6. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[e\] (στοιχειώδες φορτίο) και ένας πυρήνας ηλίου μάζας \[4m_p\] και φορτίου \[2e\] εκτελούν κυκλικές τροχιές με ακτίνες \[R_p\, , \, R_α\] αντίστοιχα με ίσες κατά μέτρο ταχύτητες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
7. Ο αγωγός του παρακάτω σχήματος ισορροπεί οριζόντιος μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Ο αγωγός ακουμπά χωρίς τριβές σε δύο αγώγιμες κατακόρυφες ράβδους που στα άκρα τους έχουμε συνδέσει ηλεκτρική πηγή. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
8. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
10. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] με τις δυναμικές του γραμμές \[(0 < φ < 90^0)\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν αυξήσω τη γωνία \[φ\] κατά την είσοδο του σωματιδίου στο πεδίο διατηρώντας την μεταξύ των τιμών \[0 < φ < 90^0\] τότε: 13. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Με το φασματογράφο μάζας: 16. Στο παρακάτω σχήμα φαίνονται οι τροχιές δύο ισότοπων ιόντων ίδιου φορτίου \[(1)\] και \[(2)\] του στοιχείου νέου \[(Ne)\] μιας δέσμης ισότοπων του στοιχείου αυτού που εισέρχονται στο μαγνητικό πεδίο έντασης \[\vec{B} '\] ενός φασματογράφου μάζας. Το ιόν \[(1)\] είναι ισότοπο του \[^{20} Ne\] και το ιόν \[(2)\] του \[^{22}Ne\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
17. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
20. Ένα πρωτόνιο \[p\] μάζας \[m_p\] και φορτίου \[e\] και ένα σωμάτιο \[α\] μάζας \[m_α=4m_p\] και φορτίου \[q_α=2e\] όπου \[e\] το στοιχειώδες θετικό φορτίο εισέρχονται ταυτόχρονα απ’ το ίδιο σημείο Γ με ταχύτητες \[\vec{υ}_α\, , \, \vec{υ}_p \] σε ομογενές μαγνητικό πεδίο έντασης \[\vec{Β}\] έτσι ώστε οι ταχύτητές τους να είναι κάθετες στις δυναμικές γραμμές του πεδίου και στο όριό του που είναι η ευθεία \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τις δυνάμεις απ’ το μαγνητικό πεδίο που εκτείνεται σε μεγάλη απόσταση πάνω απ’ το όριο του \[xx'\]. Κατά την είσοδό τους στο πεδίο έχουν ίσες κινητικές ενέργειες \[(K_p=K_α )\]. Για τα μέτρα των ρυθμών μεταβολής της ορμής των δύο σωματιδίων κατά την παραμονή τους στο μαγνητικό πεδίο ισχύει:
22. Ο αγωγός του παρακάτω σχήματος διαρρέεται από ρεύμα έντασης \[Ι\]. Ένα στοιχειώδες τμήμα \[Δ\ell\] του αγωγού έχει αποστάσεις \[r_1\, , \, r_2\] απ’ τα σημεία Α, Γ αντίστοιχα. Οι αποστάσεις αυτές είναι κάθετες μεταξύ τους και ίσες \[(r_1=r_2)\]. Tα διανύσματα \[Δ\vec{\ell}\, , \, \vec{r}_1\] σχηματίζουν μεταξύ τους γωνία \[θ_1=30^0\]. Τότε για τα διανύσματα των εντάσεων \[Δ\vec{Β}_A\, , \, Δ\vec{B}_Γ\] που οφείλονται στο στοιχειώδες τμήμα \[Δ\ell\] στα σημεία Α, Γ αντίστοιχα ισχύει:
23. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εκτελεί ομαλή κυκλική κίνηση μέσα σε ομογενές μαγνητικό πεδίο και επιδρά σ’ αυτό μόνο η δύναμη του πεδίου. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή; Η περίοδος της κυκλικής κίνησης του σωματιδίου αυτού: 25. Η παρακάτω κλειστή διαδρομή \[S\] του σχήματος περιέχει δύο ευθύγραμμους ρευματοφόρους αγωγούς (1), (2) με ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\]. Η φορά του ρεύματος του αγωγού (1) φαίνεται στο σχήμα. Στη διαδρομή \[S\] το άθροισμα των ρευμάτων είναι ίσο με μηδέν. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
27. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε: