MENU

Τεστ στα Κύματα Α (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
1. Δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2 \] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\], περιόδου \[Τ\] και \[φ_0=0\]. Στο παρακάτω σχήμα φαίνεται η μεταβολή του πλάτους του σημείου Λ της επιφάνειας υγρού με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] βρίσκονται στα σημεία Κ, Λ αντίστοιχα οριζόντιας επιφάνειας ελαστικού μέσου και δημιουργούν σ’ αυτήν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ_1=1\, m\]. Η απόσταση των Κ, Λ είναι \[ΚΛ=d=4\, m\]. Δύο σημεία Ζ, Η βρίσκονται πάνω στο ευθύγραμμο τμήμα ΚΛ. Το σημείο Ζ απέχει απ’ το σημείο Κ απόσταση \[r_{1Z}=1,2\, m\], ενώ το Η απέχει απ’ το Λ \[r_{2H}=0,7\, m\]. Μειώνω τη συχνότητα των δύο πηγών κατά \[50\, \%\] ενώ αυτές παραμένουν σύγχρονες και ίδιου πλάτους. Ο αριθμός των σημείων του ευθύγραμμου τμήματος ΖΗ που τώρα εμφανίζουν αποσβεστική συμβολή είναι:
3. Αρμονικό κύμα διαδίδεται κατά τη θετική φορά του άξονα \[x' Ox\]. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο του κύματος αυτού στο θετικό ημιάξονα \[Ox\] τη χρονική στιγμή \[t_1\]. Η εξίσωση ταλάντωσης του άκρου Ο είναι της μορφής \[y=A ημωt\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο τη στιγμή \[t_1\] εγκάρσιου αρμονικού κύματος που διαδίδεται κατά την αρνητική φορά στον άξονα \[Ox'\]. Η αρχή του άξονα Ο αρχίζει να ταλαντώνεται την \[t=0\] με θετική ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν σε επιφάνεια υγρού εγκάρσια αρμονικά κύματα πλάτους \[Α\], συχνότητας \[f\] και ταχύτητας διάδοσης \[υ_δ=4\, \frac{ m }{ s }\]. Το σημείο Κ του παρακάτω σχήματος βρίσκεται πάνω στην ευθεία \[Π_1Π_2\]. Η απόσταση των δύο πηγών είναι \[d=1\, m\]. Αν η συχνότητα των δύο πηγών είναι \[f'=8\, Hz\] τότε πάνω στο ευθύγραμμο τμήμα \[Π_1Π_2\] και μεταξύ των δύο πηγών ο αριθμός των σημείων που εμφανίζουν ενισχυτική συμβολή είναι:
6. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], ταχύτητας διάδοσης \[υ_δ\] και έχουν εξισώσεις ταλάντωσης της μορφής \[y=A ημ \frac{ 2πt}{T}\]. Σημείο Ζ της επιφάνειας απέχει απ’ τις δύο πηγές αποστάσεις \[r_{1Z}\, , \, r_{2Z}\] με \[r_{1Z} < r_{2Z} \]. Το σημείο Ζ αρχίζει να ταλαντώνεται όταν η πηγή \[Π_2\] περνά για έκτη φορά απ’ τη Θ.Ι. της μετά την έναρξη της ταλάντωσής της. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή της ταχύτητας του Ζ. Αν υποδιπλασιάσουμε τη συχνότητα ταλάντωσης των δύο πηγών ώστε αυτές να παραμένουν σύγχρονες και να ταλαντώνονται με ίδιο πλάτος \[Α\], τότε το σημείο Ζ:
7. Σε κάποιο σημείο ενός υγρού δημιουργούμε αρμονικά κύματα με την πηγή Π. Στο σημείο Σ της επιφάνειας σε απόσταση \[α\] απ’ την πηγή τα κύματα μπορούν να φτάσουν ή απευθείας (ακολουθώντας τη διαδρομή \[ΠΣ=α\]) ή αφού ανακλαστούν στον ανακλαστήρα που βρίσκεται στην επιφάνεια του υγρού και πάνω στη μεσοκάθετο ΑΜ του τμήματος ΠΣ. Αρχικά ο ανακλαστήρας απέχει απόσταση \[H\] απ’ το τμήμα ΠΣ (θέση Α) και το Σ ταλαντώνεται με μέγιστο πλάτος μετά τη συμβολή των κυμάτων. Aλλάζουμε τη συχνότητα της πηγής Π ώστε στο Σ να έχουμε απόσβεση. Μετακινούμε τον ανακλαστήρα κατά την ίδια κατεύθυνση και στη θέση Γ που απέχει \[d_1\] απ’ τη θέση Α παρατηρούμε ότι το Σ παρουσιάζει ενίσχυση ενώ στη διάρκεια της μετακίνησης μέχρι το Γ το Σ έχει ακινητοποιηθεί μόνιμα δύο φορές. Το νέο μήκος κύματος \[λ_1\] του κύματος της πηγής Π είναι:
8. Στην παρακάτω πειραματική διάταξη που αποτελείται από δύο σωλήνες Α, Β ένα διαπασών δημιουργεί ηχητικό κύμα μήκους κύματος \[λ\] πάνω απ’ την οπή Ο. Τα κύματα αυτά φτάνουν στην οπή Σ ακολουθώντας είτε τη διαδρομή ΟΑΣ είτε τη διαδρομή ΟΒΣ. Έτσι στο Σ έχουμε τη συμβολή δύο κυμάτων και δημιουργείται σύνθετος ήχος που η έντασή του ανιχνεύεται μέσω ενός ανιχνευτή που βρίσκεται ακριβώς έξω απ’ την οπή Σ. Ο δεξιός σωλήνας Β μπορεί να μετακινείται δεξιά ή αριστερά και έτσι η απόσταση \[x\] να μεταβάλλεται. Στη διάρκεια της μεταβολής αυτής αλλάζει και η ένταση του ήχου που μετρά ο ανιχνευτής στο Σ και μάλιστα αυξομειώνεται μεταξύ της τιμής μηδέν και μιας μέγιστης τιμής. Όταν η απόσταση έχει την τιμή \[x\] του παρακάτω σχήματος ο ανιχνευτής μετρά μέγιστη ένταση για τον σύνθετο ήχο στο Σ. Μετακινώ το δεξί σωλήνα Β προς τα δεξιά και όταν η μετακίνηση γίνει \[Δx=0,3\, m\], τότε ο ανιχνευτής καταγράφει τη δεύτερη παύση του ήχου στη διάρκεια της μετακίνησης αυτής. Το μήκος κύματος \[λ\] του κύματος που παράγει το διαπασών είναι:
9. Στην επιφάνεια υγρού δύο σύγχρονες πηγές κυμάτων δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\] και περιόδου \[Τ\]. Η ευθεία \[ε\] της επιφάνειας του υγρού είναι κάθετη στο ευθύγραμμο τμήμα \[Π_1Π_2\]. Το μήκος του \[Π_1Π_2\] είναι \[d=3,7\, λ\]. Στο σημείο Ζ της ευθείας \[ε\] τα κύματα που συμβάλλουν φτάνουν με χρονοκαθυστέρηση το ένα απ’ το άλλο ίση με \[\frac{3T }{2}\]. Πάνω στην ευθεία \[ε\] και μεταξύ των σημείων \[Π_2\] και Ζ, ο αριθμός των σημείων που παρουσιάζουν αποσβεστική συμβολή είναι:
10. Στην παρακάτω πειραματική διάταξη που αποτελείται από δύο σωλήνες Α, Β ένα διαπασών δημιουργεί ηχητικό κύμα μήκους κύματος \[λ\] πάνω απ’ την οπή Ο. Τα κύματα αυτά φτάνουν στην οπή Σ ακολουθώντας είτε τη διαδρομή ΟΑΣ είτε τη διαδρομή ΟΒΣ. Έτσι στο Σ έχουμε τη συμβολή δύο κυμάτων και δημιουργείται σύνθετος ήχος που η έντασή του ανιχνεύεται μέσω ενός ανιχνευτή που βρίσκεται ακριβώς έξω απ’ την οπή Σ. Ο δεξιός σωλήνας Β μπορεί να μετακινείται δεξιά ή αριστερά και έτσι η απόσταση \[x\] να μεταβάλλεται. Στη διάρκεια της μεταβολής αυτής αλλάζει και η ένταση του ήχου που μετρά ο ανιχνευτής στο Σ και μάλιστα αυξομειώνεται μεταξύ της τιμής μηδέν και μιας μέγιστης τιμής. Όταν η απόσταση έχει την τιμή \[x\] του παρακάτω σχήματος ο ανιχνευτής μετρά μέγιστη ένταση για τον σύνθετο ήχο στο Σ. Μετακινώ το δεξί σωλήνα Β προς τα δεξιά και όταν η μετακίνηση γίνει \[Δx=0,3\, m\], τότε ο ανιχνευτής καταγράφει τη δεύτερη παύση του ήχου στη διάρκεια της μετακίνησης αυτής. Απ’ την αρχική θέση \[x\] μετακινώ το σωλήνα Β προς τα αριστερά μέχρι να γίνει \[x=0\] και τότε έχω τον πρώτο μηδενισμό του σύνθετου ήχου στο σημείο Σ κατά τη διάρκεια της μετακίνησης αυτής. Αν ισχύει \[d_1-d_2=0,3\, m\] η απόσταση \[x\] είναι:
11. Δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2\] που βρίσκονται αντίστοιχα στα σημεία Κ και Λ της επιφάνειας του υγρού παράγουν πανομοιότυπα εγκάρσια αρμονικά κύματα με ίδιο πλάτος \[Α\], μήκος κύματος \[λ_1\] και συχνότητα \[f_1\]. Μεταξύ των δύο πηγών και πάνω στο ευθύγραμμο τμήμα ΚΛ δημιουργούνται \[5\] σημεία που μετά τη συμβολή ταλαντώνονται με μέγιστο πλάτος. Το κοντινότερο απ’ τα παραπάνω σημεία απ’ την πηγή \[Π_1\] απέχει απ’ αυτήν \[0,1λ_1\]. Αυξάνω κατά \[100\, \%\] τη συχνότητα των δύο πηγών ώστε αυτές να παραμένουν σύγχρονες και να έχουν το ίδιο πλάτος \[Α\]. Ο αριθμός των σημείων του ΚΛ που παρουσιάζουν τώρα ενισχυτική συμβολή είναι:
12. Η διάταξη του παρακάτω σχήματος αποτελείται από δύο σωλήνες Α και Β. Ο σωλήνας Β μπορεί να μετακινείται και έτσι να μεταβάλλεται η απόσταση \[x\]. Μια ηχητική πηγή δημιουργεί στο ανοικτό άκρο του σωλήνα ηχητικό κύμα μήκους κύματος \[λ\]. Στο άλλο άκρο Σ του σωλήνα φτάνουν ταυτόχρονα δύο κύματα. Ένα κύμα που μεταφέρεται απ’ το σωλήνα Α και ένα που μεταφέρεται απ’ το σωλήνα Β. Όταν μετακινούμε το σωλήνα Β (μεταβάλλεται η απόσταση \[x\]) παρατηρούμε ότι η ένταση του ήχου στο Σ αλλάζει και παίρνει τιμές από μηδέν μέχρι μια μέγιστη τιμή. Αλλάζω τη συχνότητα του ήχου που παράγει η πηγή ώστε το μήκος κύματός του να γίνει \[λ'\]. Τώρα στην αρχική θέση \[x=x_1\] αντιλαμβανόμαστε μέγιστη ένταση του νέου ήχου. Μετακινώ απ’ τη θέση \[x_1\] το σωλήνα προς τα δεξιά κατά \[Δx''=x_3-x_1\] που στη θέση \[x=x_3\] αντιλαμβανόμαστε τη δεύτερη παύση του ήχου κατά τη μετακίνηση αυτή. Η μετατόπιση \[Δx''\] είναι:
13. Σε επιφάνεια υγρού δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και ταχύτητας διάδοσης \[υ_δ=5\, \frac{m }{ s }\]. Σημείο Λ της επιφάνειας απέχει αποστάσεις \[r_1=1\, m\] και \[r_2=0,5\, m\]. Αν η συχνότητα των πηγών γίνει \[f=50\, Hz\] τότε μεταξύ του Λ και της μεσοκαθέτου του τμήματος \[Π_1Π_2\] ο αριθμός των ενισχυτικών υπερβολών που δημιουργούνται είναι:
14. Σε οριζόντια ελαστική επιφάνεια δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] που βρίσκονται στα σημεία της Κ, Λ αντίστοιχα δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ_1\]. Μεταξύ του μέσου Μ του ευθύγραμμου τμήματος ΚΛ και της πηγής \[Π_1\] δημιουργούνται \[2\] σημεία που παρουσιάζουν αποσβεστική συμβολή. Το κοντινότερο απ’ τα σημεία στην πηγή \[Π_1\] απέχει απ’ αυτή απόσταση \[d_1=0,15\, λ_1\]. Αυξάνουμε τη συχνότητα των δύο πηγών κατά \[300\, \%\] έτσι ώστε αυτές να παραμένουν σύγχρονες και να έχουν ίδιο πλάτος \[A\]. Ο αριθμός των αποσβεστικών υπερβολών που δημιουργούνται μεταξύ της πηγής \[Π_1\] και της μεσοκαθέτου του ευθύγραμμου τμήματος ΚΛ είναι:
15. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, , \, Π_2\] βρίσκονται στα σημεία Κ, Λ επιφάνειας υγρού και δημιουργούν σ’ αυτό εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ_1\]. Η απόσταση των Κ, Λ είναι \[ΚΛ=d=6λ_1\]. Δύο σημεία Ζ, Η βρίσκονται πάνω στο ευθύγραμμο τμήμα ΚΛ εκατέρωθεν της μεσοκαθέτου του ευθύγραμμου τμήματος ΚΛ. Το σημείο Ζ βρίσκεται πιο κοντά στην πηγή \[Π_1\] απ’ ότι στην πηγή \[Π_2\] και απέχει απ’ το μέσο Μ του ευθύγραμμου τμήματος ΚΛ απόσταση \[d_1=0,85λ_1\]. Το σημείο Η απέχει απ’ το μέσο Μ απόσταση \[d_2=1,9\, λ_1\]. Ο αριθμός των σημείων του ευθύγραμμου τμήματος ΖΗ που παρουσιάζουν απόσβεση είναι:
16. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], ταχύτητας διάδοσης \[υ_δ\] και έχουν εξισώσεις ταλάντωσης της μορφής \[y=A ημ \frac{ 2πt }{ T }\]. Σημείο Ζ της επιφάνειας απέχει απ’ τις δύο πηγές αποστάσεις \[r_{1Z}\, , \, r_{2Z}\] με \[r_{1Z} < r_{2Z} \]. Το σημείο Ζ αρχίζει να ταλαντώνεται όταν η πηγή \[Π_2\] περνά για έκτη φορά απ’ τη Θ.Ι. της μετά την έναρξη της ταλάντωσής της. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή της ταχύτητας του Ζ. Η διαφορά αποστάσεων του Ζ απ’ τις δύο πηγές είναι \[r_{2_Z}-r_{1_Z}\]:
17. Δύο σύγχρονες πηγές κυμάτων δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\] και περιόδου \[Τ\]. Στο διπλανό σχήμα φαίνονται οι υπερβολές ενισχυτικής συμβολής (συνεχείς γραμμές) και οι υπερβολές αναιρετικής συμβολής (διακεκομμένες γραμμές). Το σημείο Μ είναι το μέσο του ευθύγραμμου τμήματος \[Π_1Π_2\].
