MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Τρία σωματίδια (1), (2), (3) μπαίνουν ταυτόχρονα στο ίδιο ομογενές μαγνητικό πεδίο κάθετα στο όριό του (πλευρά ΑΕ) και στις δυναμικές γραμμές του με ταχύτητες ίσων μέτρων. Για τα φορτία των σωματιδίων (2), (3) ισχύει \[ |q_2 |=|q_3 |=|q|\] και οι μάζες τους είναι \[m_2\, , \, m_3\] αντίστοιχα. Οι βαρυτικές δυνάμεις θεωρούνται αμελητέες. Στο παρακάτω σχήμα φαίνονται οι τροχιές των σωματιδίων μέσα στο πεδίο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Αν \[t_{π_1} \, , \, t_{π_2}\] οι χρόνοι παραμονής του ιόντος μέσα στο μαγνητικό πεδίο του κάθε πειράματος, τότε ισχύει:
3. Απ’ την πυρακτωμένη κάθοδο της πειραματικής διάταξης του Thomson εκπέμπονται ηλεκτρόνια με αμελητέα ταχύτητα και επιταχύνονται υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων με ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να διπλασιάσουμε το μέτρο της ταχύτητας εισόδου στο φίλτρο ταχυτήτων πρέπει η τάση που επιταχύνει τα ηλεκτρόνια να γίνει:
4. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Το μέτρο της μεταβολής της ορμής του μαγνητικού πεδίου λόγω της παραμονής του στο πεδίο είναι:
5. Η παρακάτω κλειστή διαδρομή \[S\] του σχήματος περιέχει δύο ευθύγραμμους ρευματοφόρους αγωγούς (1), (2) με ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\]. Η φορά του ρεύματος του αγωγού (1) φαίνεται στο σχήμα. Στη διαδρομή \[S\] το άθροισμα των ρευμάτων είναι ίσο με μηδέν. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
6. Ηλεκτρόνιο μάζας \[m_e\] και φορτίου \[-e\] (όπου \[e\] το στοιχειώδες φορτίο) εισέρχεται με κινητική ενέργεια Κ σε ομογενές μαγνητικό πεδίο έντασης Β και δέχεται μόνο τη δύναμη απ’ το πεδίο. Το ηλεκτρόνιο εισέρχεται απ’ το σημείο Γ του ορίου ΚΝ του μαγνητικού πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο ΚΝ και στις δυναμικές γραμμές του πεδίου. Σημείο Δ του πεδίου απέχει απ’ το Γ απόσταση \[ΓΔ=d\] και το ευθύγραμμο τμήμα ΓΔ σχηματίζει με τη διεύθυνση της ταχύτητας εισόδου στο πεδίο γωνία \[φ\] όπως φαίνεται στο παρακάτω σχήμα. Για να διέλθει το ηλεκτρόνιο απ’ το σημείο Δ πρέπει το μέτρο της έντασης του μαγνητικού πεδίου να είναι:
7. Ένας κυκλικός αγωγός δημιουργείται από ομογενές και ισοπαχές σύρμα κέντρου Κ , ακτίνας \[r\] και αντίστασης \[R\]. Συνδέουμε τα άκρα Μ, Ν μιας διαμέτρου του κυκλικού αγωγού μέσω συρμάτων αμελητέας αντίστασης με ιδανική πηγή με ΗΕΔ \[Ε\] και έτσι ο αγωγός διαρρέεται από ρεύμα. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε το μαγνητικό πεδίο που οφείλεται στο ημικυκλικό τμήμα ΜΔΝ του αγωγού στο κέντρο του Κ έχει ένταση μέτρου:
8. Ο ευθύγραμμος αγωγός ΚΛ έχει μήκος \[\ell\] και αντίσταση \[R\]. Ο αγωγός τοποθετείται οριζόντια ώστε τα άκρα του να εφάπτονται με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που έχουν αμελητέα αντίσταση. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ηλεκτρική πηγή που έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=\frac{R}{3}\], ενώ μεταξύ των αγωγών αυτών έχουμε συνδέσει μέσω διακόπτη δ και αντιστάτη αντίστασης \[R_1=\frac{R}{2}\]. Το σύστημα των αγωγών βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που είναι κάθετο στο επίπεδο των αγωγών και έχει τη φορά του σχήματος. Αρχικά ο διακόπτης είναι ανοικτός και ο αγωγός ΚΛ ισορροπεί ακίνητος. Όταν κλείσουμε το διακόπτη δ, ο αγωγός ΚΛ:
9. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
10. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
11. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[ 0 < φ < 90^0 \]) με τις δυναμικές γραμμές του πεδίου και δέχεται δύναμη μόνο απ’ αυτό. Το σωματίδιο εκτελεί ελικοειδή τροχιά. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
12. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] επιταχύνεται από την ηρεμία υπό τάση \[V\] και με την ταχύτητα \[υ\] που αποκτά εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που η κάθετη τομή φαίνεται στο παρακάτω σχήμα και εκτείνεται σε απόσταση \[d\] κατά τη διεύθυνση της ταχύτητας εισόδου του σωματιδίου. Η ταχύτητα αυτή είναι κάθετη στο όριο του πεδίου \[yy'\] και στις δυναμικές γραμμές του πεδίου. Για να εξέλθει το σωματίδιο απ’ το ίδιο όριο του πεδίου απ’ το οποίο εισήλθε πρέπει η τάση \[V\] να πληρεί την ανίσωση:
13. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ=60^0\] με τις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή απ’ το μαγνητικό πεδίο. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
14. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=2Ι\, ,\, Ι_2=Ι\, ,\, Ι_3=4Ι\] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δl \cdot συνθ\] στη διαδρομή αυτή ισούται με:
15. Στο παρακάτω σχήμα οι οριζόντιοι ευθύγραμμοι αγωγοί (1), (2) έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα, ίδιο μήκος \[\ell\] και αντιστάσεις \[R_1=R\] και \[R_2=2R\]. Οι αγωγοί συγκρατούνται ώστε τα άκρα τους να είναι σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy\] και \[Γy_1\] που έχουν αμελητέα αντίσταση. Ο αγωγός (1) βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}_1\] και ο αγωγός (2) σε αντίστοιχο πεδίο έντασης \[\vec{B}_2\]. Οι δυναμικές γραμμές των δύο πεδίων είναι κάθετες στο επίπεδο που δημιουργούν οι τέσσερις αγωγοί και οι φορές των εντάσεών τους φαίνονται στο σχήμα. Για τα μέτρα των εντάσεων ισχύει \[B_2=2B_1\]. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ιδανική πηγή που έχει ΗΕΔ \[\mathcal{E}\]. Την \[t=0\] αφήνουμε τους αγωγούς ελεύθερους και παρατηρούμε ότι ο αγωγός (1) παραμένει ακίνητος.

