MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Αν η πρώτη παραμονή του φορτίου στο πεδίο \[(1)\] διαρκεί \[Δt_1\], τότε στο πεδίο \[(2)\] θα διαρκεί \[Δt_2\] όπου:
2. Ένας κυκλικός αγωγός δημιουργείται από ομογενές και ισοπαχές σύρμα κέντρου Κ , ακτίνας \[r\] και αντίστασης \[R\]. Συνδέουμε τα άκρα Μ, Ν μιας διαμέτρου του κυκλικού αγωγού μέσω συρμάτων αμελητέας αντίστασης με ιδανική πηγή με ΗΕΔ \[Ε\] και έτσι ο αγωγός διαρρέεται από ρεύμα. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε το μαγνητικό πεδίο που οφείλεται στο ημικυκλικό τμήμα ΜΔΝ του αγωγού στο κέντρο του Κ έχει ένταση μέτρου:
3. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε:
4. Απ’ την πυρακτωμένη κάθοδο της πειραματικής διάταξης του Thomson εκπέμπονται ηλεκτρόνια με αμελητέα ταχύτητα και επιταχύνονται υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων με ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να διπλασιάσουμε το μέτρο της ταχύτητας εισόδου στο φίλτρο ταχυτήτων πρέπει η τάση που επιταχύνει τα ηλεκτρόνια να γίνει:
5. Ο οριζόντιος ευθύγραμμος αγωγός (1) του παρακάτω σχήματος έχει μεγάλο μήκος και διαρρέεται από ρεύμα έντασης \[Ι_1\] και είναι ακλόνητα στερεωμένος. Απ’ τον αγωγό (1) κρεμάμε μέσω δύο όμοιων ιδανικών κατακόρυφων ελατηρίων σταθεράς \[k\] έναν άλλο ευθύγραμμο αγωγό (2) μήκους \[\ell\] όπως φαίνεται στο παρακάτω σχήμα. Όταν ο αγωγός (2) διαρρέεται από ρεύμα έντασης \[I_2=I_1\] και ίδιας φοράς με τη φορά του ρεύματος του πρώτου αγωγού, τότε ο αγωγός (2) ισορροπεί με τα ελατήρια να έχουν το φυσικό τους μήκος \[\ell_0\]. Όταν αντιστρέψουμε τη φορά ενός απ’ τα δύο ρεύματα, τότε ο αγωγός (2) ισορροπεί όταν η μεταξύ τους απόσταση γίνεται \[\frac{5}{2} \ell_0\]. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η σταθερά \[k\] του κάθε ελατηρίου είναι:
6. Δέσμη πρωτονίων μάζας \[m_p\] και φορτίου \[e\] εισέρχεται στον επιλογέα ταχυτήτων ενός φασματογράφου μάζας χωρίς να εκτραπεί απ’ αυτόν. Στη συνέχεια τα πρωτόνια εισέρχονται στο μαγνητικό του πεδίο \[\vec{B}'\] εκτελούν ημικύκλιο μέσα σ’ αυτό και πέφτουν πάνω σε φωτογραφική πλάκα. Το κάθε πρωτόνιο αφήνει ίχνος πάνω στην πλάκα που απέχει \[d_1\] απ’ το σημείο εισόδου του στο πεδίο \[\vec{B}'\]. Στον ίδιο φασματογράφο κατόπιν εισέρχεται δέσμη από ιόντα Νέου που έχουν δημιουργηθεί από τα δύο ισότοπά του και έχουν φορτίο \[q=e\]. Όσα ιόντα δεν εκτρέπονται απ’ τον επιλογέα ταχυτήτων εισέρχονται στο μαγνητικό πεδίο \[\vec{B}' \] και αφού εκτελέσουν ημικυκλικές τροχιές αφήνουν ίχνη σε δύο σημεία της φωτογραφικής πλάκας. Η απόσταση των δύο αυτών ιχνών είναι \[d=2d_1\]. Θεωρούμε ότι η μάζα του νετρονίου είναι ίση με αυτή του πρωτονίου. Το ένα ισότοπο του Νέου έχει απ’ το άλλο: ( Υπόδειξη: Βρείτε το λόγο \[\frac{Δm}{m_p}\] όπου \[Δm\] η διαφορά των μαζών των δύο ισότοπων ατόμων που δημιούργησαν τα ιόντα)
7. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
8. Τα δύο φορτισμένα σωματίδια του παρακάτω σχήματος έχουν φορτία \[ q_1 \, , \, q_2\] με ίσες μάζες \[m_1 = m_2\] αντίστοιχα και εκτελούν ομαλή κυκλική κίνηση ακτίνων \[ R_1 \, , \, R_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] μόνο με την επίδραση των δυνάμεων που δέχονται απ’ το μαγνητικό πεδίο. Οι κινητικές ενέργειες των δύο σωματιδίων είναι ίσες \[Κ_1 = Κ_2\]. Για τα πρόσημα και τις απόλυτες τιμές των δύο φορτίων τους ισχύει:
9. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, , \, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, ,\, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Για να γίνει το άθροισμα \[∑B\cdot Δ\ell \cdot συνφ\] στη διαδρομή \[S_2\] ίσο με το μηδέν χωρίς ν’ αλλάξει το αντίστοιχο άθροισμα στη διαδρομή \[S_1\] πρέπει:
10. Απ’ την πυρακτωμένη κάθοδο της διάταξης του πειράματος του Thomson εκπέμπονται ηλεκτρόνια με σχεδόν αμελητέες ταχύτητες. Αυτά επιταχύνονται υπό τάση \[V\], δημιουργούν ευθύγραμμη δέσμη, εισέρχονται στον επιλογέα ταχυτήτων της διάταξης και κινούνται μέσα σ’ αυτόν χωρίς η δέσμη τους να αποκλίνει. Ο επιλογέας ταχυτήτων αποτελείται από δύο πεδία, ένα ομογενές ηλεκτρικό έντασης \[\vec{E}\] και ένα ομογενές μαγνητικό έντασης \[\vec{B}\] που οι δυναμικές τους γραμμές είναι μεταξύ τους κάθετες. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν αυξήσουμε την τάση \[V\] χωρίς να μεταβάλουμε τις \[\vec{B}\, , \, \vec{E}\] τότε:
11. Ο αγωγός (1) του παρακάτω σχήματος αποτελείται από δύο συνευθειακούς αγωγούς ΚΜ και ΛΝ πεπερασμένου μήκους και έναν ημικυκλικό αγωγό ακτίνας \[r\] και κέντρου Ο που η διάμετρός του είναι η ΚΛ. Ο αγωγός (1) διαρρέεται από ρεύμα \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος απείρου μήκους παράλληλος στα ευθύγραμμα τμήματα του αγωγού (1) και διαρρέεται από ρεύμα \[Ι'=2Ιπ\] και απέχει α απ’ το κέντρο του ημικυκλίου. Οι αγωγοί (1) και (2) βρίσκονται στο επίπεδο της σελίδας και το ρεύμα του αγωγού (2) έχει φορά προς τα δεξιά. Η ένταση του μαγνητικού πεδίου στο κέντρο Ο του ημικυκλίου είναι μηδενική. Η απόσταση \[α\] του αγωγού (2) είναι:
12. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
13. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Ο λόγος των μέτρων των εντάσεων \[\frac{B_1}{B_2}\] είναι:
