MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ένα πρωτόνιο \[p\] και ένα σωμάτιο \[α\] με φορτία \[q_p\] και \[q_α=2q_p\] και μάζες \[m_p\] και \[m_α=4m_p\] αντίστοιχα εκτελούν ομαλή κυκλική κίνηση μέσα στο ίδιο ομογενές μαγνητικό πεδίο με την επίδραση μόνο της δύναμης που δέχονται απ’ το πεδίο. Τα δύο σωματίδια έχουν ίσες κατά μέτρο ταχύτητες . Αν \[R_p\, , \, R_α\] και \[ f_p \, , \, f_α\] είναι οι ακτίνες και οι συχνότητες των κυκλικών τους κινήσεων, ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
2. Τρία σωματίδια (1), (2), (3) μπαίνουν ταυτόχρονα στο ίδιο ομογενές μαγνητικό πεδίο κάθετα στο όριό του (πλευρά ΑΕ) και στις δυναμικές γραμμές του με ταχύτητες ίσων μέτρων. Για τα φορτία των σωματιδίων (2), (3) ισχύει \[ |q_2 |=|q_3 |=|q|\] και οι μάζες τους είναι \[m_2\, , \, m_3\] αντίστοιχα. Οι βαρυτικές δυνάμεις θεωρούνται αμελητέες. Στο παρακάτω σχήμα φαίνονται οι τροχιές των σωματιδίων μέσα στο πεδίο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Ηλεκτρόνιο μάζας \[m_e\] και φορτίου \[-e\] (όπου \[e\] το στοιχειώδες φορτίο) εισέρχεται με κινητική ενέργεια Κ σε ομογενές μαγνητικό πεδίο έντασης Β και δέχεται μόνο τη δύναμη απ’ το πεδίο. Το ηλεκτρόνιο εισέρχεται απ’ το σημείο Γ του ορίου ΚΝ του μαγνητικού πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο ΚΝ και στις δυναμικές γραμμές του πεδίου. Σημείο Δ του πεδίου απέχει απ’ το Γ απόσταση \[ΓΔ=d\] και το ευθύγραμμο τμήμα ΓΔ σχηματίζει με τη διεύθυνση της ταχύτητας εισόδου στο πεδίο γωνία \[φ\] όπως φαίνεται στο παρακάτω σχήμα. Για να διέλθει το ηλεκτρόνιο απ’ το σημείο Δ πρέπει το μέτρο της έντασης του μαγνητικού πεδίου να είναι:
4. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=3Ι\, , \, Ι_2=5Ι\, , \, Ι_3=2Ι \] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δ\ell \cdot συνθ\] στη διαδρομή αυτή ισούται με:
5. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[e\] (στοιχειώδες φορτίο) και ένας πυρήνας ηλίου μάζας \[4m_p\] και φορτίου \[2e\] εκτελούν κυκλικές τροχιές με ακτίνες \[R_p\, , \, R_α\] αντίστοιχα με ίσες κατά μέτρο ταχύτητες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
6. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ=60^0\] με τις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή απ’ το μαγνητικό πεδίο. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
7. Δύο πρωτόνια \[(1)\, , \, (2)\] με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχονται απ’ το σημείο Γ του ορίου \[xx'\] του ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ίδιες κατά μέτρο ταχύτητες \[υ_1=υ_2=υ\] που οι διευθύνσεις τους είναι κάθετες στις δυναμικές γραμμές του μαγνητικού πεδίου. Το πρωτόνιο \[(1)\] έχει ταχύτητα \[υ_1\] που σχηματίζει γωνία \[φ=30^0\] με το όριο \[xx'\] ενώ η ταχύτητα του πρωτονίου \[(2)\] \[υ_2\] είναι κάθετη στο όριο \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα πρωτόνια δέχονται μόνο τη δύναμη Lorentz του μαγνητικού πεδίου. Τα πρωτόνια εξέρχονται απ’ τα σημεία Δ, Ε του ορίου \[xx'\]. Διερευνήστε σε ποιο απ’ τα πρωτόνια αντιστοιχεί το κάθε σημείο εξόδου. Το μέτρο της μεταβολής της ορμής του πρωτονίου \[(1)\] λόγω της παραμονής του στο πεδίο είναι \[|Δp_1 |\] ενώ του \[(2)\] \[|Δp_2 |\] και ισχύει:
8. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] επιταχύνεται από την ηρεμία υπό τάση \[V\] και με την ταχύτητα \[υ\] που αποκτά εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που η κάθετη τομή φαίνεται στο παρακάτω σχήμα και εκτείνεται σε απόσταση \[d\] κατά τη διεύθυνση της ταχύτητας εισόδου του σωματιδίου. Η ταχύτητα αυτή είναι κάθετη στο όριο του πεδίου \[yy'\] και στις δυναμικές γραμμές του πεδίου. Για να εξέλθει το σωματίδιο απ’ το ίδιο όριο του πεδίου απ’ το οποίο εισήλθε πρέπει η τάση \[V\] να πληρεί την ανίσωση:
9. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Ο χρόνος παραμονής του σωματιδίου μέσα στο πεδίο είναι:
10. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
11. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Σε ένα βρόχο το άθροισμα \[∑ B \cdot Δ\ell \cdot συνθ\] είναι μηδενικό, τότε:
12. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Το μέτρο της μεταβολής της ορμής του μαγνητικού πεδίου λόγω της παραμονής του στο πεδίο είναι:
13. Τα δύο φορτισμένα σωματίδια του παρακάτω σχήματος έχουν φορτία \[ q_1 \, , \, q_2\] με ίσες μάζες \[m_1 = m_2\] αντίστοιχα και εκτελούν ομαλή κυκλική κίνηση ακτίνων \[ R_1 \, , \, R_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] μόνο με την επίδραση των δυνάμεων που δέχονται απ’ το μαγνητικό πεδίο. Οι κινητικές ενέργειες των δύο σωματιδίων είναι ίσες \[Κ_1 = Κ_2\]. Για τα πρόσημα και τις απόλυτες τιμές των δύο φορτίων τους ισχύει:
14. Ο αγωγός (1) του παρακάτω σχήματος αποτελείται από δύο συνευθειακούς αγωγούς ΚΜ και ΛΝ πεπερασμένου μήκους και έναν ημικυκλικό αγωγό ακτίνας \[r\] και κέντρου Ο που η διάμετρός του είναι η ΚΛ. Ο αγωγός (1) διαρρέεται από ρεύμα \[Ι\]. Ο αγωγός (2) είναι ευθύγραμμος απείρου μήκους παράλληλος στα ευθύγραμμα τμήματα του αγωγού (1) και διαρρέεται από ρεύμα \[Ι'=2Ιπ\] και απέχει α απ’ το κέντρο του ημικυκλίου. Οι αγωγοί (1) και (2) βρίσκονται στο επίπεδο της σελίδας και το ρεύμα του αγωγού (2) έχει φορά προς τα δεξιά. Η ένταση του μαγνητικού πεδίου στο κέντρο Ο του ημικυκλίου είναι μηδενική. Η απόσταση \[α\] του αγωγού (2) είναι:
15. Δύο ίδια φορτισμένα σωματίδια \[(1) \, ,\, (2)\] φορτίου \[q\] και μάζας \[m\] εκτοξεύονται ταυτόχρονα απ’ το ίδιο σημείο Κ ενός ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\] με ίσες κατά μέτρο ταχύτητες \[υ_1 = υ_2 = υ\]. Το σωματίδιο \[(1)\] έχει ταχύτητα \[\vec{υ}_1\] κάθετη στις δυναμικές γραμμές του πεδίου ενώ το σωματίδιο \[(2)\] έχει ταχύτητα πάνω στη δυναμική γραμμή του πεδίου που διέρχεται απ’ το Κ και φοράς προς τα αριστερά όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τη δύναμη απ’ το μαγνητικό αυτό πεδίο που καταλαμβάνει μεγάλη έκταση. Τη χρονική στιγμή που το σωματίδιο \[(1)\] βρίσκεται στη μέγιστη απόστασή του απ’ το σημείο βολής Κ για πρώτη φορά, η απόσταση των δύο σωματιδίων είναι ίση με:
16. Στο παρακάτω σχήμα φαίνονται οι τροχιές δύο ισότοπων ιόντων ίδιου φορτίου \[(1)\] και \[(2)\] του στοιχείου νέου \[(Ne)\] μιας δέσμης ισότοπων του στοιχείου αυτού που εισέρχονται στο μαγνητικό πεδίο έντασης \[\vec{B} '\] ενός φασματογράφου μάζας. Το ιόν \[(1)\] είναι ισότοπο του \[^{20} Ne\] και το ιόν \[(2)\] του \[^{22}Ne\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
17. Στο παρακάτω σχήμα οι οριζόντιοι ευθύγραμμοι αγωγοί (1), (2) έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα, ίδιο μήκος \[\ell\] και αντιστάσεις \[R_1=R\] και \[R_2=2R\]. Οι αγωγοί συγκρατούνται ώστε τα άκρα τους να είναι σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy\] και \[Γy_1\] που έχουν αμελητέα αντίσταση. Ο αγωγός (1) βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}_1\] και ο αγωγός (2) σε αντίστοιχο πεδίο έντασης \[\vec{B}_2\]. Οι δυναμικές γραμμές των δύο πεδίων είναι κάθετες στο επίπεδο που δημιουργούν οι τέσσερις αγωγοί και οι φορές των εντάσεών τους φαίνονται στο σχήμα. Για τα μέτρα των εντάσεων ισχύει \[B_2=2B_1\]. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ιδανική πηγή που έχει ΗΕΔ \[\mathcal{E}\]. Την \[t=0\] αφήνουμε τους αγωγούς ελεύθερους και παρατηρούμε ότι ο αγωγός (1) παραμένει ακίνητος.

