MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[ 0 < φ < 90^0 \]) με τις δυναμικές γραμμές του πεδίου και δέχεται δύναμη μόνο απ’ αυτό. Το σωματίδιο εκτελεί ελικοειδή τροχιά. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
2. Το θετικά φορτισμένο σωματίδιο του παρακάτω σχήματος μάζας \[m\] και φορτίου \[q\] εισέρχεται κάθετα στις δυναμικές γραμμές ομογενούς μαγνητικού πεδίου και κάθετα στο όριο του πεδίου (ευθεία \[ xx'\]). Σε απόσταση \[d\] απ’ την ευθεία \[xx'\] και σε επίπεδο παράλληλο σ’ αυτή έχουμε τοποθετήσει φωτογραφική πλάκα. Το σωματίδιο εισέρχεται στο πεδίο με κινητική ενέργεια \[Κ\] και επιδρά σ’ αυτό μόνο η δύναμη του μαγνητικού πεδίου. Για να μη χτυπήσει το σωματίδιο στη φωτογραφική πλάκα πρέπει να ισχύει για το μέτρο \[B\] της έντασης του μαγνητικού πεδίου:
3. Να επιλέξετε τη σωστή απάντηση. Σε ποια απ’ τα παρακάτω σχήματα ο ευθύγραμμος ρευματοφόρος αγωγός δέχεται δύναμη Laplace μη μηδενική;
4. Δέσμη πρωτονίων μάζας \[m_p\] και φορτίου \[e\] εισέρχεται στον επιλογέα ταχυτήτων ενός φασματογράφου μάζας χωρίς να εκτραπεί απ’ αυτόν. Στη συνέχεια τα πρωτόνια εισέρχονται στο μαγνητικό του πεδίο \[\vec{B}'\] εκτελούν ημικύκλιο μέσα σ’ αυτό και πέφτουν πάνω σε φωτογραφική πλάκα. Το κάθε πρωτόνιο αφήνει ίχνος πάνω στην πλάκα που απέχει \[d_1\] απ’ το σημείο εισόδου του στο πεδίο \[\vec{B}'\]. Στον ίδιο φασματογράφο κατόπιν εισέρχεται δέσμη από ιόντα Νέου που έχουν δημιουργηθεί από τα δύο ισότοπά του και έχουν φορτίο \[q=e\]. Όσα ιόντα δεν εκτρέπονται απ’ τον επιλογέα ταχυτήτων εισέρχονται στο μαγνητικό πεδίο \[\vec{B}' \] και αφού εκτελέσουν ημικυκλικές τροχιές αφήνουν ίχνη σε δύο σημεία της φωτογραφικής πλάκας. Η απόσταση των δύο αυτών ιχνών είναι \[d=2d_1\]. Θεωρούμε ότι η μάζα του νετρονίου είναι ίση με αυτή του πρωτονίου. Το ένα ισότοπο του Νέου έχει απ’ το άλλο: ( Υπόδειξη: Βρείτε το λόγο \[\frac{Δm}{m_p}\] όπου \[Δm\] η διαφορά των μαζών των δύο ισότοπων ατόμων που δημιούργησαν τα ιόντα)
5. Τρία σωματίδια (1), (2), (3) μπαίνουν ταυτόχρονα στο ίδιο ομογενές μαγνητικό πεδίο κάθετα στο όριό του (πλευρά ΑΕ) και στις δυναμικές γραμμές του με ταχύτητες ίσων μέτρων. Για τα φορτία των σωματιδίων (2), (3) ισχύει \[ |q_2 |=|q_3 |=|q|\] και οι μάζες τους είναι \[m_2\, , \, m_3\] αντίστοιχα. Οι βαρυτικές δυνάμεις θεωρούνται αμελητέες. Στο παρακάτω σχήμα φαίνονται οι τροχιές των σωματιδίων μέσα στο πεδίο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Όταν εφαρμόζουμε το νόμο του Ampere πάνω σε μια κλειστή διαδρομή, η θετική φορά των ρευμάτων:
7. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B\cdot Δ\ell\cdot συνθ\] σε μια κλειστή διαδρομή \[S\] εξαρτάται:
8. Απ’ την πυρακτωμένη κάθοδο της διάταξης του πειράματος του Thomson εκπέμπονται ηλεκτρόνια με σχεδόν αμελητέες ταχύτητες. Αυτά επιταχύνονται υπό τάση \[V\], δημιουργούν ευθύγραμμη δέσμη, εισέρχονται στον επιλογέα ταχυτήτων της διάταξης και κινούνται μέσα σ’ αυτόν χωρίς η δέσμη τους να αποκλίνει. Ο επιλογέας ταχυτήτων αποτελείται από δύο πεδία, ένα ομογενές ηλεκτρικό έντασης \[\vec{E}\] και ένα ομογενές μαγνητικό έντασης \[\vec{B}\] που οι δυναμικές τους γραμμές είναι μεταξύ τους κάθετες. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν αυξήσουμε την τάση \[V\] χωρίς να μεταβάλουμε τις \[\vec{B}\, , \, \vec{E}\] τότε:
9. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] με εντάσεις \[\vec{B}_1\, , \, \vec{B}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες. Τα δύο πεδία χωρίζονται απ’ τον άξονα \[x' x\] και εκτείνονται σε μεγάλη απόσταση στα δύο ημιεπίπεδα που ορίζει ο άξονας αυτός. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται την \[t=0\] στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[x' x\] με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές του πεδίου και στον άξονα \[x' x\]. Τη στιγμή \[t_1\] εξέρχεται απ’ το πεδίο \[(1)\], κινείται μέσα στο πεδίο \[(2)\] και τη στιγμή \[t_2\] φτάνει πάλι στο όριο \[x' x\] των δύο πεδίων στο σημείο Δ. Για τις χρονικές στιγμές \[t_1\, ,\, t_2\] ισχύει \[t_2 = 4 t_1\]. Το σωματίδιο θα περάσει για \[4^η\] φορά μετά απ’ την \[t=0\] απ’ το όριο \[x' x\] τη στιγμή \[t_3\] που είναι:
10. Στο παρακάτω σχήμα οι οριζόντιοι ευθύγραμμοι αγωγοί (1), (2) έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα, ίδιο μήκος \[\ell\] και αντιστάσεις \[R_1=R\] και \[R_2=2R\]. Οι αγωγοί συγκρατούνται ώστε τα άκρα τους να είναι σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy\] και \[Γy_1\] που έχουν αμελητέα αντίσταση. Ο αγωγός (1) βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}_1\] και ο αγωγός (2) σε αντίστοιχο πεδίο έντασης \[\vec{B}_2\]. Οι δυναμικές γραμμές των δύο πεδίων είναι κάθετες στο επίπεδο που δημιουργούν οι τέσσερις αγωγοί και οι φορές των εντάσεών τους φαίνονται στο σχήμα. Για τα μέτρα των εντάσεων ισχύει \[B_2=2B_1\]. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ιδανική πηγή που έχει ΗΕΔ \[\mathcal{E}\]. Την \[t=0\] αφήνουμε τους αγωγούς ελεύθερους και παρατηρούμε ότι ο αγωγός (1) παραμένει ακίνητος.