14. Στο πείραμα του Thomson τα ηλεκτρόνια που εκπέμπει η πυρακτωμένη κάθοδος επιταχύνονται υπό μια τάση \[V\] και η δέσμη ηλεκτρονίων εισέρχεται σε επιλογέα ταχυτήτων που το μαγνητικό και ηλεκτρικό πεδίο του έχουν εντάσεις μέτρων \[B\] και \[E\] αντίστοιχα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
15. Το θετικά φορτισμένο σωματίδιο του παρακάτω σχήματος μάζας \[m\] και φορτίου \[q\] εισέρχεται κάθετα στις δυναμικές γραμμές ομογενούς μαγνητικού πεδίου και κάθετα στο όριο του πεδίου (ευθεία \[ xx'\]). Σε απόσταση \[d\] απ’ την ευθεία \[xx'\] και σε επίπεδο παράλληλο σ’ αυτή έχουμε τοποθετήσει φωτογραφική πλάκα. Το σωματίδιο εισέρχεται στο πεδίο με κινητική ενέργεια \[Κ\] και επιδρά σ’ αυτό μόνο η δύναμη του μαγνητικού πεδίου. Για να μη χτυπήσει το σωματίδιο στη φωτογραφική πλάκα πρέπει να ισχύει για το μέτρο \[B\] της έντασης του μαγνητικού πεδίου:
16. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=3Ι\, , \, Ι_2=5Ι\, , \, Ι_3=2Ι \] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δ\ell \cdot συνθ\] στη διαδρομή αυτή ισούται με:
17. Δύο φορτισμένα σωματίδια (1), (2) έχουν ίσες κατά μέτρο ορμές, μάζες \[m_1=2m_2\] και ίσα φορτία. Τα σωματίδια εισέρχονται στο ίδιο ομογενές μαγνητικό πεδίο και εκτελούν σ’ αυτό ομαλή κυκλική κίνηση με ακτίνες \[R_1, R_2\] και περιόδων \[T_1, T_2\] αντίστοιχα με την επίδραση μόνο της δύναμης Lorentz που δέχονται απ’ το πεδίο. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για τις ακτίνες και τις περιόδους των κυκλικών κινήσεων των δύο σωματιδίων ισχύει:
18. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=2Ι\, ,\, Ι_2=Ι\, ,\, Ι_3=4Ι\] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δl \cdot συνθ\] στη διαδρομή αυτή ισούται με:
19. Στο παρακάτω σχήμα οι οριζόντιοι ευθύγραμμοι αγωγοί (1), (2) έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα, ίδιο μήκος \[\ell\] και αντιστάσεις \[R_1=R\] και \[R_2=2R\]. Οι αγωγοί συγκρατούνται ώστε τα άκρα τους να είναι σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy\] και \[Γy_1\] που έχουν αμελητέα αντίσταση. Ο αγωγός (1) βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}_1\] και ο αγωγός (2) σε αντίστοιχο πεδίο έντασης \[\vec{B}_2\]. Οι δυναμικές γραμμές των δύο πεδίων είναι κάθετες στο επίπεδο που δημιουργούν οι τέσσερις αγωγοί και οι φορές των εντάσεών τους φαίνονται στο σχήμα. Για τα μέτρα των εντάσεων ισχύει \[B_2=2B_1\]. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ιδανική πηγή που έχει ΗΕΔ \[\mathcal{E}\]. Την \[t=0\] αφήνουμε τους αγωγούς ελεύθερους και παρατηρούμε ότι ο αγωγός (1) παραμένει ακίνητος.

