάτιο \[α\] μάζας \[m_α=4m_p\] και φορτίου \[q_α=2e\] όπου \[e\] το στοιχειώδες θετικό φορτίο εισέρχονται ταυτόχρονα απ’ το ίδιο σημείο Γ με ταχύτητες \[\vec{υ}_α\, , \, \vec{υ}_p \] σε ομογενές μαγνητικό πεδίο έντασης \[\vec{Β}\] έτσι ώστε οι ταχύτητές τους να είναι κάθετες στις δυναμικές γραμμές του πεδίου και στο όριό του που είναι η ευθεία \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τις δυνάμεις απ’ το μαγνητικό πεδίο που εκτείνεται σε μεγάλη απόσταση πάνω απ’ το όριο του \[xx'\]. Κατά την είσοδό τους στο πεδίο έχουν ίσες κινητικές ενέργειες \[(K_p=K_α )\]. Για τα μέτρα των ρυθμών μεταβολής της ορμής των δύο σωματιδίων κατά την παραμονή τους στο μαγνητικό πεδίο ισχύει:
7. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
8. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Ο χρόνος παραμονής του σωματιδίου μέσα στο πεδίο είναι:
9. Η κάθετη τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] είναι ορθογώνιο παραλληλόγραμμο \[ΚΛΜΝ\] με \[ΚΛ=d\]. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο απ’ το σημείο Γ του ορίου του \[ΚΝ\] με ταχύτητα μέτρου \[υ_1=υ\] που είναι κάθετη στην \[ΚΝ\] και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί κυκλική κίνηση μέσα στο πεδίο και μόλις που δεν εξέρχεται απ’ το όριο \[ΛΜ\] αλλά επιστρέφει και εξέρχεται απ’ το όριο \[ΚΝ\]. Αν το σωματίδιο είχε διπλάσια κατά μέτρο ταχύτητα \[υ_2=2υ\], τότε το μήκος \[s\] του τόξου που θα διέγραφε μέχρι να εξέλθει απ’ το μαγνητικό πεδίο θα ήταν:
10. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
11. Το θετικά φορτισμένο σωματίδιο του παρακάτω σχήματος μάζας \[m\] και φορτίου \[q\] εισέρχεται κάθετα στις δυναμικές γραμμές ομογενούς μαγνητικού πεδίου και κάθετα στο όριο του πεδίου (ευθεία \[ xx'\]). Σε απόσταση \[d\] απ’ την ευθεία \[xx'\] και σε επίπεδο παράλληλο σ’ αυτή έχουμε τοποθετήσει φωτογραφική πλάκα. Το σωματίδιο εισέρχεται στο πεδίο με κινητική ενέργεια \[Κ\] και επιδρά σ’ αυτό μόνο η δύναμη του μαγνητικού πεδίου. Για να μη χτυπήσει το σωματίδιο στη φωτογραφική πλάκα πρέπει να ισχύει για το μέτρο \[B\] της έντασης του μαγνητικού πεδίου:
12. Ο αγωγός (1) του παρακάτω σχήματος αποτελείται από δύο συνευθειακούς αγωγούς ΚΜ και ΛΝ πεπερασμένου μήκους και έναν ημικυκλικό αγωγό ακτίνας \[r\] και κέντρου Ο που η διάμετρός του είναι η ΚΛ. Ο αγωγός (1) διαρρέεται από ρεύμα \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος απείρου μήκους παράλληλος στα ευθύγραμμα τμήματα του αγωγού (1) και διαρρέεται από ρεύμα \[Ι'=2Ιπ\] και απέχει α απ’ το κέντρο του ημικυκλίου. Οι αγωγοί (1) και (2) βρίσκονται στο επίπεδο της σελίδας και το ρεύμα του αγωγού (2) έχει φορά προς τα δεξιά. Η ένταση του μαγνητικού πεδίου στο κέντρο Ο του ημικυκλίου είναι μηδενική. Η απόσταση \[α\] του αγωγού (2) είναι:
13. Στο παρακάτω σχήμα φαίνονται οι τροχιές δύο ισότοπων ιόντων ίδιου φορτίου \[(1)\] και \[(2)\] του στοιχείου νέου \[(Ne)\] μιας δέσμης ισότοπων του στοιχείου αυτού που εισέρχονται στο μαγνητικό πεδίο έντασης \[\vec{B} '\] ενός φασματογράφου μάζας. Το ιόν \[(1)\] είναι ισότοπο του \[^{20} Ne\] και το ιόν \[(2)\] του \[^{22}Ne\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
14. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=2Ι\, ,\, Ι_2=Ι\, ,\, Ι_3=4Ι\] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δl \cdot συνθ\] στη διαδρομή αυτή ισούται με:
15. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Η μεταβολή της ορμής του πυρήνα στο πρώτο πείραμα έχει μέτρο:
17. Ο ευθύγραμμος αγωγός ΚΛ έχει μήκος \[\ell\] και αντίσταση \[R\]. Ο αγωγός τοποθετείται οριζόντια ώστε τα άκρα του να εφάπτονται με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που έχουν αμελητέα αντίσταση. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ηλεκτρική πηγή που έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=\frac{R}{3}\], ενώ μεταξύ των αγωγών αυτών έχουμε συνδέσει μέσω διακόπτη δ και αντιστάτη αντίστασης \[R_1=\frac{R}{2}\]. Το σύστημα των αγωγών βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που είναι κάθετο στο επίπεδο των αγωγών και έχει τη φορά του σχήματος. Αρχικά ο διακόπτης είναι ανοικτός και ο αγωγός ΚΛ ισορροπεί ακίνητος. Όταν κλείσουμε το διακόπτη δ, ο αγωγός ΚΛ:
18. Ηλεκτρόνιο μάζας \[m_e\] και φορτίου \[-e\] (όπου \[e\] το στοιχειώδες φορτίο) εισέρχεται με κινητική ενέργεια Κ σε ομογενές μαγνητικό πεδίο έντασης Β και δέχεται μόνο τη δύναμη απ’ το πεδίο. Το ηλεκτρόνιο εισέρχεται απ’ το σημείο Γ του ορίου ΚΝ του μαγνητικού πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο ΚΝ και στις δυναμικές γραμμές του πεδίου. Σημείο Δ του πεδίου απέχει απ’ το Γ απόσταση \[ΓΔ=d\] και το ευθύγραμμο τμήμα ΓΔ σχηματίζει με τη διεύθυνση της ταχύτητας εισόδου στο πεδίο γωνία \[φ\] όπως φαίνεται στο παρακάτω σχήμα. Για να διέλθει το ηλεκτρόνιο απ’ το σημείο Δ πρέπει το μέτρο της έντασης του μαγνητικού πεδίου να είναι:
19. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Για τα μήκη \[ α_1\, , \, α_2\] των πλευρών του τριγώνου και του τετραγώνου αντίστοιχα ισχύει:
20. Ο αγωγός του παρακάτω σχήματος διαρρέεται από ρεύμα έντασης \[Ι\]. Ένα στοιχειώδες τμήμα \[Δ\ell\] του αγωγού έχει αποστάσεις \[r_1\, , \, r_2\] απ’ τα σημεία Α, Γ αντίστοιχα. Οι αποστάσεις αυτές είναι κάθετες μεταξύ τους και ίσες \[(r_1=r_2)\]. Tα διανύσματα \[Δ\vec{\ell}\, , \, \vec{r}_1\] σχηματίζουν μεταξύ τους γωνία \[θ_1=30^0\]. Τότε για τα διανύσματα των εντάσεων \[Δ\vec{Β}_A\, , \, Δ\vec{B}_Γ\] που οφείλονται στο στοιχειώδες τμήμα \[Δ\ell\] στα σημεία Α, Γ αντίστοιχα ισχύει:
21. Ραδιενεργό άτομο που είναι αρχικά ακίνητο μέσα σε ομογενές μαγνητικό πεδίο μεγάλης έκτασης διασπάται ακαριαία μέσα σε ομογενές μαγνητικό πεδίο σε δύο επιμέρους σωματίδια \[(1)\, , \, (2)\] με φορτία \[ q_1\, , \, q_2\] με φορτία \[ q_1 \, , \, q_2\], μάζες \[ m_1 \, , \, m_2\] και ταχύτητες \[\vec{υ}_1\, , \, \vec{υ}_2\]. Η ταχύτητα του σωματιδίου \[(1)\] είναι κάθετη στις δυναμικές γραμμές του πεδίου. Τα σωματίδια που παράγονται εκτελούν μέσα στο ομογενές μαγνητικό πεδίο κυκλικές κινήσεις ακτίνων \[ R_1\, , \, R_2\] αντίστοιχα δεχόμενα μόνο τις δυνάμεις του ομογενούς μαγνητικού πεδίου. ( Υπόδειξη: Σε κάθε έκρηξη ισχύει η αρχή διατήρησης της ορμής. Το άτομο πριν τη διάσπαση είναι αφόρτιστο \[q_{{ολ}_πριν}=0\] και η αρχή διατήρησης του φορτίου απαιτεί \[q_{{ολ}_πριν} = q_1+q_2\] ). Για τις ακτίνες τους ισχύει:
22. Στο πείραμα του Thomson τα ηλεκτρόνια που εκπέμπει η πυρακτωμένη κάθοδος επιταχύνονται υπό μια τάση \[V\] και η δέσμη ηλεκτρονίων εισέρχεται σε επιλογέα ταχυτήτων που το μαγνητικό και ηλεκτρικό πεδίο του έχουν εντάσεις μέτρων \[B\] και \[E\] αντίστοιχα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
23. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=3Ι\, , \, Ι_2=5Ι\, , \, Ι_3=2Ι \] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δ\ell \cdot συνθ\] στη διαδρομή αυτή ισούται με:
24. Δύο ισότοπα του ίδιου ιόντος (έχουν ίσα φορτία) αφού περάσουν απ’ τον επιλογέα ταχυτήτων χωρίς να αποκλίνουν της ευθύγραμμης τροχιάς τους εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] ενός φασματογράφου μάζας. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Τα δύο ιόντα:
25. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ = 30^0 \] με τις δυναμικές γραμμές του. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή του μαγνητικού πεδίου. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η ένταση \[\vec{Β}\] που υπολογίζουμε απ’ το νόμο του Ampere: \[∑B\cdot Δ\ell \cdot συνθ=μ_0 Ι_{εγκ}\] οφείλεται:
27. Απ’ την πυρακτωμένη κάθοδο της διάταξης του πειράματος του Thomson εκπέμπονται ηλεκτρόνια με σχεδόν αμελητέες ταχύτητες. Αυτά επιταχύνονται υπό τάση \[V\], δημιουργούν ευθύγραμμη δέσμη, εισέρχονται στον επιλογέα ταχυτήτων της διάταξης και κινούνται μέσα σ’ αυτόν χωρίς η δέσμη τους να αποκλίνει. Ο επιλογέας ταχυτήτων αποτελείται από δύο πεδία, ένα ομογενές ηλεκτρικό έντασης \[\vec{E}\] και ένα ομογενές μαγνητικό έντασης \[\vec{B}\] που οι δυναμικές τους γραμμές είναι μεταξύ τους κάθετες. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν αυξήσουμε την τάση \[V\] χωρίς να μεταβάλουμε τις \[\vec{B}\, , \, \vec{E}\] τότε:
28. Λεπτή δέσμη ιόντων χλωρίου \[( C\ell^{-1} )\] φορτίου \[q=-e\] (όπου \[e\] το στοιχειώδες θετικό φορτίο) που έχουν δημιουργηθεί από ισότοπα άτομά του, εισάγονται στον επιλογέα ταχυτήτων ενός φασματογράφου μάζας που αποτελείται από ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] και ομογενές ηλεκτρικό πεδίο έντασης μέτρου \[Ε\]. Η δέσμη δεν αποκλίνει κατά το πέρασμά της απ’ τον επιλογέα ταχυτήτων και αμέσως μετά εισάγεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β'\]. Εκεί τα ιόντα εκτελούν ημικυκλική τροχιά και πέφτουν σε δύο διαφορετικά σημεία φωτογραφικής πλάκας αφήνοντας τα ίχνη τους σ’ αυτήν. Η απόσταση των δύο ιχνών μετρήθηκε και βρέθηκε ίση με \[d\]. Η διαφορά μάζας \[Δm\] μεταξύ του βαρύτερου και του ελφρύτερου ιόντος χλωρίου είναι ίση με:
29. Δύο πρωτόνια \[(1)\, , \, (2)\] με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχονται απ’ το σημείο Γ του ορίου \[xx'\] του ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ίδιες κατά μέτρο ταχύτητες \[υ_1=υ_2=υ\] που οι διευθύνσεις τους είναι κάθετες στις δυναμικές γραμμές του μαγνητικού πεδίου. Το πρωτόνιο \[(1)\] έχει ταχύτητα \[υ_1\] που σχηματίζει γωνία \[φ=30^0\] με το όριο \[xx'\] ενώ η ταχύτητα του πρωτονίου \[(2)\] \[υ_2\] είναι κάθετη στο όριο \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα πρωτόνια δέχονται μόνο τη δύναμη Lorentz του μαγνητικού πεδίου. Τα πρωτόνια εξέρχονται απ’ τα σημεία Δ, Ε του ορίου \[xx'\]. Διερευνήστε σε ποιο απ’ τα πρωτόνια αντιστοιχεί το κάθε σημείο εξόδου. Το μέτρο της μεταβολής της ορμής του πρωτονίου \[(1)\] λόγω της παραμονής του στο πεδίο είναι \[|Δp_1 |\] ενώ του \[(2)\] \[|Δp_2 |\] και ισχύει:
30. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].


    +30

    CONTACT US
    CALL US