MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η ένταση \[\vec{Β}\] που υπολογίζουμε απ’ το νόμο του Ampere: \[∑B\cdot Δ\ell \cdot συνθ=μ_0 Ι_{εγκ}\] οφείλεται:
2. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Ο λόγος των μέτρων των εντάσεων \[\frac{B_1}{B_2}\] είναι:
3. Τα δύο φορτισμένα σωματίδια του παρακάτω σχήματος έχουν φορτία \[ q_1 \, , \, q_2\] με ίσες μάζες \[m_1 = m_2\] αντίστοιχα και εκτελούν ομαλή κυκλική κίνηση ακτίνων \[ R_1 \, , \, R_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] μόνο με την επίδραση των δυνάμεων που δέχονται απ’ το μαγνητικό πεδίο. Οι κινητικές ενέργειες των δύο σωματιδίων είναι ίσες \[Κ_1 = Κ_2\]. Για τα πρόσημα και τις απόλυτες τιμές των δύο φορτίων τους ισχύει:
4. Ηλεκτρόνιο μάζας \[m_e\] και φορτίου \[-e\] (όπου \[e\] το στοιχειώδες φορτίο) εισέρχεται με κινητική ενέργεια Κ σε ομογενές μαγνητικό πεδίο έντασης Β και δέχεται μόνο τη δύναμη απ’ το πεδίο. Το ηλεκτρόνιο εισέρχεται απ’ το σημείο Γ του ορίου ΚΝ του μαγνητικού πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο ΚΝ και στις δυναμικές γραμμές του πεδίου. Σημείο Δ του πεδίου απέχει απ’ το Γ απόσταση \[ΓΔ=d\] και το ευθύγραμμο τμήμα ΓΔ σχηματίζει με τη διεύθυνση της ταχύτητας εισόδου στο πεδίο γωνία \[φ\] όπως φαίνεται στο παρακάτω σχήμα. Για να διέλθει το ηλεκτρόνιο απ’ το σημείο Δ πρέπει το μέτρο της έντασης του μαγνητικού πεδίου να είναι:
5. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Αν η πρώτη παραμονή του φορτίου στο πεδίο \[(1)\] διαρκεί \[Δt_1\], τότε στο πεδίο \[(2)\] θα διαρκεί \[Δt_2\] όπου:
6. Δύο πρωτόνια \[(1)\, , \, (2)\] με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχονται απ’ το σημείο Γ του ορίου \[xx'\] του ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ίδιες κατά μέτρο ταχύτητες \[υ_1=υ_2=υ\] που οι διευθύνσεις τους είναι κάθετες στις δυναμικές γραμμές του μαγνητικού πεδίου. Το πρωτόνιο \[(1)\] έχει ταχύτητα \[υ_1\] που σχηματίζει γωνία \[φ=30^0\] με το όριο \[xx'\] ενώ η ταχύτητα του πρωτονίου \[(2)\] \[υ_2\] είναι κάθετη στο όριο \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα πρωτόνια δέχονται μόνο τη δύναμη Lorentz του μαγνητικού πεδίου. Τα πρωτόνια εξέρχονται απ’ τα σημεία Δ, Ε του ορίου \[xx'\]. Διερευνήστε σε ποιο απ’ τα πρωτόνια αντιστοιχεί το κάθε σημείο εξόδου. Το μέτρο της μεταβολής της ορμής του πρωτονίου \[(1)\] λόγω της παραμονής του στο πεδίο είναι \[|Δp_1 |\] ενώ του \[(2)\] \[|Δp_2 |\] και ισχύει:
7. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Αν \[S_1\, , \, S_2\] είναι το μήκος των τροχιών που διαγράφει το σωμάτιο \[α\] στο πρώτο και δεύτερο πείραμα αντίστοιχα, ισχύει:
8. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].

9. Στο παρακάτω σχήμα φαίνεται ένας βρόχος κυκλικού σχήματος που περιβάλλει \[2\] ευθύγραμμους ρευματοφόρους αγωγούς που διαρρέονται από ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\] με \[Ι_1=Ι_2\] και φορών που φαίνονται στο σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B \cdot Δ\ell \cdot συνθ\] πάνω σ’ αυτήν τη διαδρομή:
10. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[q_p\] και ένα νετρόνιο \[n\] βάλλονται ταυτόχρονα με κατά μέτρο ίσες ταχύτητες \[(υ_p=υ_n )\] από σημείο Γ της ευθείας \[x' x\] που αποτελεί όριο ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\]. Η ταχύτητα \[\vec{υ}_p\] του πρωτονίου σχηματίζει γωνία \[30^0\] με το όριο \[x' x\] και είναι κάθετη στις δυναμικές γραμμές του πεδίου ενώ η ταχύτητα \[\vec{υ}_n\] του νετρονίου είναι κάθετη στο όριο \[x' x\] και στις δυναμικές γραμμές του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Οι βαρυτικές δυνάμεις αμελούνται. Το πρωτόνιο εξέρχεται αφού έχει διαγράψει κυκλικό τόξο απ’ το σημείο Δ του ορίου \[x' x\] που απέχει απ’ το Γ απόσταση \[d\]. Τη στιγμή της εξόδου του πρωτονίου απ’ το μαγνητικό πεδίο το νετρόνιο απέχει απόσταση \[d_1\] απ’ το όριο \[x' x\] για την οποία ισχύει:
11. Ο οριζόντιος ευθύγραμμος αγωγός (1) του παρακάτω σχήματος έχει μεγάλο μήκος και διαρρέεται από ρεύμα έντασης \[Ι_1\] και είναι ακλόνητα στερεωμένος. Απ’ τον αγωγό (1) κρεμάμε μέσω δύο όμοιων ιδανικών κατακόρυφων ελατηρίων σταθεράς \[k\] έναν άλλο ευθύγραμμο αγωγό (2) μήκους \[\ell\] όπως φαίνεται στο παρακάτω σχήμα. Όταν ο αγωγός (2) διαρρέεται από ρεύμα έντασης \[I_2=I_1\] και ίδιας φοράς με τη φορά του ρεύματος του πρώτου αγωγού, τότε ο αγωγός (2) ισορροπεί με τα ελατήρια να έχουν το φυσικό τους μήκος \[\ell_0\]. Όταν αντιστρέψουμε τη φορά ενός απ’ τα δύο ρεύματα, τότε ο αγωγός (2) ισορροπεί όταν η μεταξύ τους απόσταση γίνεται \[\frac{5}{2} \ell_0\]. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η σταθερά \[k\] του κάθε ελατηρίου είναι:
12. Στο παρακάτω σχήμα φαίνονται οι τροχιές δύο ισότοπων ιόντων ίδιου φορτίου \[(1)\] και \[(2)\] του στοιχείου νέου \[(Ne)\] μιας δέσμης ισότοπων του στοιχείου αυτού που εισέρχονται στο μαγνητικό πεδίο έντασης \[\vec{B} '\] ενός φασματογράφου μάζας. Το ιόν \[(1)\] είναι ισότοπο του \[^{20} Ne\] και το ιόν \[(2)\] του \[^{22}Ne\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
13. Ραδιενεργό άτομο που είναι αρχικά ακίνητο μέσα σε ομογενές μαγνητικό πεδίο μεγάλης έκτασης διασπάται ακαριαία μέσα σε ομογενές μαγνητικό πεδίο σε δύο επιμέρους σωματίδια \[(1)\, , \, (2)\] με φορτία \[ q_1\, , \, q_2\] με φορτία \[ q_1 \, , \, q_2\], μάζες \[ m_1 \, , \, m_2\] και ταχύτητες \[\vec{υ}_1\, , \, \vec{υ}_2\]. Η ταχύτητα του σωματιδίου \[(1)\] είναι κάθετη στις δυναμικές γραμμές του πεδίου. Τα σωματίδια που παράγονται εκτελούν μέσα στο ομογενές μαγνητικό πεδίο κυκλικές κινήσεις ακτίνων \[ R_1\, , \, R_2\] αντίστοιχα δεχόμενα μόνο τις δυνάμεις του ομογενούς μαγνητικού πεδίου. ( Υπόδειξη: Σε κάθε έκρηξη ισχύει η αρχή διατήρησης της ορμής. Το άτομο πριν τη διάσπαση είναι αφόρτιστο \[q_{{ολ}_πριν}=0\] και η αρχή διατήρησης του φορτίου απαιτεί \[q_{{ολ}_πριν} = q_1+q_2\] ). Για τις ακτίνες τους ισχύει:
14. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] με εντάσεις \[\vec{B}_1\, , \, \vec{B}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες. Τα δύο πεδία χωρίζονται απ’ τον άξονα \[x' x\] και εκτείνονται σε μεγάλη απόσταση στα δύο ημιεπίπεδα που ορίζει ο άξονας αυτός. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται την \[t=0\] στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[x' x\] με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές του πεδίου και στον άξονα \[x' x\]. Τη στιγμή \[t_1\] εξέρχεται απ’ το πεδίο \[(1)\], κινείται μέσα στο πεδίο \[(2)\] και τη στιγμή \[t_2\] φτάνει πάλι στο όριο \[x' x\] των δύο πεδίων στο σημείο Δ. Για τις χρονικές στιγμές \[t_1\, ,\, t_2\] ισχύει \[t_2 = 4 t_1\]. Το σωματίδιο θα περάσει για \[4^η\] φορά μετά απ’ την \[t=0\] απ’ το όριο \[x' x\] τη στιγμή \[t_3\] που είναι:
15. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, , \, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, ,\, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Για να γίνει το άθροισμα \[∑B\cdot Δ\ell \cdot συνφ\] στη διαδρομή \[S_2\] ίσο με το μηδέν χωρίς ν’ αλλάξει το αντίστοιχο άθροισμα στη διαδρομή \[S_1\] πρέπει:
16. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Αν \[t_{π_1} \, , \, t_{π_2}\] οι χρόνοι παραμονής του ιόντος μέσα στο μαγνητικό πεδίο του κάθε πειράματος, τότε ισχύει:
17. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
18. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Η μεταβολή της ορμής του πυρήνα στο πρώτο πείραμα έχει μέτρο:
19. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
20. Ένα πρωτόνιο μάζας \[m_p\] και φορτίου \[e\] (στοιχειώδες φορτίο) και ένας πυρήνας ηλίου μάζας \[4m_p\] και φορτίου \[2e\] εκτελούν κυκλικές τροχιές με ακτίνες \[R_p\, , \, R_α\] αντίστοιχα με ίσες κατά μέτρο ταχύτητες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
21. Στο πείραμα του Thomson τα ηλεκτρόνια που εκπέμπει η πυρακτωμένη κάθοδος επιταχύνονται υπό μια τάση \[V\] και η δέσμη ηλεκτρονίων εισέρχεται σε επιλογέα ταχυτήτων που το μαγνητικό και ηλεκτρικό πεδίο του έχουν εντάσεις μέτρων \[B\] και \[E\] αντίστοιχα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
22. Το τετράγωνο πλαίσιο ΚΛΜΝ μάζας \[m\] του παρακάτω σχήματος έχει πλευρά \[α\], βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και διαρρέεται από ρεύμα έντασης \[Ι\] που έχει τη φορά των δεικτών του ρολογιού. Στο ίδιο οριζόντιο επίπεδο και παράλληλα με τις πλευρές του πλαισίου ΚΛ και ΜΝ βρίσκονται δύο ευθύγραμμοι αγωγοί (1), (2) μεγάλου μήκους που διαρρέονται από ρεύμα εντάσεων \[Ι_1\] και \[Ι_2=3Ι_1\] αντίστοιχα που οι φορές τους και οι αποστάσεις των ευθύγραμμων αγωγών από το πλαίσιο φαίνεται στο παρακάτω σχήμα. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\] και η συνολική μάζα του πλαισίου είναι \[m\]. Αν αφήσουμε το πλαίσιο ελεύθερο να κινηθεί, αυτό:
23. Στον επιλογέα ταχυτήτων του παρακάτω σχήματος το μαγνητικό του πεδίο έχει ένταση \[\vec{B}\] και το ηλεκτρικό πεδίο έχει ένταση \[\vec{Ε}\]. Δέσμη πρωτονίων (μάζας \[m_p\] και φορτίου \[q_p=e\]) εισέρχεται σε επιλογέα ταχυτήτων με ταχύτητα \[υ\] κάθετη στις δυναμικές γραμμές των δύο πεδίων του. Η δέσμη δεν αποκλίνει κατά το πέρασμά της μέσα απ’ τον επιλογέα. Οι βαρυτικές δυνάμεις και οι ηλεκτροστατικές αλληλεπιδράσεις μεταξύ των σωματιδίων της δέσμης θεωρούνται αμελητέες. Αν στον επιλογέα ταχυτήτων εισέρχονταν δέσμη ηλεκτρονίων με ταχύτητα ίδια με αυτή των πρωτονίων (η μάζα του ηλεκτρονίου είναι \[m_e = \frac{m_p }{ 1836 }\] και το φορτίο \[q_e=-e\]) για να μην αποκλίνει η δέσμη κατά το πέρασμά της μέσα στον επιλογέα:
24. Δύο ισότοπα άτομα του υδρογόνου, το πρώτιο \[_1^1 H\] και το δευτέριο \[_1^2Η\] αφού ιονιστούν, αποκτούν θετικό φορτίο \[+e\] και εισέρχονται ταυτόχρονα σε φασματογράφο μάζας. Το φίλτρο ταχυτήτων του αποτελείται από ένα ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και ένα ομογενές ηλεκτρικό πεδίο έντασης \[E\]. Πρώτα περνούν απ’ το φίλτρο ταχυτήτων χωρίς να αποκλίνουν της αρχικής τους ταχύτητας και κατόπιν εισέρχονται στο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}'\] κάθετα στις δυναμικές γραμμές του. Τα δύο σωματίδια αφού εκτελέσουν ημικυκλικές τροχιές στο μαγνητικό πεδίο \[\vec{B}'\] πέφτουν πάνω στη φωτογραφική πλάκα και αφήνουν ίχνος σε απόσταση \[d\]. Θεωρούμε τη μάζα του πρωτονίου ίση με αυτή του νετρονίου \[(m_p=m_n )\]. Η απόσταση \[d\] είναι ίση με:
25. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Όταν εφαρμόζουμε το νόμο του Ampere πάνω σε μια κλειστή διαδρομή, η θετική φορά των ρευμάτων:
26. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] επιταχύνεται από την ηρεμία υπό τάση \[V\] και με την ταχύτητα \[υ\] που αποκτά εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που η κάθετη τομή φαίνεται στο παρακάτω σχήμα και εκτείνεται σε απόσταση \[d\] κατά τη διεύθυνση της ταχύτητας εισόδου του σωματιδίου. Η ταχύτητα αυτή είναι κάθετη στο όριο του πεδίου \[yy'\] και στις δυναμικές γραμμές του πεδίου. Για να εξέλθει το σωματίδιο απ’ το ίδιο όριο του πεδίου απ’ το οποίο εισήλθε πρέπει η τάση \[V\] να πληρεί την ανίσωση:
27. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου με \[ 0 < φ < 90^0 \]. Το σωματίδιο εκτελεί ελικοειδή κίνηση περιόδου \[Τ\] και ακτίνας \[R\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
28. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ\] (\[ 0 < φ < 90^0 \]) με τις δυναμικές γραμμές του πεδίου και δέχεται δύναμη μόνο απ’ αυτό. Το σωματίδιο εκτελεί ελικοειδή τροχιά. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
29. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:
30. Ο ευθύγραμμος αγωγός ΚΛ έχει μήκος \[\ell\] και αντίσταση \[R\]. Ο αγωγός τοποθετείται οριζόντια ώστε τα άκρα του να εφάπτονται με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που έχουν αμελητέα αντίσταση. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ηλεκτρική πηγή που έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=\frac{R}{3}\], ενώ μεταξύ των αγωγών αυτών έχουμε συνδέσει μέσω διακόπτη δ και αντιστάτη αντίστασης \[R_1=\frac{R}{2}\]. Το σύστημα των αγωγών βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που είναι κάθετο στο επίπεδο των αγωγών και έχει τη φορά του σχήματος. Αρχικά ο διακόπτης είναι ανοικτός και ο αγωγός ΚΛ ισορροπεί ακίνητος. Όταν κλείσουμε το διακόπτη δ, ο αγωγός ΚΛ:

    +30

    CONTACT US
    CALL US