MENU

Τεστ στο Μαγνητικό πεδίο (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα φαίνονται οι τροχιές δύο ισότοπων ιόντων ίδιου φορτίου \[(1)\] και \[(2)\] του στοιχείου νέου \[(Ne)\] μιας δέσμης ισότοπων του στοιχείου αυτού που εισέρχονται στο μαγνητικό πεδίο έντασης \[\vec{B} '\] ενός φασματογράφου μάζας. Το ιόν \[(1)\] είναι ισότοπο του \[^{20} Ne\] και το ιόν \[(2)\] του \[^{22}Ne\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
2. Φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] βάλλεται από σημείο Γ ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] και ασκείται σ’ αυτό μόνο η δύναμη απ’ το πεδίο αυτό. Η ταχύτητα βολής του \[\vec{υ}\] σχηματίζει γωνία \[φ\] με τις δυναμικές γραμμές του πεδίου. Σε χρονικό διάστημα \[Δt=2T\], το μήκος της τροχιάς που διαγράφει είναι \[s_1\], ενώ στον άξονα τον παράλληλο με τις δυναμικές γραμμές έχει μετατοπιστεί κατά \[Δx_1\]. Ο λόγος \[\frac{s_1}{Δx_1}=\frac{2\sqrt{3}}{3} \]. Αν \[R\] είναι η ακτίνα της ελικοειδούς τροχιάς του, τότε ο λόγος \[\frac{s_1}{R}\] είναι:
3. Ο αγωγός του παρακάτω σχήματος ισορροπεί οριζόντιος μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Ο αγωγός ακουμπά χωρίς τριβές σε δύο αγώγιμες κατακόρυφες ράβδους που στα άκρα τους έχουμε συνδέσει ηλεκτρική πηγή. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
4. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Ο χρόνος παραμονής του σωματιδίου μέσα στο πεδίο είναι:
5. Το τετράγωνο πλαίσιο ΚΛΜΝ μάζας \[m\] του παρακάτω σχήματος έχει πλευρά \[α\], βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και διαρρέεται από ρεύμα έντασης \[Ι\] που έχει τη φορά των δεικτών του ρολογιού. Στο ίδιο οριζόντιο επίπεδο και παράλληλα με τις πλευρές του πλαισίου ΚΛ και ΜΝ βρίσκονται δύο ευθύγραμμοι αγωγοί (1), (2) μεγάλου μήκους που διαρρέονται από ρεύμα εντάσεων \[Ι_1\] και \[Ι_2=3Ι_1\] αντίστοιχα που οι φορές τους και οι αποστάσεις των ευθύγραμμων αγωγών από το πλαίσιο φαίνεται στο παρακάτω σχήμα. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\] και η συνολική μάζα του πλαισίου είναι \[m\]. Αν αφήσουμε το πλαίσιο ελεύθερο να κινηθεί, αυτό:
6. Η κάθετη τομή ενός ομογενούς τριγώνου είναι το τρίγωνο ΑΓΔ με \[\hat{Α} =30^0\] και θετικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Κ της πλευράς ΑΓ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εξέρχεται απ’ το σημείο Λ της πλευράς ΑΔ με ταχύτητα κάθετη στην πλευρά αυτή. Η απόσταση ΑΚ είναι ΑΚ\[=d\]. Ο χρόνος κίνησης του σωματιδίου στο μαγνητικό πεδίο είναι:
7. Στο παρακάτω σχήμα φαίνεται ένας βρόχος κυκλικού σχήματος που περιβάλλει \[2\] ευθύγραμμους ρευματοφόρους αγωγούς που διαρρέονται από ρεύματα εντάσεων \[Ι_1\, , \, Ι_2\] με \[Ι_1=Ι_2\] και φορών που φαίνονται στο σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B \cdot Δ\ell \cdot συνθ\] πάνω σ’ αυτήν τη διαδρομή:
8. Αρνητικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] επιταχύνεται από την ηρεμία υπό τάση \[V\] και με την ταχύτητα \[υ\] που αποκτά εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που η κάθετη τομή φαίνεται στο παρακάτω σχήμα και εκτείνεται σε απόσταση \[d\] κατά τη διεύθυνση της ταχύτητας εισόδου του σωματιδίου. Η ταχύτητα αυτή είναι κάθετη στο όριο του πεδίου \[yy'\] και στις δυναμικές γραμμές του πεδίου. Για να εξέλθει το σωματίδιο απ’ το ίδιο όριο του πεδίου απ’ το οποίο εισήλθε πρέπει η τάση \[V\] να πληρεί την ανίσωση:
9. Απ’ την πυρακτωμένη κάθοδο της πειραματικής διάταξης του Thomson εκπέμπονται ηλεκτρόνια με αμελητέα ταχύτητα και επιταχύνονται υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων με ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να διπλασιάσουμε το μέτρο της ταχύτητας εισόδου στο φίλτρο ταχυτήτων πρέπει η τάση που επιταχύνει τα ηλεκτρόνια να γίνει:
10. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από αντίρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_1 < I_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που μπορώ να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:
11. Οι τρεις κατακόρυφοι αγωγοί διαρρέονται από ρεύματα \[Ι_1=3Ι\, , \, Ι_2=5Ι\, , \, Ι_3=2Ι \] που οι φορές τους φαίνονται στο σχήμα. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, επιλέγοντας την περιπλεκόμενη κλειστή διαδρομή που περιβάλλει τους τρεις αγωγούς, το άθροισμα \[∑B\cdot Δ\ell \cdot συνθ\] στη διαδρομή αυτή ισούται με:
12. Στο παρακάτω σχήμα φαίνεται η τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] που εκτείνεται σε μεγάλη απόσταση μεταξύ των ευθειών \[x' x\] και \[x_1' x_1\]. Φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] \[(q < 0)\] εισέρχεται απ’ το σημείο Γ του ορίου \[x' x\] του πεδίου με ταχύτητα \[\vec{υ}\] κάθετη στο όριο και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R\] και εξέρχεται απ’ το σημείο Δ του ορίου \[x_1' x_1\] όπως φαίνεται στο παρακάτω σχήμα. Η οριζόντια εκτροπή του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[d=\frac{(2- \sqrt{3})R}{2}\]. Το μέτρο της μεταβολής της ορμής του μαγνητικού πεδίου λόγω της παραμονής του στο πεδίο είναι:
13. Ένα πρωτόνιο \[p\] μάζας \[m_p\] και φορτίου \[e\] και ένα σωμάτιο \[α\] μάζας \[m_α=4m_p\] και φορτίου \[q_α=2e\] όπου \[e\] το στοιχειώδες θετικό φορτίο εισέρχονται ταυτόχρονα απ’ το ίδιο σημείο Γ με ταχύτητες \[\vec{υ}_α\, , \, \vec{υ}_p \] σε ομογενές μαγνητικό πεδίο έντασης \[\vec{Β}\] έτσι ώστε οι ταχύτητές τους να είναι κάθετες στις δυναμικές γραμμές του πεδίου και στο όριό του που είναι η ευθεία \[xx'\] όπως φαίνεται στο παρακάτω σχήμα. Τα σωματίδια δέχονται μόνο τις δυνάμεις απ’ το μαγνητικό πεδίο που εκτείνεται σε μεγάλη απόσταση πάνω απ’ το όριο του \[xx'\]. Κατά την είσοδό τους στο πεδίο έχουν ίσες κινητικές ενέργειες \[(K_p=K_α )\]. Για τα μέτρα των ρυθμών μεταβολής της ορμής των δύο σωματιδίων κατά την παραμονή τους στο μαγνητικό πεδίο ισχύει:
14. Σωματίδιο μάζας \[m\] και φορτίου \[q\] εισέρχεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[φ = 30^0 \] με τις δυναμικές γραμμές του. Το σωματίδιο εκτελεί ελικοειδή κίνηση και η μόνη δύναμη που δέχεται είναι αυτή του μαγνητικού πεδίου. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Στο παρακάτω σχήμα έχουμε δύο ομογενή μαγνητικά πεδία \[(1)\, , \, (2)\] εντάσεων \[\vec{B}_1\, , \, \vec{Β}_2\] αντίστοιχα που έχουν τις δυναμικές γραμμές τους παράλληλες και διαχωρίζονται μεταξύ τους μέσω του άξονα \[yy'\]. Θετικά φορτισμένο σωματίδιο φορτίου \[q\] και μάζας \[m\] εισέρχεται στο πεδίο \[(1)\] απ’ το σημείο Γ του άξονα \[yy'\] με ταχύτητα \[\vec{υ}\] κάθετη στον \[yy'\] και στις δυναμικές γραμμές όπως φαίνεται στο σχήμα. Τα πεδία έχουν μεγάλη έκταση στα δύο ημιεπίπεδα που χωρίζει ο άξονας \[yy'\]. Το φορτίο εξέρχεται απ’ το πεδίο \[(1)\] για πρώτη φορά απ’ το σημείο Δ του άξονα ενώ εισέρχεται ξανά στο πεδίο \[(1)\] απ’ το σημείο Ε για το οποίο ισχύει \[ΓΕ=6R_1\] όπου \[R_1\] η ακτίνα της κυκλικής τροχιάς του φορτίου στο πεδίο \[(1)\]. Βαρυτικές δυνάμεις αμελητέες. Αν η πρώτη παραμονή του φορτίου στο πεδίο \[(1)\] διαρκεί \[Δt_1\], τότε στο πεδίο \[(2)\] θα διαρκεί \[Δt_2\] όπου:
16. Ένα πρωτόνιο με φορτίο \[q_p\] και μάζα \[m_p\] εισέρχεται με ταχύτητα \[\vec{υ}\] μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με την ταχύτητά του να σχηματίζει γωνία \[φ=30^0\] με τις δυναμικές γραμμές του πεδίου. Το πρωτόνιο εκτελεί ελικοειδή κίνηση σταθερού βήματος \[β\] με την επίδραση μόνο της δύναμης του μαγνητικού πεδίου. Ο λόγος \[\frac{β}{s}\] όπου \[s\] το μήκος του τόξου που έχει διανύσει το πρωτόνιο λόγω της επιμέρους κυκλικής του κίνησης σε χρόνο \[\frac{T}{2}\] όπου \[T\] η περίοδος αυτής είναι:
17. Ο ημικυκλικός αγωγός του παρακάτω σχήματος έχει ακτίνα \[r_1\], κέντρο Κ και αντίσταση \[R\]. Τα άκρα του αγωγού συνδέονται μέσω συρμάτων αμελητέας αντίστασης με πηγή που έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η ένταση του μαγνητικού πεδίου στο κέντρο Κ του αγωγού έχει μέτρο:
18. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Με το φασματογράφο μάζας:
19. Φορτισμένο σωματίδιο μάζας m και φορτίου q εισέρχεται απ’ το σημείο Κ σε ομογενές μαγνητικό πεδίο έντασης μέτρου Β με ταχύτητα μέτρου υ που είναι κάθετη στις δυναμικές γραμμές του πεδίου και κάθετη στο ευθύγραμμο τμήμα ΑΕ που είναι το όριο του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωματίδιο δέχεται μόνο τη δύναμη απ’ το μαγνητικό πεδίο και εξέρχεται απ’ το σημείο Λ του ίδιου ορίου ΑΕ του μαγνητικού πεδίου. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Στο παρακάτω σχήμα φαίνονται οι κάθετες τομές δύο ομογενών μαγνητικών πεδίων ίδιας έντασης \[\vec{B}\]. Η μια τομή είναι ισόπλευρο τρίγωνο ΑΓΔ πλευράς μήκους \[α_1\] ενώ η άλλη είναι τετράγωνο ΚΛΜΝ με μήκος πλευράς \[α_2\]. Πραγματοποιούμε δύο πειράματα: Πείραμα 1ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος \[(1)\] απ’ το μέσο Κ του ορίου ΑΓ ένα θετικό ιόν με ταχύτητα μέτρου \[υ\]. Η ταχύτητα είναι κάθετη στην ΑΓ και στις δυναμικές γραμμές του πεδίου. Το ιόν εξέρχεται απ’ το μέσο Λ της πλευράς ΓΔ με ταχύτητα κάθετη στην πλευρά αυτή. Πείραμα 2ο: Εισάγουμε στο μαγνητικό πεδίο του σχήματος 2 απ’ το μέσο Ε της πλευράς ΚΝ το ίδιο ιόν με ίδια κατά μέτρο ταχύτητα που είναι κάθετη στην ΚΝ και στις δυναμικές γραμμές. Το ιόν τώρα εξέρχεται απ’ το μέσο Ζ της πλευράς ΜΝ με ταχύτητα κάθετη στην πλευρά αυτή. Οι βαρυτικές δυνάμεις αμελούνται. Αν \[t_{π_1} \, , \, t_{π_2}\] οι χρόνοι παραμονής του ιόντος μέσα στο μαγνητικό πεδίο του κάθε πειράματος, τότε ισχύει:
21. Στο παρακάτω σχήμα οι οριζόντιοι ευθύγραμμοι αγωγοί (1), (2) έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα, ίδιο μήκος \[\ell\] και αντιστάσεις \[R_1=R\] και \[R_2=2R\]. Οι αγωγοί συγκρατούνται ώστε τα άκρα τους να είναι σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy\] και \[Γy_1\] που έχουν αμελητέα αντίσταση. Ο αγωγός (1) βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}_1\] και ο αγωγός (2) σε αντίστοιχο πεδίο έντασης \[\vec{B}_2\]. Οι δυναμικές γραμμές των δύο πεδίων είναι κάθετες στο επίπεδο που δημιουργούν οι τέσσερις αγωγοί και οι φορές των εντάσεών τους φαίνονται στο σχήμα. Για τα μέτρα των εντάσεων ισχύει \[B_2=2B_1\]. Τα άκρα Α, Γ των κατακόρυφων αγωγών συνδέονται με ιδανική πηγή που έχει ΗΕΔ \[\mathcal{E}\]. Την \[t=0\] αφήνουμε τους αγωγούς ελεύθερους και παρατηρούμε ότι ο αγωγός (1) παραμένει ακίνητος.