Α) Ο αγωγός (2) την \[t=0\]:

α) παραμένει και αυτός ακίνητος.

β) αποκτά επιτάχυνση μέτρου  \[ \frac{3g}{2} \]  κατακόρυφη προς τα κάτω (όπου \[g\] το μέτρο της επιτάχυνσης της βαρύτητας).

γ) αποκτά επιτάχυνση \[3g\] με φορά κατακόρυφη προς τα κάτω.

Β) Αν η ένταση \[B_2\]  είχε αντίθετη φορά απ’ αυτή του σχήματος, τότε ο αγωγός (2) την \[t=0\]:

α) θα ισορροπούσε.

β) θα αποκτούσε επιτάχυνση μέτρου \[g\] κατακόρυφη προς τα πάνω.

γ) θα αποκτούσε επιτάχυνση  \[ \frac{g}  {2}  \]  κατακόρυφη προς τα κάτω.

δ) θα αποκτούσε επιτάχυνση \[ g \] κατακόρυφη προς τα κάτω.

18. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[0 < φ < 90^0 \]) με τις δυναμικές του γραμμές. Το σωματίδιο δέχεται μόνο τη δύναμη απ’ το πεδίο και εκτελεί ελικοειδή κίνηση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστή;
19. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:
20. Δύο ισότοπα του ίδιου ιόντος (έχουν ίσα φορτία) αφού περάσουν απ’ τον επιλογέα ταχυτήτων χωρίς να αποκλίνουν της ευθύγραμμης τροχιάς τους εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] ενός φασματογράφου μάζας. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Τα δύο ιόντα:
21. Ο ημικυκλικός αγωγός του παρακάτω σχήματος έχει ακτίνα \[r_1\], κέντρο Κ και αντίσταση \[R\]. Τα άκρα του αγωγού συνδέονται μέσω συρμάτων αμελητέας αντίστασης με πηγή που έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η ένταση του μαγνητικού πεδίου στο κέντρο Κ του αγωγού έχει μέτρο:
22. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].

23. Η κάθετη τομή ενός ομογενούς τριγώνου είναι το τρίγωνο ΑΓΔ με \[\hat{Α} =30^0\] και θετικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Κ της πλευράς ΑΓ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εξέρχεται απ’ το σημείο Λ της πλευράς ΑΔ με ταχύτητα κάθετη στην πλευρά αυτή. Η απόσταση ΑΚ είναι ΑΚ\[=d\]. Ο χρόνος κίνησης του σωματιδίου στο μαγνητικό πεδίο είναι:
24. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
25. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
26. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Ο λόγος των μέτρων των εντάσεων \[\frac{B_1}{B_2}\] είναι:
27. Δύο φορτισμένα σωματίδια (1), (2) έχουν ίσες κατά μέτρο ορμές, μάζες \[m_1=2m_2\] και ίσα φορτία. Τα σωματίδια εισέρχονται στο ίδιο ομογενές μαγνητικό πεδίο και εκτελούν σ’ αυτό ομαλή κυκλική κίνηση με ακτίνες \[R_1, R_2\] και περιόδων \[T_1, T_2\] αντίστοιχα με την επίδραση μόνο της δύναμης Lorentz που δέχονται απ’ το πεδίο. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για τις ακτίνες και τις περιόδους των κυκλικών κινήσεων των δύο σωματιδίων ισχύει:
28. Στο πείραμα του Thomson τα ηλεκτρόνια που εκπέμπει η πυρακτωμένη κάθοδος επιταχύνονται υπό μια τάση \[V\] και η δέσμη ηλεκτρονίων εισέρχεται σε επιλογέα ταχυτήτων που το μαγνητικό και ηλεκτρικό πεδίο του έχουν εντάσεις μέτρων \[B\] και \[E\] αντίστοιχα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
29. Δύο ισότοπα ιόντα του στοιχείου Νέου \[(Ne)\] απ’ την ίδια ευθύγραμμη δέσμη ισοτόπων εισέρχονται ταυτόχρονα στο μαγνητικό πεδίο \[\vec{B}'\] ενός φασματογράφου μάζας. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στην φωτογραφική πλάκα του φασματογράφου:
30. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Αν \[S_1\, , \, S_2\] είναι το μήκος των τροχιών που διαγράφει το σωμάτιο \[α\] στο πρώτο και δεύτερο πείραμα αντίστοιχα, ισχύει:

    +30

    CONTACT US
    CALL US