18. Κατά μήκος ομογενούς ελαστικού μέσου που ταυτίζεται με τον άξονα \[x' Ox\] διαδίδεται εγκάρσιο αρμονικό κύμα μήκους κύματος \[λ\] και περιόδου \[T\]. Δύο σημεία Κ, Λ αρχίζουν να ταλαντώνονται πριν τη χρονική στιγμή \[t_1\]. Το σημείο Κ έχει τη χρονική στιγμή \[t_2=t_1+\frac{T}{6}\] φάση \[φ_{Κ,2}=\frac{10π}{3}\, rad\] ενώ το σημείο Λ έχει τη χρονική στιγμή \[t_3=t_1+\frac{4T}{3}\] φάση \[φ_{Λ,3}=\frac{25π}{3}\, rad\]. A. Οι θέσεις ισορροπίας των σημείων Κ, Λ απέχουν μεταξύ τους:
19. Σε οριζόντιο ελαστικό μέσο που εκτείνεται στη διεύθυνση του άξονα \[x' Ox\] δημιουργείται εγκάρσιο αρμονικό κύμα. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο του κύματος τη χρονική στιγμή \[t_1\] στο τμήμα ΚΛ του μέσου. Η ταχύτητα διάδοσης του κύματος είναι \[υ_δ=2\, \frac{m}{s}\] και η περίοδός του είναι \[Τ\]. Τη στιγμή \[t_1\] το μέτρο της ταχύτητας του Ζ είναι:
20. Σε κάποιο σημείο ενός υγρού δημιουργούμε αρμονικά κύματα με την πηγή Π. Στο σημείο Σ της επιφάνειας σε απόσταση \[α\] απ’ την πηγή τα κύματα μπορούν να φτάσουν ή απευθείας (ακολουθώντας τη διαδρομή \[ΠΣ=α\]) ή αφού ανακλαστούν στον ανακλαστήρα που βρίσκεται στην επιφάνεια του υγρού και πάνω στη μεσοκάθετο ΑΜ του τμήματος ΠΣ. Ο ανακλαστήρας απέχει απόσταση \[Η\] απ’ το τμήμα ΜΣ (είναι στη θέση Α) και το Σ παραμένει συνεχώς ακίνητο μετά τη συμβολή των κυμάτων. Αλλάζουμε τη συχνότητα της πηγής Π ώστε πάλι στο Σ να έχουμε απόσβεση. Μετακινούμε αργά τον ανακλαστήρα κατά την ίδια διεύθυνση και στη θέση Γ που απέχει \[d_1\] απ’ την αρχική θέση Α, το σημείο Σ παρουσιάζει απόσβεση για 2η φορά μετά την έναρξη της δεύτερης μετακίνησης του ανακλαστήρα. Το νέο μήκος κύματος \[λ_1\] του παραγόμενου κύματος απ’ την πηγή \[Π_1\] είναι:
21. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, , \, Π_2\] παράγουν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα πλάτους \[Α\] και μήκους κύματος \[λ\]. Η εξίσωση ταλάντωσης της πηγής \[Π_1\] είναι \[y_{Π_1}=Αημωt\]. Η απόσταση των δύο πηγών είναι \[Π_1Π_2=d=3,5λ\]. Σημείο Κ της επιφάνειας του υγρού και του ευθύγραμμου τμήματος \[Π_1Π_2\] αρχίζει να ταλαντώνεται λόγω του κύματος που φτάνει απ’ την πηγή \[Π_2\]. Στο σημείο Κ αρχίζει η συμβολή τη στιγμή που αυτό περνά απ’ τη Θ.Ι. του για τρίτη φορά απ’ την έναρξη της ταλάντωσής του. Στο παραπάνω σχήμα φαίνεται η χρονική μεταβολή του πλάτους του σημείου Κ. Η περίοδος ταλάντωσης των πηγών είναι:
22. Δύο σύγχρονες πηγές δημιουργούν στην επιφάνεια του υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\]. Στο παρακάτω σχήμα φαίνεται η μεταβολή της απομάκρυνσης ενός σημείου Σ της επιφάνειας με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
23. Κατά μήκος γραμμικού ελαστικού μέσου διαδίδεται αρμονικό κύμα μήκους κύματος \[λ\] και περιόδου \[Τ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Τα σημεία του μέσου που βρίσκονται σε αντίθεση φάσης:
24. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν στην επιφάνεια ελαστικού μέσου εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Η εξίσωση της ταλάντωσης της πηγής \[Π_2\] είναι \[y_{Π_2 }=0,01 ημ2πt\] (S.I.). Σημείο Ζ της επιφάνειας έχει αποστάσεις \[r_{1Z}\, , \, r_{2Z}\] αντίστοιχα απ’ τις δύο πηγές και αρχίζει να ταλαντώνεται λόγω του κύματος απ’ την πηγή \[Π_1\]. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της συνάρτησης της απομάκρυνσης του σημείου Ζ απ’ τη Θ.Ι. του με το χρόνο. Τη χρονική στιγμή \[t_1\] αρχίζει η συμβολή των δύο κυμάτων στο Ζ. Το σημείο Ζ ανήκει σε ενισχυτική υπερβολή που είναι:
25. Κατά μήκος γραμμικού ελαστικού μέσου διαδίδεται αρμονικό κύμα κατά την αρνητική φορά του άξονα \[x' Ox\] με μήκος κύματος \[λ\]. Σημείο Ζ του μέσου διάδοσης που βρίσκεται στον αρνητικό ημιάξονα \[Οx'\] είναι το πρώτο σημείο του ημιάξονα αυτού που έχει κάθε στιγμή ίδια απομάκρυνση και ταχύτητα με αυτή της αρχής Ο. Σημείο Η του αρνητικού ημιάξονα μετά την έναρξη της ταλάντωσής του έχει κάθε στιγμή αντίθετη απομάκρυνση και ταχύτητα με το Ζ ενώ μεταξύ του Ζ και του Η υπάρχουν τρία σημεία σε αντίθεση φάσης με το Η. Η θέση του Η είναι:
26. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, ,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\]. Τα σημεία \[Ζ\, ,\, Η\] ανήκουν πάνω σε ενισχυτικές υπερβολές και η υπερβολή που περνάει απ’ το \[Ζ\] αντιστοιχεί στον ακέραιο αριθμό \[Ν\]. Αν μεταξύ των δύο παρακάτω υπερβολών σχηματίζονται \[15\] υπερβολές ενίσχυσης συμπεριλαμβανομένης και της μεσοκαθέτου, τότε ο ακέραιος αριθμός \[Ν'\] που αντιστοιχεί στην υπερβολή που διέρχεται απ’ το \[Η\] είναι:
27. Σε επιφάνεια υγρού δύο σύγχρονες πηγές \[Π_1\, , \, Π_2 \] δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\] και συχνότητας \[f\]. Η απόσταση των δύο πηγών είναι \[Π_1Π_2= d =2,5\, λ \]. Αν τριπλασιάσω την κοινή συχνότητα των δύο σύγχρονων πηγών, ο παραπάνω αριθμός γίνεται:
28. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, ,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και περιόδου \[Τ\]. Σημείο Ζ της επιφάνειας απέχει απ’ τις δύο πηγές αποστάσεις \[r_1=2\, m\] και \[r_2=1,75\, m\]. Η ταχύτητα διάδοσης του κύματος είναι \[υ_δ=2\, \frac{m}{s}\]. Για να παραμένει το Ζ συνεχώς ακίνητο μετά τη συμβολή τότε η συχνότητα των δύο πηγών πρέπει να παίρνει τις τιμές:
29. Σύγχρονες πηγές \[Π_1\, ,\, Π_2\] έχουν ίδια εξίσωση ταλάντωσης \[y=A ημ \frac{ 2πt }{ T }\] και δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα μήκους κύματος \[λ\]. Σημείο \[Σ\] απέχει απ’ τις δύο πηγές \[r_{1Σ}=3λ\] και \[r_{2Σ}=4,5λ\] αντίστοιχα. Απ’ τη χρονική στιγμή \[t_1=2T\] μέχρι τη χρονική στιγμή \[t_2=5T\] το σημείο \[Σ\] έχει διανύσει διάστημα:
30. Εγκάρσιο αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο που ταυτίζεται με τον άξονα \[x' x\]. Η εξίσωση του κύματος είναι της μορφής \[y=A ημ2π \left( \frac{t}{T}+\frac{x}{λ} \right) \]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της φάσης σημείου Μ του μέσου διάδοσης με το χρόνο. Να επιλέξετε τη σωστή απάντηση.

    +30

    CONTACT US
    CALL US