Α) Ο αγωγός (2) την \[t=0\]:

α) παραμένει και αυτός ακίνητος.

β) αποκτά επιτάχυνση μέτρου  \[ \frac{3g}{2} \]  κατακόρυφη προς τα κάτω (όπου \[g\] το μέτρο της επιτάχυνσης της βαρύτητας).

γ) αποκτά επιτάχυνση \[3g\] με φορά κατακόρυφη προς τα κάτω.

Β) Αν η ένταση \[B_2\]  είχε αντίθετη φορά απ’ αυτή του σχήματος, τότε ο αγωγός (2) την \[t=0\]:

α) θα ισορροπούσε.

β) θα αποκτούσε επιτάχυνση μέτρου \[g\] κατακόρυφη προς τα πάνω.

γ) θα αποκτούσε επιτάχυνση  \[ \frac{g}  {2}  \]  κατακόρυφη προς τα κάτω.

δ) θα αποκτούσε επιτάχυνση \[ g \] κατακόρυφη προς τα κάτω.

22. Στο παρακάτω σχήμα φαίνονται δύο κλειστές διαδρομές \[S_1\, ,\, S_2\] σχήματος ομοεπίπεδων τετραγώνων πλευράς \[α\, , \, 2α\] αντίστοιχα και οι φορές διαγραφής. Η διαδρομή \[S_1\] περικλείει τρεις ευθύγραμμους παράλληλους αγωγούς που διαρρέονται από ομόρροπα ρεύματα ίδιας έντασης \[Ι\] το καθένα. Η διεύθυνση των αγωγών είναι κάθετη στο επίπεδο των δύο επιφανειών. Αν το άθροισμα \[∑B\cdot Δ \ell \cdot συνφ\] στη διαδρομή \[S_1\] έχει τιμή \[κ\] και στη διαδρομή \[S_2\] έχει τιμή \[λ\] τότε ισχύει:
23. Στο παρακάτω σχήμα φαίνονται τρεις κλειστές διαδρομές \[S_1\, ,\, S_2\, , \, S_3\] που περικλείουν ρευματοφόρους αγωγούς με ρεύμα εντάσεων \[Ι_1\, , \, Ι_2\, , \, Ι_3\, , \, Ι_4\]. Στο σχήμα φαίνονται οι φορές των ρευμάτων και οι φορές διαγραφής των διαδρομών. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Τα αθροίσματα \[∑B\cdot Δ\ell \cdot συνθ \] για τις κλειστές διαδρομές \[S_1\, , \, S_2\] είναι μηδενικά. Το άθροισμα \[ ∑ B \cdot Δ\ell \cdot συνθ \] για τη διαδρομή \[S_3\] είναι ίσο με:
24. Το πλαίσιο ΚΛΜΝ με πλευρές \[α,\, γ\] του παρακάτω σχήματος είναι προσδεμένο απ’ το μέσο της πλευράς του ΚΛ απ’ το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Το πλαίσιο διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο σχήμα ενώ βρίσκεται κατά ένα μέρος του (κάτω απ’ την ευθεία ε) μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_1\] με φορά προς τον αναγνώστη, ενώ το υπόλοιπο είναι εκτός πεδίου (σχ. α). Το πλαίσιο ισορροπεί ακίνητο και το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Δημιουργούμε δεύτερο οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2\] αντίρροπης της \[B_1\]. Το πεδίο έντασης \[Β_2\] αυτό εκτείνεται πάνω απ’ την ευθεία ε (σχ. β). Τώρα το πλαίσιο ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[1,5Δ\ell\]. Το βάρος του πλαισίου έχει μέτρο \[w=\frac{ B_1 I α }{ 2 } \].

Α) Για τα μέτρα των εντάσεων των δύο μαγνητικών πεδίων ισχύει:

α) \[B_1=\frac{4}{3} B_2\],                                
β) \[B_1=\frac{3}{2} B_2\],                                
γ) \[Β_1=\frac{Β_2}{2}\].

