MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Το μέτρο της μεταβολής της ορμής του μαγνητικού πεδίου λόγω της παραμονής του στο πεδίο είναι:
2. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[0 < φ < 90^0 \]) με τις δυναμικές του γραμμές. Το σωματίδιο δέχεται μόνο τη δύναμη απ’ το πεδίο και εκτελεί ελικοειδή κίνηση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή;
3. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
4. Ο οριζόντιος ευθύγραμμος αγωγός (1) του παρακάτω σχήματος έχει μεγάλο μήκος και διαρρέεται από ρεύμα έντασης \[Ι_1\] και είναι ακλόνητα στερεωμένος. Απ’ τον αγωγό (1) κρεμάμε μέσω δύο όμοιων ιδανικών κατακόρυφων ελατηρίων σταθεράς \[k\] έναν άλλο ευθύγραμμο αγωγό (2) μήκους \[\ell\] όπως φαίνεται στο παρακάτω σχήμα. Όταν ο αγωγός (2) διαρρέεται από ρεύμα έντασης \[I_2=I_1\] και ίδιας φοράς με τη φορά του ρεύματος του πρώτου αγωγού, τότε ο αγωγός (2) ισορροπεί με τα ελατήρια να έχουν το φυσικό τους μήκος \[\ell_0\]. Όταν αντιστρέψουμε τη φορά ενός απ’ τα δύο ρεύματα, τότε ο αγωγός (2) ισορροπεί όταν η μεταξύ τους απόσταση γίνεται \[\frac{5}{2} \ell_0\]. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η σταθερά \[k\] του κάθε ελατηρίου είναι:
5. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:
6. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] με εντάσεις \[\vec{B}_1\, , \, \vec{B}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες. Τα δύο πεδία χωρίζονται απ’ τον άξονα \[x' x\] και εκτείνονται σε μεγάλη απόσταση στα δύο ημιεπίπεδα που ορίζει ο άξονας αυτός. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται την \[t=0\] στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[x' x\] με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές του πεδίου και στον άξονα \[x' x\]. Τη στιγμή \[t_1\] εξέρχεται απ’ το πεδίο \[(1)\], κινείται μέσα στο πεδίο \[(2)\] και τη στιγμή \[t_2\] φτάνει πάλι στο όριο \[x' x\] των δύο πεδίων στο σημείο Δ. Για τις χρονικές στιγμές \[t_1\, ,\, t_2\] ισχύει \[t_2 = 4 t_1\]. Το σωματίδιο θα περάσει για \[4^η\] φορά μετά απ’ την \[t=0\] απ’ το όριο \[x' x\] τη στιγμή \[t_3\] που είναι:
7. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=2Ι\, ,\, Ι_2=Ι\, ,\, Ι_3=4Ι\] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δl \cdot συνθ\] στη διαδρομή αυτή ισούται με:
8. Ηλεκτρόνιο μάζας \[m_e\] και φορτίου \[-e\] (όπου \[e\] το στοιχειώδες φορτίο) εισέρχεται με κινητική ενέργεια Κ σε ομογενές μαγνητικό πεδίο έντασης Β και δέχεται μόνο τη δύναμη απ’ το πεδίο. Το ηλεκτρόνιο εισέρχεται απ’ το σημείο Γ του ορίου ΚΝ του μαγνητικού πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο ΚΝ και στις δυναμικές γραμμές του πεδίου. Σημείο Δ του πεδίου απέχει απ’ το Γ απόσταση \[ΓΔ=d\] και το ευθύγραμμο τμήμα ΓΔ σχηματίζει με τη διεύθυνση της ταχύτητας εισόδου στο πεδίο γωνία \[φ\] όπως φαίνεται στο παρακάτω σχήμα. Για να διέλθει το ηλεκτρόνιο απ’ το σημείο Δ πρέπει το μέτρο της έντασης του μαγνητικού πεδίου να είναι:
9. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
10. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εκτελεί ομαλή κυκλική κίνηση μέσα σε ομογενές μαγνητικό πεδίο και επιδρά σ’ αυτό μόνο η δύναμη του πεδίου. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή; Η περίοδος της κυκλικής κίνησης του σωματιδίου αυτού:
11. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Η απόσταση \[d\] είναι ίση με:
12. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στην στήλη ΚΛΜΝ ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] από το σημείο Ζ της πλευράς ΚΝ με ταχύτητα \[υ\] που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο διαγράφει κυκλικό τμήμα και εξέρχεται απ’ το όριο ΛΜ του πεδίου με ταχύτητα που σχηματίζει με αυτό γωνία \[60^0\] όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο εξέρχεται απ’ το πεδίο σε χρόνο \[Δt\]. Αν το σωματίδιο εισέρχονταν στο πεδίο απ’ το Ζ με μικρότερη κατά μέτρο ταχύτητα \[υ'\] αλλά ίδιας κατεύθυνσης με την αρχική \[\vec{υ}\] θα εξέρχονταν απ’ το όριο ΚΝ σε χρόνο \[Δt'\]. Για τους χρόνους \[Δt\, , \, Δt' \] ισχύει:
13. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ=60^0\] με τις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή απ’ το μαγνητικό πεδίο. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
14. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].

15. Δύο ισότοπα του ίδιου ιόντος (έχουν ίσα φορτία) αφού περάσουν απ’ τον επιλογέα ταχυτήτων χωρίς να αποκλίνουν της ευθύγραμμης τροχιάς τους εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] ενός φασματογράφου μάζας. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Τα δύο ιόντα:
16. Απ’ την πυρακτωμένη κάθοδο της πειραματικής διάταξης του Thomson εκπέμπονται ηλεκτρόνια με αμελητέα ταχύτητα και επιταχύνονται υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων με ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να διπλασιάσουμε το μέτρο της ταχύτητας εισόδου στο φίλτρο ταχυτήτων πρέπει η τάση που επιταχύνει τα ηλεκτρόνια να γίνει:
17. Ένα πρωτόνιο με μάζα \[m_p\] και φορτίο \[q_p\] και ένα σωμάτιο \[α\] (πυρήνας ηλίου \[_2^4He\] με φορτίο \[q_α=2q_p\] και \[m_α=4m_p\] εισέρχονται ταυτόχρονα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ίσες ταχύτητες \[\vec{υ}\] που είναι κάθετες στο όριο \[xx'\] του πεδίου και στις δυναμικές γραμμές του όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές και ηλεκτροστατικές αλληλεπιδράσεις θεωρούνται αμελητέες. Τα δύο σωματίδια εξέρχονται απ’ το ίδιο όριο του πεδίου και τα σημεία εξόδου τους πάνω στον \[xx'\] απέχουν μεταξύ τους απόσταση \[d\]. Μετά την έξοδό τους απ’ το πεδίο, τα δύο σωματίδια εκτελούν ευθύγραμμη ομαλή κίνηση. Τη στιγμή που εξέρχεται το σωματίδιο με τη μεγαλύτερη περίοδο κυκλικής κίνησης, τα δύο σωματίδια απέχουν μεταξύ τους απόσταση \[d_1\] που είναι: \[(π^2=10)\]
18. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Με το φασματογράφο μάζας:
19. Στο παρακάτω σχήμα φαίνεται η κατακόρυφη τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] η οποία περιορίζεται μέσα στο ορθογώνιο παραλληλόγραμμο ΚΛΜΝ. Αρνητικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Γ του ορίου ΚΛ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΚΛ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί κυκλική κίνηση περιόδου \[T\] επιδρώντας σ’ αυτό μόνο το βάρος του και εξέρχεται τη χρονική στιγμή \[t_1 = \frac{T}{6}\] απ’ το σημείο Δ του ορίου ΛΜ του πεδίου. Το μήκος της πλευράς ΚΛ είναι ΚΛ\[=d\]. Η κατακόρυφη απόκλιση του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[y\]. Αν \[R\] είναι η ακτίνα της κυκλικής τροχιάς του σωματιδίου, τότε η απόκλισή του \[y\] είναι:
20. Τα δύο φορτισμένα σωματίδια του παρακάτω σχήματος έχουν φορτία \[ q_1 \, , \, q_2\] με ίσες μάζες \[m_1 = m_2\] αντίστοιχα και εκτελούν ομαλή κυκλική κίνηση ακτίνων \[ R_1 \, , \, R_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] μόνο με την επίδραση των δυνάμεων που δέχονται απ’ το μαγνητικό πεδίο. Οι κινητικές ενέργειες των δύο σωματιδίων είναι ίσες \[Κ_1 = Κ_2\]. Για τα πρόσημα και τις απόλυτες τιμές των δύο φορτίων τους ισχύει:
21. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Αν \[t_{π_1} \, , \, t_{π_2}\] οι χρόνοι παραμονής του ιόντος μέσα στο μαγνητικό πεδίο του κάθε πειράματος, τότε ισχύει:
