MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Απ’ την πυρακτωμένη κάθοδο της πειραματικής διάταξης του Thomson εκπέμπονται ηλεκτρόνια με αμελητέα ταχύτητα και επιταχύνονται υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων με ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να διπλασιάσουμε το μέτρο της ταχύτητας εισόδου στο φίλτρο ταχυτήτων πρέπει η τάση που επιταχύνει τα ηλεκτρόνια να γίνει:
2. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[0 < φ < 90^0 \]) με τις δυναμικές του γραμμές. Το σωματίδιο δέχεται μόνο τη δύναμη απ’ το πεδίο και εκτελεί ελικοειδή κίνηση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή;
3. Η κάθετη τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] είναι ορθογώνιο παραλληλόγραμμο \[ΚΛΜΝ\] με \[ΚΛ=d\]. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο απ’ το σημείο Γ του ορίου του \[ΚΝ\] με ταχύτητα μέτρου \[υ_1=υ\] που είναι κάθετη στην \[ΚΝ\] και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί κυκλική κίνηση μέσα στο πεδίο και μόλις που δεν εξέρχεται απ’ το όριο \[ΛΜ\] αλλά επιστρέφει και εξέρχεται απ’ το όριο \[ΚΝ\]. Αν το σωματίδιο είχε διπλάσια κατά μέτρο ταχύτητα \[υ_2=2υ\], τότε το μήκος \[s\] του τόξου που θα διέγραφε μέχρι να εξέλθει απ’ το μαγνητικό πεδίο θα ήταν:
4. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Ο χρόνος παραμονής στο μαγνητικό πεδίο \[\vec{B}'\] του πρωτίου είναι \[t_π\] και του δευτερίου \[t_δ\]. Για τη διαφορά τους \[t_δ-t_π\] ισχύει:
5. Δύο ισότοπα ιόντα του στοιχείου Νέου \[(Ne)\] απ’ την ίδια ευθύγραμμη δέσμη ισοτόπων εισέρχονται ταυτόχρονα στο μαγνητικό πεδίο \[\vec{B}'\] ενός φασματογράφου μάζας. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στην φωτογραφική πλάκα του φασματογράφου:
6. Η παρακάτω κλειστή διαδρομή \[S\] του σχήματος περιέχει δύο ευθύγραμμους ρευματοφόρους αγωγούς (1), (2) με ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\]. Η φορά του ρεύματος του αγωγού (1) φαίνεται στο σχήμα. Στη διαδρομή \[S\] το άθροισμα των ρευμάτων είναι ίσο με μηδέν. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
7. Στο πείραμα του Thomson τα ηλεκτρόνια που εκπέμπει η πυρακτωμένη κάθοδος επιταχύνονται υπό μια τάση \[V\] και η δέσμη ηλεκτρονίων εισέρχεται σε επιλογέα ταχυτήτων που το μαγνητικό και ηλεκτρικό πεδίο του έχουν εντάσεις μέτρων \[B\] και \[E\] αντίστοιχα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
8. Ένα πρωτόνιο \[p\] και ένα σωμάτιο \[α\] με φορτία \[q_p\] και \[q_α=2q_p\] και μάζες \[m_p\] και \[m_α=4m_p\] αντίστοιχα εκτελούν ομαλή κυκλική κίνηση μέσα στο ίδιο ομογενές μαγνητικό πεδίο με την επίδραση μόνο της δύναμης που δέχονται απ’ το πεδίο. Τα δύο σωματίδια έχουν ίσες κατά μέτρο ταχύτητες . Αν \[R_p\, , \, R_α\] και \[ f_p \, , \, f_α\] είναι οι ακτίνες και οι συχνότητες των κυκλικών τους κινήσεων, ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
9. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
10. Το τετράγωνο πλαίσιο ΚΛΜΝ μάζας \[m\] του παρακάτω σχήματος έχει πλευρά \[α\], βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και διαρρέεται από ρεύμα έντασης \[Ι\] που έχει τη φορά των δεικτών του ρολογιού. Στο ίδιο οριζόντιο επίπεδο και παράλληλα με τις πλευρές του πλαισίου ΚΛ και ΜΝ βρίσκονται δύο ευθύγραμμοι αγωγοί (1), (2) μεγάλου μήκους που διαρρέονται από ρεύμα εντάσεων \[Ι_1\] και \[Ι_2=3Ι_1\] αντίστοιχα που οι φορές τους και οι αποστάσεις των ευθύγραμμων αγωγών από το πλαίσιο φαίνεται στο παρακάτω σχήμα. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\] και η συνολική μάζα του πλαισίου είναι \[m\]. Αν αφήσουμε το πλαίσιο ελεύθερο να κινηθεί, αυτό:
11. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Αν η πρώτη παραμονή του φορτίου στο πεδίο \[(1)\] διαρκεί \[Δt_1\], τότε στο πεδίο \[(2)\] θα διαρκεί \[Δt_2\] όπου:
12. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
13. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B\cdot Δ\ell\cdot συνθ\] σε μια κλειστή διαδρομή \[S\] εξαρτάται:
14. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:
15. Ο αγωγός (1) του παρακάτω σχήματος αποτελείται από δύο συνευθειακούς αγωγούς ΚΜ και ΛΝ πεπερασμένου μήκους και έναν ημικυκλικό αγωγό ακτίνας \[r\] και κέντρου Ο που η διάμετρός του είναι η ΚΛ. Ο αγωγός (1) διαρρέεται από ρεύμα \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος απείρου μήκους παράλληλος στα ευθύγραμμα τμήματα του αγωγού (1) και διαρρέεται από ρεύμα \[Ι'=2Ιπ\] και απέχει α απ’ το κέντρο του ημικυκλίου. Οι αγωγοί (1) και (2) βρίσκονται στο επίπεδο της σελίδας και το ρεύμα του αγωγού (2) έχει φορά προς τα δεξιά. Η ένταση του μαγνητικού πεδίου στο κέντρο Ο του ημικυκλίου είναι μηδενική. Η απόσταση \[α\] του αγωγού (2) είναι:
16. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] με εντάσεις \[\vec{B}_1\, , \, \vec{B}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες. Τα δύο πεδία χωρίζονται απ’ τον άξονα \[x' x\] και εκτείνονται σε μεγάλη απόσταση στα δύο ημιεπίπεδα που ορίζει ο άξονας αυτός. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται την \[t=0\] στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[x' x\] με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές του πεδίου και στον άξονα \[x' x\]. Τη στιγμή \[t_1\] εξέρχεται απ’ το πεδίο \[(1)\], κινείται μέσα στο πεδίο \[(2)\] και τη στιγμή \[t_2\] φτάνει πάλι στο όριο \[x' x\] των δύο πεδίων στο σημείο Δ. Για τις χρονικές στιγμές \[t_1\, ,\, t_2\] ισχύει \[t_2 = 4 t_1\]. Το σωματίδιο θα περάσει για \[4^η\] φορά μετά απ’ την \[t=0\] απ’ το όριο \[x' x\] τη στιγμή \[t_3\] που είναι:
17. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Όταν εφαρμόζουμε το νόμο του Ampere πάνω σε μια κλειστή διαδρομή, η θετική φορά των ρευμάτων:
18. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Ο λόγος των μέτρων των εντάσεων \[\frac{B_1}{B_2}\] είναι:
19. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Η μεταβολή της ορμής του πυρήνα στο πρώτο πείραμα έχει μέτρο:
20. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, ,\, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, , \, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Αν το άθροισμα \[∑B\cdot Δ \ell \cdot συνφ\] στη διαδρομή \[S_1\] έχει τιμή \[κ\] και στη διαδρομή \[S_2\] έχει τιμή \[λ\] τότε ισχύει:
21. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στην στήλη ΚΛΜΝ ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] από το σημείο Ζ της πλευράς ΚΝ με ταχύτητα \[υ\] που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο διαγράφει κυκλικό τμήμα και εξέρχεται απ’ το όριο ΛΜ του πεδίου με ταχύτητα που σχηματίζει με αυτό γωνία \[60^0\] όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο εξέρχεται απ’ το πεδίο σε χρόνο \[Δt\]. Αν το σωματίδιο εισέρχονταν στο πεδίο απ’ το Ζ με μικρότερη κατά μέτρο ταχύτητα \[υ'\] αλλά ίδιας κατεύθυνσης με την αρχική \[\vec{υ}\] θα εξέρχονταν απ’ το όριο ΚΝ σε χρόνο \[Δt'\]. Για τους χρόνους \[Δt\, , \, Δt' \] ισχύει:
22. Ραδιενεργό άτομο που είναι αρχικά ακίνητο μέσα σε ομογενές μαγνητικό πεδίο μεγάλης έκτασης διασπάται ακαριαία μέσα σε ομογενές μαγνητικό πεδίο σε δύο επιμέρους σωματίδια \[(1)\, , \, (2)\] με φορτία \[ q_1\, , \, q_2\] με φορτία \[ q_1 \, , \, q_2\], μάζες \[ m_1 \, , \, m_2\] και ταχύτητες \[\vec{υ}_1\, , \, \vec{υ}_2\]. Η ταχύτητα του σωματιδίου \[(1)\] είναι κάθετη στις δυναμικές γραμμές του πεδίου. Τα σωματίδια που παράγονται εκτελούν μέσα στο ομογενές μαγνητικό πεδίο κυκλικές κινήσεις ακτίνων \[ R_1\, , \, R_2\] αντίστοιχα δεχόμενα μόνο τις δυνάμεις του ομογενούς μαγνητικού πεδίου. ( Υπόδειξη: Σε κάθε έκρηξη ισχύει η αρχή διατήρησης της ορμής. Το άτομο πριν τη διάσπαση είναι αφόρτιστο \[q_{{ολ}_πριν}=0\] και η αρχή διατήρησης του φορτίου απαιτεί \[q_{{ολ}_πριν} = q_1+q_2\] ). Για τις ακτίνες τους ισχύει:
23. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[q_p\] και ένα νετρόνιο \[n\] βάλλονται ταυτόχρονα με κατά μέτρο ίσες ταχύτητες \[(υ_p=υ_n )\] από σημείο Γ της ευθείας \[x' x\] που αποτελεί όριο ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\]. Η ταχύτητα \[\vec{υ}_p\] του πρωτονίου σχηματίζει γωνία \[30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου ενώ η ταχύτητα \[\vec{υ}_n\] του νετρονίου είναι κάθετη στο όριο \[x' x\] και στις δυναμικές γραμμές του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές δυνάμεις αμελούνται. Το πρωτόνιο εξέρχεται αφού έχει διαγράψει κυκλικό τόξο απ’ το σημείο Δ του ορίου \[x' x\] που απέχει απ’ το Γ απόσταση \[d\]. Τη στιγμή της εξόδου του πρωτονίου απ’ το μαγνητικό πεδίο το νετρόνιο απέχει απόσταση \[d_1\] απ’ το όριο \[x' x\] για την οποία ισχύει:
24. Η κάθετη τομή ενός ομογενούς τριγώνου είναι το τρίγωνο ΑΓΔ με \[\hat{Α} =30^0\] και θετικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Κ της πλευράς ΑΓ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εξέρχεται απ’ το σημείο Λ της πλευράς ΑΔ με ταχύτητα κάθετη στην πλευρά αυτή. Η απόσταση ΑΚ είναι ΑΚ\[=d\]. Ο χρόνος κίνησης του σωματιδίου στο μαγνητικό πεδίο είναι:
25. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[e\] (στοιχειώδες φορτίο) και ένας πυρήνας ηλίου μάζας \[4m_p\] και φορτίου \[2e\] εκτελούν κυκλικές τροχιές με ακτίνες \[R_p\, , \, R_α\] αντίστοιχα με ίσες κατά μέτρο ταχύτητες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
26. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου με \[ 0 < φ < 90^0 \]. Το σωματίδιο εκτελεί ελικοειδή κίνηση περιόδου \[Τ\] και ακτίνας \[R\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
27. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Αν \[t_{π_1} \, , \, t_{π_2}\] οι χρόνοι παραμονής του ιόντος μέσα στο μαγνητικό πεδίο του κάθε πειράματος, τότε ισχύει:
28. Στον επιλογέα ταχυτήτων του παρακάτω σχήματος το μαγνητικό του πεδίο έχει ένταση \[\vec{B}\] και το ηλεκτρικό πεδίο έχει ένταση \[\vec{Ε}\]. Δέσμη πρωτονίων (μάζας \[m_p\] και φορτίου \[q_p=e\]) εισέρχεται σε επιλογέα ταχυτήτων με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές των δύο πεδίων του. Η δέσμη δεν αποκλίνει κατά το πέρασμά της μέσα απ’ τον επιλογέα. Οι βαρυτικές δυνάμεις και οι ηλεκτροστατικές αλληλεπιδράσεις μεταξύ των σωματιδίων της δέσμης θεωρούνται αμελητέες. Αν στον επιλογέα ταχυτήτων εισέρχονταν δέσμη ηλεκτρονίων με ταχύτητα ίδια με αυτή των πρωτονίων (η μάζα του ηλεκτρονίου είναι \[m_e = \frac{m_p }{ 1836 }\] και το φορτίο \[q_e=-e\]) για να μην αποκλίνει η δέσμη κατά το πέρασμά της μέσα στον επιλογέα:
29. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εκτελεί ομαλή κυκλική κίνηση μέσα σε ομογενές μαγνητικό πεδίο και επιδρά σ’ αυτό μόνο η δύναμη του πεδίου. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή; Η περίοδος της κυκλικής κίνησης του σωματιδίου αυτού:
30. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:

    +30

    CONTACT US
    CALL US