Α) Ο αγωγός (2) την \[t=0\]:

α) παραμένει και αυτός ακίνητος.

β) αποκτά επιτάχυνση μέτρου  \[ \frac{3g}{2} \]  κατακόρυφη προς τα κάτω (όπου \[g\] το μέτρο της επιτάχυνσης της βαρύτητας).

γ) αποκτά επιτάχυνση \[3g\] με φορά κατακόρυφη προς τα κάτω.

Β) Αν η ένταση \[B_2\]  είχε αντίθετη φορά απ’ αυτή του σχήματος, τότε ο αγωγός (2) την \[t=0\]:

α) θα ισορροπούσε.

β) θα αποκτούσε επιτάχυνση μέτρου \[g\] κατακόρυφη προς τα πάνω.

γ) θα αποκτούσε επιτάχυνση  \[ \frac{g}  {2}  \]  κατακόρυφη προς τα κάτω.

δ) θα αποκτούσε επιτάχυνση \[ g \] κατακόρυφη προς τα κάτω.

16. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε:
17. Δύο φορτισμένα σωματίδια \[(1)\, , \, (2)\] έχουν ίσες μάζες \[m\] και φορτίο \[|q_1 |=2|q_2 |\] με \[ q_1 < 0\] και \[q_2 > 0 \]. Τα σωματίδια εισέρχονται ταυτόχρονα σε ομογενές μαγνητικό πεδίο με ταχύτητες ίδιων κατευθύνσεων και με μέτρα \[υ_1 = 3 υ_2\] αντίστοιχα που είναι κάθετες στο όριο \[yy'\] του πεδίου και στις δυναμικές γραμμές του όπως φαίνεται στο σχήμα. Τα σωματίδια εξέρχονται απ’ το ίδιο όριο του πεδίου και τα σημεία εξόδου τους απέχουν μεταξύ τους απόσταση \[d\]. Οι βαρυτικές και οι ηλεκτροστατικές αλληλεπιδράσεις θεωρούνται αμελητέες. Τη στιγμή που από το πεδίο εξέρχεται το σωματίδιο που έχει τη μικρότερη συχνότητα κυκλικής κίνησης, τότε η απόσταση των δύο σωματιδίων είναι: \[(π^2=10)\]
18. Στο παρακάτω σχήμα φαίνονται οι τροχιές δύο ισότοπων ιόντων ίδιου φορτίου \[(1)\] και \[(2)\] του στοιχείου νέου \[(Ne)\] μιας δέσμης ισότοπων του στοιχείου αυτού που εισέρχονται στο μαγνητικό πεδίο έντασης \[\vec{B} '\] ενός φασματογράφου μάζας. Το ιόν \[(1)\] είναι ισότοπο του \[^{20} Ne\] και το ιόν \[(2)\] του \[^{22}Ne\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
19. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Όταν εφαρμόζουμε το νόμο του Ampere πάνω σε μια κλειστή διαδρομή, η θετική φορά των ρευμάτων:
20. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η ένταση \[\vec{Β}\] που υπολογίζουμε απ’ το νόμο του Ampere: \[∑B\cdot Δ\ell \cdot συνθ=μ_0 Ι_{εγκ}\] οφείλεται:
21. Η κάθετη τομή ενός ομογενούς τριγώνου είναι το τρίγωνο ΑΓΔ με \[\hat{Α} =30^0\] και θετικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Κ της πλευράς ΑΓ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εξέρχεται απ’ το σημείο Λ της πλευράς ΑΔ με ταχύτητα κάθετη στην πλευρά αυτή. Η απόσταση ΑΚ είναι ΑΚ\[=d\]. Ο χρόνος κίνησης του σωματιδίου στο μαγνητικό πεδίο είναι:
22. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:
23. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου με \[ 0 < φ < 90^0 \]. Το σωματίδιο εκτελεί ελικοειδή κίνηση περιόδου \[Τ\] και ακτίνας \[R\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
24. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Με το φασματογράφο μάζας:
25. Δύο ισότοπα ιόντα του στοιχείου Νέου \[(Ne)\] απ’ την ίδια ευθύγραμμη δέσμη ισοτόπων εισέρχονται ταυτόχρονα στο μαγνητικό πεδίο \[\vec{B}'\] ενός φασματογράφου μάζας. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στην φωτογραφική πλάκα του φασματογράφου:
26. Το τετράγωνο πλαίσιο ΚΛΜΝ μάζας \[m\] του παρακάτω σχήματος έχει πλευρά \[α\], βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και διαρρέεται από ρεύμα έντασης \[Ι\] που έχει τη φορά των δεικτών του ρολογιού. Στο ίδιο οριζόντιο επίπεδο και παράλληλα με τις πλευρές του πλαισίου ΚΛ και ΜΝ βρίσκονται δύο ευθύγραμμοι αγωγοί (1), (2) μεγάλου μήκους που διαρρέονται από ρεύμα εντάσεων \[Ι_1\] και \[Ι_2=3Ι_1\] αντίστοιχα που οι φορές τους και οι αποστάσεις των ευθύγραμμων αγωγών από το πλαίσιο φαίνεται στο παρακάτω σχήμα. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\] και η συνολική μάζα του πλαισίου είναι \[m\]. Αν αφήσουμε το πλαίσιο ελεύθερο να κινηθεί, αυτό:
27. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:
28. Λεπτή δέσμη ιόντων χλωρίου \[( C\ell^{-1} )\] φορτίου \[q=-e\] (όπου \[e\] το στοιχειώδες θετικό φορτίο) που έχουν δημιουργηθεί από ισότοπα άτομά του, εισάγονται στον επιλογέα ταχυτήτων ενός φασματογράφου μάζας που αποτελείται από ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] και ομογενές ηλεκτρικό πεδίο έντασης μέτρου \[Ε\]. Η δέσμη δεν αποκλίνει κατά το πέρασμά της απ’ τον επιλογέα ταχυτήτων και αμέσως μετά εισάγεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β'\]. Εκεί τα ιόντα εκτελούν ημικυκλική τροχιά και πέφτουν σε δύο διαφορετικά σημεία φωτογραφικής πλάκας αφήνοντας τα ίχνη τους σ’ αυτήν. Η απόσταση των δύο ιχνών μετρήθηκε και βρέθηκε ίση με \[d\]. Η διαφορά μάζας \[Δm\] μεταξύ του βαρύτερου και του ελφρύτερου ιόντος χλωρίου είναι ίση με:
29. Στον επιλογέα ταχυτήτων του παρακάτω σχήματος το μαγνητικό του πεδίο έχει ένταση \[\vec{B}\] και το ηλεκτρικό πεδίο έχει ένταση \[\vec{Ε}\]. Δέσμη πρωτονίων (μάζας \[m_p\] και φορτίου \[q_p=e\]) εισέρχεται σε επιλογέα ταχυτήτων με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές των δύο πεδίων του. Η δέσμη δεν αποκλίνει κατά το πέρασμά της μέσα απ’ τον επιλογέα. Οι βαρυτικές δυνάμεις και οι ηλεκτροστατικές αλληλεπιδράσεις μεταξύ των σωματιδίων της δέσμης θεωρούνται αμελητέες. Αν στον επιλογέα ταχυτήτων εισέρχονταν δέσμη ηλεκτρονίων με ταχύτητα ίδια με αυτή των πρωτονίων (η μάζα του ηλεκτρονίου είναι \[m_e = \frac{m_p }{ 1836 }\] και το φορτίο \[q_e=-e\]) για να μην αποκλίνει η δέσμη κατά το πέρασμά της μέσα στον επιλογέα:
30. Ο αγωγός (1) του παρακάτω σχήματος αποτελείται από δύο συνευθειακούς αγωγούς ΚΜ και ΛΝ πεπερασμένου μήκους και έναν ημικυκλικό αγωγό ακτίνας \[r\] και κέντρου Ο που η διάμετρός του είναι η ΚΛ. Ο αγωγός (1) διαρρέεται από ρεύμα \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος απείρου μήκους παράλληλος στα ευθύγραμμα τμήματα του αγωγού (1) και διαρρέεται από ρεύμα \[Ι'=2Ιπ\] και απέχει α απ’ το κέντρο του ημικυκλίου. Οι αγωγοί (1) και (2) βρίσκονται στο επίπεδο της σελίδας και το ρεύμα του αγωγού (2) έχει φορά προς τα δεξιά. Η ένταση του μαγνητικού πεδίου στο κέντρο Ο του ημικυκλίου είναι μηδενική. Η απόσταση \[α\] του αγωγού (2) είναι:

    +30

    CONTACT US
    CALL US