Α) Ο αγωγός (2) την \[t=0\]:

α) παραμένει και αυτός ακίνητος.

β) αποκτά επιτάχυνση μέτρου  \[ \frac{3g}{2} \]  κατακόρυφη προς τα κάτω (όπου \[g\] το μέτρο της επιτάχυνσης της βαρύτητας).

γ) αποκτά επιτάχυνση \[3g\] με φορά κατακόρυφη προς τα κάτω.

Β) Αν η ένταση \[B_2\]  είχε αντίθετη φορά απ’ αυτή του σχήματος, τότε ο αγωγός (2) την \[t=0\]:

α) θα ισορροπούσε.

β) θα αποκτούσε επιτάχυνση μέτρου \[g\] κατακόρυφη προς τα πάνω.

γ) θα αποκτούσε επιτάχυνση  \[ \frac{g}  {2}  \]  κατακόρυφη προς τα κάτω.

δ) θα αποκτούσε επιτάχυνση \[ g \] κατακόρυφη προς τα κάτω.

20. Στο παρακάτω σχήμα φαίνονται δύο ομόκεντροι κυκλικοί ρευματοφόροι αγωγοί \[(1),\, (2)\]. Ο αγωγός \[(1)\] διαρρέεται από σταθερό ρεύμα έντασης \[Ι\] και έχει ακτίνα \[r\]. Ο αγωγός \[(2)\] διαρρέεται από σταθερό ομόρροπο ρεύμα ίδιας έντασης \[Ι\] και έχει ακτίνα \[4r\]. Στο κοινό κέντρο Κ η ένταση του μαγνητικού πεδίου του αγωγού \[(2)\] είναι \[Β_2\]: Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
21. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Για τα μήκη \[ α_1\, , \, α_2\] των πλευρών του τριγώνου και του τετραγώνου αντίστοιχα ισχύει:
22. Ραδιενεργό άτομο που είναι αρχικά ακίνητο μέσα σε ομογενές μαγνητικό πεδίο μεγάλης έκτασης διασπάται ακαριαία μέσα σε ομογενές μαγνητικό πεδίο σε δύο επιμέρους σωματίδια \[(1)\, , \, (2)\] με φορτία \[ q_1\, , \, q_2\] με φορτία \[ q_1 \, , \, q_2\], μάζες \[ m_1 \, , \, m_2\] και ταχύτητες \[\vec{υ}_1\, , \, \vec{υ}_2\]. Η ταχύτητα του σωματιδίου \[(1)\] είναι κάθετη στις δυναμικές γραμμές του πεδίου. Τα σωματίδια που παράγονται εκτελούν μέσα στο ομογενές μαγνητικό πεδίο κυκλικές κινήσεις ακτίνων \[ R_1\, , \, R_2\] αντίστοιχα δεχόμενα μόνο τις δυνάμεις του ομογενούς μαγνητικού πεδίου. ( Υπόδειξη: Σε κάθε έκρηξη ισχύει η αρχή διατήρησης της ορμής. Το άτομο πριν τη διάσπαση είναι αφόρτιστο \[q_{{ολ}_πριν}=0\] και η αρχή διατήρησης του φορτίου απαιτεί \[q_{{ολ}_πριν} = q_1+q_2\] ). Για τις ακτίνες τους ισχύει:
23. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η ένταση \[\vec{Β}\] που υπολογίζουμε απ’ το νόμο του Ampere: \[∑B\cdot Δ\ell \cdot συνθ=μ_0 Ι_{εγκ}\] οφείλεται:
24. Το τετράγωνο πλαίσιο ΚΛΜΝ μάζας \[m\] του παρακάτω σχήματος έχει πλευρά \[α\], βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και διαρρέεται από ρεύμα έντασης \[Ι\] που έχει τη φορά των δεικτών του ρολογιού. Στο ίδιο οριζόντιο επίπεδο και παράλληλα με τις πλευρές του πλαισίου ΚΛ και ΜΝ βρίσκονται δύο ευθύγραμμοι αγωγοί (1), (2) μεγάλου μήκους που διαρρέονται από ρεύμα εντάσεων \[Ι_1\] και \[Ι_2=3Ι_1\] αντίστοιχα που οι φορές τους και οι αποστάσεις των ευθύγραμμων αγωγών από το πλαίσιο φαίνεται στο παρακάτω σχήμα. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\] και η συνολική μάζα του πλαισίου είναι \[m\]. Αν αφήσουμε το πλαίσιο ελεύθερο να κινηθεί, αυτό:
25. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] επιταχύνεται από την ηρεμία υπό τάση \[V\] και με την ταχύτητα \[υ\] που αποκτά εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που η κάθετη τομή φαίνεται στο παρακάτω σχήμα και εκτείνεται σε απόσταση \[d\] κατά τη διεύθυνση της ταχύτητας εισόδου του σωματιδίου. Η ταχύτητα αυτή είναι κάθετη στο όριο του πεδίου \[yy'\] και στις δυναμικές γραμμές του πεδίου. Για να εξέλθει το σωματίδιο απ’ το ίδιο όριο του πεδίου απ’ το οποίο εισήλθε πρέπει η τάση \[V\] να πληρεί την ανίσωση:
26. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[ 0 < φ < 90^0 \]) με τις δυναμικές γραμμές του πεδίου και δέχεται δύναμη μόνο απ’ αυτό. Το σωματίδιο εκτελεί ελικοειδή τροχιά. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
27. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[e\] (στοιχειώδες φορτίο) και ένας πυρήνας ηλίου μάζας \[4m_p\] και φορτίου \[2e\] εκτελούν κυκλικές τροχιές με ακτίνες \[R_p\, , \, R_α\] αντίστοιχα με ίσες κατά μέτρο ταχύτητες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
28. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Το μέτρο της μεταβολής της ορμής του μαγνητικού πεδίου λόγω της παραμονής του στο πεδίο είναι:
29. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].

30. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:

    +30

    CONTACT US
    CALL US