Β) Αν αντιστρέψω τη φορά της έντασης \[Β_2\], τότε το πλαίσιο θα ισορροπεί όταν το ελατήριο έχει επιμήκυνση \[Δ \ell'\]  που είναι ίση με:

α) \[Δ  \ell \],                                       β) \[0,75\, Δ\ell \],                               γ) \[0,5\,  Δ\ell\].

25. Δύο φορτισμένα σωματίδια (1), (2) έχουν ίσες κατά μέτρο ορμές, μάζες \[m_1=2m_2\] και ίσα φορτία. Τα σωματίδια εισέρχονται στο ίδιο ομογενές μαγνητικό πεδίο και εκτελούν σ’ αυτό ομαλή κυκλική κίνηση με ακτίνες \[R_1, R_2\] και περιόδων \[T_1, T_2\] αντίστοιχα με την επίδραση μόνο της δύναμης Lorentz που δέχονται απ’ το πεδίο. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για τις ακτίνες και τις περιόδους των κυκλικών κινήσεων των δύο σωματιδίων ισχύει:
26. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Όταν εφαρμόζουμε το νόμο του Ampere πάνω σε μια κλειστή διαδρομή, η θετική φορά των ρευμάτων:
27. Να επιλέξετε τη σωστή απάντηση. Σε ποια απ’ τα παρακάτω σχήματα ο ευθύγραμμος ρευματοφόρος αγωγός δέχεται δύναμη Laplace μη μηδενική;
28. Στο παρακάτω σχήμα φαίνεται η κατακόρυφη τομή ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] η οποία περιορίζεται μέσα στο ορθογώνιο παραλληλόγραμμο ΚΛΜΝ. Αρνητικά φορτισμένο σωματίδιο εισέρχεται στο πεδίο απ’ το σημείο Γ του ορίου ΚΛ με ταχύτητα \[\vec{υ}\] που είναι κάθετη στην ΚΛ και στις δυναμικές γραμμές του πεδίου. Το σωματίδιο εκτελεί κυκλική κίνηση περιόδου \[T\] επιδρώντας σ’ αυτό μόνο το βάρος του και εξέρχεται τη χρονική στιγμή \[t_1 = \frac{T}{6}\] απ’ το σημείο Δ του ορίου ΛΜ του πεδίου. Το μήκος της πλευράς ΚΛ είναι ΚΛ\[=d\]. Η κατακόρυφη απόκλιση του σωματιδίου κατά την έξοδό του απ’ το πεδίο είναι \[y\]. Αν \[R\] είναι η ακτίνα της κυκλικής τροχιάς του σωματιδίου, τότε η απόκλισή του \[y\] είναι:
29. Ένα σωμάτιο \[α\] (πυρήνες ηλίου) φορτίου \[q_α\] και μάζας \[m_α\] βάλλεται απ’ το σημείο Γ του ορίου ενός ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\] με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου και σχηματίζει γωνία \[150^0\] με το όριο \[x' x\] του πεδίου όπως φαίνεται στο παρακάτω σχήμα. Το σωμάτιο \[α\] βγαίνει απ’ το μαγνητικό πεδίο απ’ το σημείο Δ του ορίου \[x' x\]. Κατόπιν επαναλαμβάνουμε το ίδιο πείραμα με το σωμάτιο \[α\] να εισέρχεται απ’ το σημείο Γ στο μαγνητικό πεδίο με ίδια κατά μέτρο ταχύτητα που όμως τώρα είναι και κάθετη στις δυναμικές γραμμές και κάθετη στο όριο \[x' x\] του πεδίου. Τώρα το σωματίδιο βγαίνει απ’ το σημείο Ε του ορίου \[x' x\]. Και στα δύο πειράματα στο σωμάτιο \[α\] επιδρά μόνο η δύναμη απ’ το μαγνητικό πεδίο. Σχεδιάστε τις τροχιές του πυρήνα στο ίδιο σχήμα. Η μεταβολή της ορμής του πυρήνα στο πρώτο πείραμα έχει μέτρο:
30. Οι δύο παράλληλοι ρευματοφόροι αγωγοί \[(1),\, (2)\] του παρακάτω σχήματος βρίσκονται ακλόνητοι πάνω σε λείο οριζόντιο μονωτικό επίπεδο και διαρρέονται από ομόρροπα ρεύματα \[Ι_1,\, Ι_2\] αντίστοιχα με \[Ι_1 < Ι_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η θέση που πρέπει να τοποθετήσω έναν τρίτο παράλληλο ρευματοφόρο αγωγό \[(3)\] ώστε αυτός να ισορροπεί είναι:

    +30

    CONTACT US
    CALL US