22. Ραδιενεργό άτομο που είναι αρχικά ακίνητο μέσα σε ομογενές μαγνητικό πεδίο μεγάλης έκτασης διασπάται ακαριαία μέσα σε ομογενές μαγνητικό πεδίο σε δύο επιμέρους σωματίδια \[(1)\, , \, (2)\] με φορτία \[ q_1\, , \, q_2\] με φορτία \[ q_1 \, , \, q_2\], μάζες \[ m_1 \, , \, m_2\] και ταχύτητες \[\vec{υ}_1\, , \, \vec{υ}_2\]. Η ταχύτητα του σωματιδίου \[(1)\] είναι κάθετη στις δυναμικές γραμμές του πεδίου. Τα σωματίδια που παράγονται εκτελούν μέσα στο ομογενές μαγνητικό πεδίο κυκλικές κινήσεις ακτίνων \[ R_1\, , \, R_2\] αντίστοιχα δεχόμενα μόνο τις δυνάμεις του ομογενούς μαγνητικού πεδίου. ( Υπόδειξη: Σε κάθε έκρηξη ισχύει η αρχή διατήρησης της ορμής. Το άτομο πριν τη διάσπαση είναι αφόρτιστο \[q_{{ολ}_πριν}=0\] και η αρχή διατήρησης του φορτίου απαιτεί \[q_{{ολ}_πριν} = q_1+q_2\] ). Για τις ακτίνες τους ισχύει:
23. Η παρακάτω κλειστή διαδρομή \[S\] του σχήματος περιέχει δύο ευθύγραμμους ρευματοφόρους αγωγούς (1), (2) με ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\]. Η φορά του ρεύματος του αγωγού (1) φαίνεται στο σχήμα. Στη διαδρομή \[S\] το άθροισμα των ρευμάτων είναι ίσο με μηδέν. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
24. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ = 30^0 \] με τις δυναμικές γραμμές του. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή του μαγνητικού πεδίου. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε:
26. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Αν \[S_1\, , \, S_2\] είναι το μήκος των τροχιών που διαγράφει το σωμάτιο \[α\] στο πρώτο και δεύτερο πείραμα αντίστοιχα, ισχύει:
27. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Ο λόγος των μέτρων των εντάσεων \[\frac{B_1}{B_2}\] είναι:
28. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] επιταχύνεται από την ηρεμία υπό τάση \[V\] και με την ταχύτητα \[υ\] που αποκτά εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που η κάθετη τομή φαίνεται στο παρακάτω σχήμα και εκτείνεται σε απόσταση \[d\] κατά τη διεύθυνση της ταχύτητας εισόδου του σωματιδίου. Η ταχύτητα αυτή είναι κάθετη στο όριο του πεδίου \[yy'\] και στις δυναμικές γραμμές του πεδίου. Για να εξέλθει το σωματίδιο απ’ το ίδιο όριο του πεδίου απ’ το οποίο εισήλθε πρέπει η τάση \[V\] να πληρεί την ανίσωση:
29. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Ο χρόνος παραμονής στο μαγνητικό πεδίο \[\vec{B}'\] του πρωτίου είναι \[t_π\] και του δευτερίου \[t_δ\]. Για τη διαφορά τους \[t_δ-t_π\] ισχύει:
30. Τρία σωματίδια (1), (2), (3) μπαίνουν ταυτόχρονα στο ίδιο ομογενές μαγνητικό πεδίο κάθετα στο όριό του (πλευρά ΑΕ) και στις δυναμικές γραμμές του με ταχύτητες ίσων μέτρων. Για τα φορτία των σωματιδίων (2), (3) ισχύει \[ |q_2 |=|q_3 |=|q|\] και οι μάζες τους είναι \[m_2\, , \, m_3\] αντίστοιχα. Οι βαρυτικές δυνάμεις θεωρούνται αμελητέες. Στο παρακάτω σχήμα φαίνονται οι τροχιές των σωματιδίων μέσα στο πεδίο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US