Α) Ο αγωγός (2) την \[t=0\]:

α) παραμένει και αυτός ακίνητος.

β) αποκτά επιτάχυνση μέτρου  \[ \frac{3g}{2} \]  κατακόρυφη προς τα κάτω (όπου \[g\] το μέτρο της επιτάχυνσης της βαρύτητας).

γ) αποκτά επιτάχυνση \[3g\] με φορά κατακόρυφη προς τα κάτω.

Β) Αν η ένταση \[B_2\]  είχε αντίθετη φορά απ’ αυτή του σχήματος, τότε ο αγωγός (2) την \[t=0\]:

α) θα ισορροπούσε.

β) θα αποκτούσε επιτάχυνση μέτρου \[g\] κατακόρυφη προς τα πάνω.

γ) θα αποκτούσε επιτάχυνση  \[ \frac{g}  {2}  \]  κατακόρυφη προς τα κάτω.

δ) θα αποκτούσε επιτάχυνση \[ g \] κατακόρυφη προς τα κάτω.

11. Φορτισμένο σωματίδιο μάζας m και φορτίου q εισέρχεται απ’ το σημείο Κ σε ομογενές μαγνητικό πεδίο έντασης μέτρου Β με ταχύτητα μέτρου υ που είναι κάθετη στις δυναμικές γραμμές του πεδίου και κάθετη στο ευθύγραμμο τμήμα ΑΕ που είναι το όριο του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο δέχεται μόνο τη δύναμη απ’ το μαγνητικό πεδίο και εξέρχεται απ’ το σημείο Λ του ίδιου ορίου ΑΕ του μαγνητικού πεδίου. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εκτελεί ομαλή κυκλική κίνηση μέσα σε ομογενές μαγνητικό πεδίο και επιδρά σ’ αυτό μόνο η δύναμη του πεδίου. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή; Η περίοδος της κυκλικής κίνησης του σωματιδίου αυτού:
13. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Η μεταβολή της ορμής του πυρήνα στο πρώτο πείραμα έχει μέτρο:
14. Τα δύο φορτισμένα σωματίδια του παρακάτω σχήματος έχουν φορτία \[ q_1 \, , \, q_2\] με ίσες μάζες \[m_1 = m_2\] αντίστοιχα και εκτελούν ομαλή κυκλική κίνηση ακτίνων \[ R_1 \, , \, R_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] μόνο με την επίδραση των δυνάμεων που δέχονται απ’ το μαγνητικό πεδίο. Οι κινητικές ενέργειες των δύο σωματιδίων είναι ίσες \[Κ_1 = Κ_2\]. Για τα πρόσημα και τις απόλυτες τιμές των δύο φορτίων τους ισχύει:
15. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=3Ι\, , \, Ι_2=5Ι\, , \, Ι_3=2Ι \] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δ\ell \cdot συνθ\] στη διαδρομή αυτή ισούται με:
16. Δύο φορτισμένα σωματίδια (1), (2) έχουν ίσες κατά μέτρο ορμές, μάζες \[m_1=2m_2\] και ίσα φορτία. Τα σωματίδια εισέρχονται στο ίδιο ομογενές μαγνητικό πεδίο και εκτελούν σ’ αυτό ομαλή κυκλική κίνηση με ακτίνες \[R_1, R_2\] και περιόδων \[T_1, T_2\] αντίστοιχα με την επίδραση μόνο της δύναμης Lorentz που δέχονται απ’ το πεδίο. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για τις ακτίνες και τις περιόδους των κυκλικών κινήσεων των δύο σωματιδίων ισχύει:
17. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε:
18. Στο παρακάτω σχήμα φαίνονται δύο ομόκεντροι κυκλικοί ρευματοφόροι αγωγοί \[(1),\, (2)\]. Ο αγωγός \[(1)\] διαρρέεται από σταθερό ρεύμα έντασης \[Ι\] και έχει ακτίνα \[r\]. Ο αγωγός \[(2)\] διαρρέεται από σταθερό ομόρροπο ρεύμα ίδιας έντασης \[Ι\] και έχει ακτίνα \[4r\]. Στο κοινό κέντρο Κ η ένταση του μαγνητικού πεδίου του αγωγού \[(2)\] είναι \[Β_2\]: Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
19. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Αν \[t_{π_1} \, , \, t_{π_2}\] οι χρόνοι παραμονής του ιόντος μέσα στο μαγνητικό πεδίο του κάθε πειράματος, τότε ισχύει:
20. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, ,\, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, , \, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Αν το άθροισμα \[∑B\cdot Δ \ell \cdot συνφ\] στη διαδρομή \[S_1\] έχει τιμή \[κ\] και στη διαδρομή \[S_2\] έχει τιμή \[λ\] τότε ισχύει:
21. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η ένταση \[\vec{Β}\] που υπολογίζουμε απ’ το νόμο του Ampere: \[∑B\cdot Δ\ell \cdot συνθ=μ_0 Ι_{εγκ}\] οφείλεται:
22. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
23. Ο οριζόντιος ευθύγραμμος αγωγός (1) του παρακάτω σχήματος έχει μεγάλο μήκος και διαρρέεται από ρεύμα έντασης \[Ι_1\] και είναι ακλόνητα στερεωμένος. Απ’ τον αγωγό (1) κρεμάμε μέσω δύο όμοιων ιδανικών κατακόρυφων ελατηρίων σταθεράς \[k\] έναν άλλο ευθύγραμμο αγωγό (2) μήκους \[\ell\] όπως φαίνεται στο παρακάτω σχήμα. Όταν ο αγωγός (2) διαρρέεται από ρεύμα έντασης \[I_2=I_1\] και ίδιας φοράς με τη φορά του ρεύματος του πρώτου αγωγού, τότε ο αγωγός (2) ισορροπεί με τα ελατήρια να έχουν το φυσικό τους μήκος \[\ell_0\]. Όταν αντιστρέψουμε τη φορά ενός απ’ τα δύο ρεύματα, τότε ο αγωγός (2) ισορροπεί όταν η μεταξύ τους απόσταση γίνεται \[\frac{5}{2} \ell_0\]. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η σταθερά \[k\] του κάθε ελατηρίου είναι:
24. Δύο ισότοπα ιόντα του στοιχείου Νέου \[(Ne)\] απ’ την ίδια ευθύγραμμη δέσμη ισοτόπων εισέρχονται ταυτόχρονα στο μαγνητικό πεδίο \[\vec{B}'\] ενός φασματογράφου μάζας. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στην φωτογραφική πλάκα του φασματογράφου:
25. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
26. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Αν \[S_1\, , \, S_2\] είναι το μήκος των τροχιών που διαγράφει το σωμάτιο \[α\] στο πρώτο και δεύτερο πείραμα αντίστοιχα, ισχύει:
27. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
28. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
29. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[q_p\] και ένα νετρόνιο \[n\] βάλλονται ταυτόχρονα με κατά μέτρο ίσες ταχύτητες \[(υ_p=υ_n )\] από σημείο Γ της ευθείας \[x' x\] που αποτελεί όριο ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\]. Η ταχύτητα \[\vec{υ}_p\] του πρωτονίου σχηματίζει γωνία \[30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου ενώ η ταχύτητα \[\vec{υ}_n\] του νετρονίου είναι κάθετη στο όριο \[x' x\] και στις δυναμικές γραμμές του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές δυνάμεις αμελούνται. Το πρωτόνιο εξέρχεται αφού έχει διαγράψει κυκλικό τόξο απ’ το σημείο Δ του ορίου \[x' x\] που απέχει απ’ το Γ απόσταση \[d\]. Τη στιγμή της εξόδου του πρωτονίου απ’ το μαγνητικό πεδίο το νετρόνιο απέχει απόσταση \[d_1\] απ’ το όριο \[x' x\] για την οποία ισχύει:
30. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:

    +30

    CONTACT US
    CALL US