MENU

Τεστ στα Κύματα Α (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
1. Στην παρακάτω πειραματική διάταξη που αποτελείται από δύο σωλήνες Α, Β ένα διαπασών δημιουργεί ηχητικό κύμα μήκους κύματος \[λ\] πάνω απ’ την οπή Ο. Τα κύματα αυτά φτάνουν στην οπή Σ ακολουθώντας είτε τη διαδρομή ΟΑΣ είτε τη διαδρομή ΟΒΣ. Έτσι στο Σ έχουμε τη συμβολή δύο κυμάτων και δημιουργείται σύνθετος ήχος που η έντασή του ανιχνεύεται μέσω ενός ανιχνευτή που βρίσκεται ακριβώς έξω απ’ την οπή Σ. Ο δεξιός σωλήνας Β μπορεί να μετακινείται δεξιά ή αριστερά και έτσι η απόσταση \[x\] να μεταβάλλεται. Στη διάρκεια της μεταβολής αυτής αλλάζει και η ένταση του ήχου που μετρά ο ανιχνευτής στο Σ και μάλιστα αυξομειώνεται μεταξύ της τιμής μηδέν και μιας μέγιστης τιμής. Όταν η απόσταση έχει την τιμή \[x\] του παρακάτω σχήματος ο ανιχνευτής μετρά μέγιστη ένταση για τον σύνθετο ήχο στο Σ. Μετακινώ το δεξί σωλήνα Β προς τα δεξιά και όταν η μετακίνηση γίνει \[Δx=0,3\, m\], τότε ο ανιχνευτής καταγράφει τη δεύτερη παύση του ήχου στη διάρκεια της μετακίνησης αυτής. Απ’ την αρχική θέση \[x\] μετακινώ το σωλήνα Β προς τα αριστερά μέχρι να γίνει \[x=0\] και τότε έχω τον πρώτο μηδενισμό του σύνθετου ήχου στο σημείο Σ κατά τη διάρκεια της μετακίνησης αυτής. Αν ισχύει \[d_1-d_2=0,3\, m\] η απόσταση \[x\] είναι:
2. Κατά μήκος ομογενούς ελαστικού μέσου που ταυτίζεται με τον άξονα \[x' Ox\] διαδίδεται εγκάρσιο αρμονικό κύμα μήκους κύματος \[λ\] και περιόδου \[T\]. Δύο σημεία Κ, Λ αρχίζουν να ταλαντώνονται πριν τη χρονική στιγμή \[t_1\]. Το σημείο Κ έχει τη χρονική στιγμή \[t_2=t_1+\frac{T}{6}\] φάση \[φ_{Κ,2}=\frac{10π}{3}\, rad\] ενώ το σημείο Λ έχει τη χρονική στιγμή \[t_3=t_1+\frac{4T}{3}\] φάση \[φ_{Λ,3}=\frac{25π}{3}\, rad\]. A. Οι θέσεις ισορροπίας των σημείων Κ, Λ απέχουν μεταξύ τους:
3. Αρμονικό κύμα διαδίδεται κατά την αρνητική φορά του άξονα \[x' Ox\]. Η αρχή του άξονα Ο έχει εξίσωση της μορφής \[y=A ημ \frac{2πt}{T}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο τη στιγμή \[t_1\] εγκάρσιου αρμονικού κύματος που διαδίδεται κατά τη διεύθυνση του άξονα \[x' x\]. Το κύμα περιγράφεται απ’ την εξίσωση \[y=A ημ2π\left( \frac{t}{T} - \frac{ x }{ λ } \right) \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν σε επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Σημείο Ζ της επιφάνειας του υγρού που φαίνεται στο παρακάτω σχήμα απέχει αποστάσεις \[r_{1Z}\, ,\, r_{2Z}\] αντίστοιχα απ’ τις δύο πηγές. Το Ζ ανήκει στη δεύτερη ενισχυτική υπερβολή μετά τη μεσοκάθετο ε του τμήματος \[Π_1Π_2\]. Το τμήμα \[Π_1 Ζ\] είναι κάθετο στο τμήμα \[Π_2 Ζ\] και ισχύει \[ r_{1Z} \cdot r_{2Z}=6λ^2\]. Η απόσταση των δύο πηγών είναι \[d=8\, m\]. Το μήκος κύματος των παραγόμενων κυμάτων είναι:
6. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, , \, Π_2\] παράγουν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα πλάτους \[Α\] και μήκους κύματος \[λ\]. Η εξίσωση ταλάντωσης της πηγής \[Π_1\] είναι \[y_{Π_1}=Αημωt\]. Η απόσταση των δύο πηγών είναι \[Π_1Π_2=d=3,5λ\]. Σημείο Κ της επιφάνειας του υγρού και του ευθύγραμμου τμήματος \[Π_1Π_2\] αρχίζει να ταλαντώνεται λόγω του κύματος που φτάνει απ’ την πηγή \[Π_2\]. Στο σημείο Κ αρχίζει η συμβολή τη στιγμή που αυτό περνά απ’ τη Θ.Ι. του για τρίτη φορά απ’ την έναρξη της ταλάντωσής του. Στο παραπάνω σχήμα φαίνεται η χρονική μεταβολή του πλάτους του σημείου Κ. Η περίοδος ταλάντωσης των πηγών είναι:
7. Δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2\] δημιουργούν σε επιφάνεια υγρού εγκάρσια αρμονικά κ ύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Σημείο Ζ της επιφάνειας του υγρού που φαίνεται στο παρακάτω σχήμα απέχει αποστάσεις \[r_{1Z}\, ,\, r_{2Z}\] αντίστοιχα απ’ τις δύο πηγές. Το Ζ ανήκει στη δεύτερη ενισχυτική υπερβολή μετά τη μεσοκάθετο \[ε\] του τμήματος \[Π_1Π_2\]. Το τμήμα \[Π_{1Ζ}\] είναι κάθετο στο τμήμα \[Π_{2Ζ}\] και ισχύει \[r_{1Z} \cdot r_{2Z}=6λ^2\]. Η απόσταση των δύο πηγών είναι \[d=8\, m\]. Ο αριθμός των υπερβολών απόσβεσης που δημιουργούνται μεταξύ των πηγών είναι:
8. Σε κάποιο σημείο ενός υγρού δημιουργούμε αρμονικά κύματα με την πηγή Π. Στο σημείο Σ της επιφάνειας σε απόσταση \[α\] απ’ την πηγή τα κύματα μπορούν να φτάσουν ή απευθείας (ακολουθώντας τη διαδρομή \[ΠΣ=α\]) ή αφού ανακλαστούν στον ανακλαστήρα που βρίσκεται στην επιφάνεια του υγρού και πάνω στη μεσοκάθετο ΑΜ του τμήματος ΠΣ. Ο ανακλαστήρας απέχει απόσταση \[Η\] απ’ το τμήμα ΜΣ (είναι στη θέση Α) και το Σ παραμένει συνεχώς ακίνητο μετά τη συμβολή των κυμάτων. Αρχίζουμε να μετακινούμε αργά τον ανακλαστήρα πάνω στη διεύθυνση της μεσοκαθέτου ΑΜ του τμήματος ΠΣ απομακρύνοντάς τον απ’ το τμήμα αυτό. Όταν ο ανακλαστήρας μετατοπιστεί απ’ την αρχική του θέση Α κατά \[d\] (θέση Β) τότε το Σ ακινητοποιείται μόνιμα για πρώτη φορά στη διάρκεια της μετακίνησής του αυτής. Το μήκος κύματος \[λ\] του κύματος που παράγει η πηγή Π είναι:
9. Δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2\] που βρίσκονται αντίστοιχα στα σημεία Κ και Λ της επιφάνειας του υγρού παράγουν πανομοιότυπα εγκάρσια αρμονικά κύματα με ίδιο πλάτος \[Α\], μήκος κύματος \[λ_1\] και συχνότητα \[f_1\]. Μεταξύ των δύο πηγών και πάνω στο ευθύγραμμο τμήμα ΚΛ δημιουργούνται \[5\] σημεία που μετά τη συμβολή ταλαντώνονται με μέγιστο πλάτος. Το κοντινότερο απ’ τα παραπάνω σημεία απ’ την πηγή \[Π_1\] απέχει απ’ αυτήν \[0,1λ_1\]. Αυξάνω κατά \[100\, \%\] τη συχνότητα των δύο πηγών ώστε αυτές να παραμένουν σύγχρονες και να έχουν το ίδιο πλάτος \[Α\]. Ο αριθμός των σημείων του ΚΛ που παρουσιάζουν τώρα ενισχυτική συμβολή είναι:
10. Σε κάποιο σημείο ενός υγρού δημιουργούμε αρμονικά κύματα με την πηγή Π. Στο σημείο Σ της επιφάνειας σε απόσταση \[α\] απ’ την πηγή τα κύματα μπορούν να φτάσουν ή απευθείας (ακολουθώντας τη διαδρομή \[ΠΣ=α\]) ή αφού ανακλαστούν στον ανακλαστήρα που βρίσκεται στην επιφάνεια του υγρού και πάνω στη μεσοκάθετο ΑΜ του τμήματος ΠΣ. Αρχικά ο ανακλαστήρας απέχει απόσταση \[H\] απ’ το τμήμα ΠΣ (θέση Α) και το Σ ταλαντώνεται με μέγιστο πλάτος μετά τη συμβολή των κυμάτων. Aλλάζουμε τη συχνότητα της πηγής Π ώστε στο Σ να έχουμε απόσβεση. Μετακινούμε τον ανακλαστήρα κατά την ίδια κατεύθυνση και στη θέση Γ που απέχει \[d_1\] απ’ τη θέση Α παρατηρούμε ότι το Σ παρουσιάζει ενίσχυση ενώ στη διάρκεια της μετακίνησης μέχρι το Γ το Σ έχει ακινητοποιηθεί μόνιμα δύο φορές. Το νέο μήκος κύματος \[λ_1\] του κύματος της πηγής Π είναι:
11. Στην επιφάνεια υγρού δύο σύγχρονες πηγές \[Π_1\, , \, Π_2 \] δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Η ευθεία \[yy'\] της επιφάνειας είναι κάθετη στο ευθύγραμμο τμήμα \[Π_1Π_2\]. Η απόσταση \[Π_1Π_2\] είναι ίση με \[d=2,7\, λ \]. Το σημείο Η στο παρακάτω σχήμα είναι το πιο απομακρυσμένο σημείο της ημιευθείας \[Π_1y\] απ’ την πηγή \[Π_1\] που εμφανίζει αποσβεστική συμβολή. Μεταξύ των δύο πηγών ο αριθμός των αποσβεστικών υπερβολών που δημιουργούνται είναι:
12. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], ταχύτητας διάδοσης \[υ_δ\] και έχουν εξισώσεις ταλάντωσης της μορφής \[y=A ημ \frac{ 2πt }{ T }\]. Σημείο Ζ της επιφάνειας απέχει απ’ τις δύο πηγές αποστάσεις \[r_{1Z}\, , \, r_{2Z}\] με \[r_{1Z} < r_{2Z} \]. Το σημείο Ζ αρχίζει να ταλαντώνεται όταν η πηγή \[Π_2\] περνά για έκτη φορά απ’ τη Θ.Ι. της μετά την έναρξη της ταλάντωσής της. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή της ταχύτητας του Ζ. Η διαφορά αποστάσεων του Ζ απ’ τις δύο πηγές είναι \[r_{2_Z}-r_{1_Z}\]:
13. Δύο σύγχρονες πηγές κυμάτων δημιουργούν πάνω στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και χωρίς αρχική φάση. Τα σημεία της επιφάνειας στα οποία παρουσιάζεται απόσβεση τη στιγμή που αρχίζει η συμβολή σ’ αυτά:
14. Σε ομογενές γραμμικό ελαστικό μέσο που εκτείνεται κατά τη διεύθυνση του άξονα \[x' x\] διαδίδεται εγκάρσιο αρμονικό κύμα. Η αρχή του άξονα Ο έχει εξίσωση ταλάντωσης της μορφής \[y=A ημωt\]. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή της φάσης σημείου Ζ του μέσου διάδοσης που βρίσκεται στη θέση \[x_Z=0,5\, m\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Τρέχον αρμονικό κύμα μήκους κύματος \[λ\] διαδίδεται σε γραμμικό ελαστικό μέσο που ταυτίζεται με τον άξονα \[x' Ox\]. Να επιλέξετε τη σωστή απάντηση. Η διαφορά φάσης δύο σημείων του μέσου μια χρονική στιγμή \[t_1\] που και στα δύο σημεία έχει φτάσει το κύμα:
16. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο εγκάρσιου αρμονικού κύματος που διαδίδεται κατά τη διεύθυνση του άξονα \[x' x\]. Το κύμα περιγράφεται απ’ την εξίσωση \[y=A ημ2π\left( \frac{t}{T}-\frac{x}{λ}\right) \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Το σημείο Η απέχει από τις δύο πηγές \[r_{1H}=2\,λ\] και \[r_{2H}=5\, λ\] αντίστοιχα. Αυξάνω αργά τη συχνότητα των δύο πηγών ώστε αυτές να παραμένουν συνεχώς σύγχρονες. Το σημείο H στη διάρκεια της αύξησης των δύο συχνοτήτων:
18. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν στην επιφάνεια ελαστικού μέσου εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Η εξίσωση της ταλάντωσης της πηγής \[Π_2\] είναι \[y_{Π_2 }=0,01 ημ2πt\] (S.I.). Σημείο Ζ της επιφάνειας έχει αποστάσεις \[r_{1Z}\, , \, r_{2Z}\] αντίστοιχα απ’ τις δύο πηγές και αρχίζει να ταλαντώνεται λόγω του κύματος απ’ την πηγή \[Π_1\]. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της συνάρτησης της απομάκρυνσης του σημείου Ζ απ’ τη Θ.Ι. του με το χρόνο. Τη χρονική στιγμή \[t_1\] αρχίζει η συμβολή των δύο κυμάτων στο Ζ. Το σημείο Ζ ανήκει σε ενισχυτική υπερβολή που είναι:
19. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, ,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και περιόδου \[Τ\]. Σημείο Ζ της επιφάνειας απέχει απ’ τις δύο πηγές αποστάσεις \[r_1=2\, m\] και \[r_2=1,75\, m\]. Η ταχύτητα διάδοσης του κύματος είναι \[υ_δ=2\, \frac{m}{s}\]. Για να παραμένει το Ζ συνεχώς ακίνητο μετά τη συμβολή τότε η συχνότητα των δύο πηγών πρέπει να παίρνει τις τιμές:
20. Στην ήρεμη επιφάνεια υγρού του παρακάτω σχήματος δύο σύγχρονες πηγές κυμάτων παράγουν όμοια κύματα μήκους κύματος \[λ\] και πλάτους \[Α\]. Η απόσταση των δύο πηγών είναι \[Π_1 Π_2=\frac{d}{\sqrt{3}}\]. Τα σημεία \[Φ_0\, , \, Φ_1\, ,\, Φ_2 \] είναι διαδοχικά σημεία ενισχυτικής συμβολής και το \[Φ_0\] ανήκει στη μεσοκάθετο του τμήματος \[Π_1 Π_2\]. Το μήκος κύματος των παραγόμενων κυμάτων είναι:
21. Σε οριζόντιο ελαστικό μέσο που εκτείνεται στη διεύθυνση του άξονα \[x' Ox\] δημιουργείται εγκάρσιο αρμονικό κύμα. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο του κύματος τη χρονική στιγμή \[t_1\] στο τμήμα ΚΛ του μέσου. Η ταχύτητα διάδοσης του κύματος είναι \[υ_δ=2\, \frac{m}{s}\] και η περίοδός του είναι \[Τ\]. Τη στιγμή \[t_1\] το μέτρο της ταχύτητας του Ζ είναι:
22. Κατά μήκος ιδανικού ελατηρίου μεγάλου μήκους, πηγή αρμονικού κύματος συχνότητας \[f\] δημιουργεί διάμηκες κύμα. Το ελάχιστο τμήμα του ελατηρίου που απαιτείται για να δημιουργηθούν σ’ αυτό \[7\] πυκνώματα έχει μήκος \[d\]. Μεταβάλλω τη συχνότητα της πηγής σε \[f'\] και παρατηρώ ότι το ελάχιστο τμήμα της χορδής που απαιτείται για να δημιουργηθούν \[19\] πυκνώματα έχει πάλι μήκος \[d\]. Η συχνότητα \[f'\] είναι:
23. Η διάταξη του παρακάτω σχήματος αποτελείται από δύο σωλήνες Α και Β. Ο σωλήνας Β μπορεί να μετακινείται και έτσι να μεταβάλλεται η απόσταση \[x\]. Μια ηχητική πηγή δημιουργεί στο ανοικτό άκρο του σωλήνα ηχητικό κύμα μήκους κύματος \[λ\]. Στο άλλο άκρο Σ του σωλήνα φτάνουν ταυτόχρονα δύο κύματα. Ένα κύμα που μεταφέρεται απ’ το σωλήνα Α και ένα που μεταφέρεται απ’ το σωλήνα Β. Όταν μετακινούμε το σωλήνα Β (μεταβάλλεται η απόσταση \[x\]) παρατηρούμε ότι η ένταση του ήχου στο Σ αλλάζει και παίρνει τιμές από μηδέν μέχρι μια μέγιστη τιμή. Απ’ την αρχική θέση του \[x\] μετακινώ το σωλήνα Β προς τα αριστερά μειώνοντας το \[x\] κατά \[Δx'=x_1-x_2\]. Όταν γίνει \[x=x_2\] παρατηρούμε την πρώτη μεγιστοποίηση της έντασης του ήχου μετά τη μετακίνηση αυτή. Το νέο \[Δx'\] είναι:
24. Στην παρακάτω πειραματική διάταξη που αποτελείται από δύο σωλήνες Α, Β ένα διαπασών δημιουργεί ηχητικό κύμα μήκους κύματος \[λ\] πάνω απ’ την οπή Ο. Τα κύματα αυτά φτάνουν στην οπή Σ ακολουθώντας είτε τη διαδρομή ΟΑΣ είτε τη διαδρομή ΟΒΣ. Έτσι στο Σ έχουμε τη συμβολή δύο κυμάτων και δημιουργείται σύνθετος ήχος που η έντασή του ανιχνεύεται μέσω ενός ανιχνευτή που βρίσκεται ακριβώς έξω απ’ την οπή Σ. Ο δεξιός σωλήνας Β μπορεί να μετακινείται δεξιά ή αριστερά και έτσι η απόσταση \[x\] να μεταβάλλεται. Στη διάρκεια της μεταβολής αυτής αλλάζει και η ένταση του ήχου που μετρά ο ανιχνευτής στο Σ και μάλιστα αυξομειώνεται μεταξύ της τιμής μηδέν και μιας μέγιστης τιμής. Όταν η απόσταση έχει την τιμή \[x\] του παρακάτω σχήματος ο ανιχνευτής μετρά μέγιστη ένταση για τον σύνθετο ήχο στο Σ. Μετακινώ το δεξί σωλήνα Β προς τα δεξιά και όταν η μετακίνηση γίνει \[Δx=0,3\, m\], τότε ο ανιχνευτής καταγράφει τη δεύτερη παύση του ήχου στη διάρκεια της μετακίνησης αυτής. Το μήκος κύματος \[λ\] του κύματος που παράγει το διαπασών είναι:
25. Εγκάρσιο κύμα διαδίδεται κατά μήκος γραμμικού ελαστικού μέσου που η διεύθυνσή του ταυτίζεται με τον άξονα \[x' Ox\]. Το κύμα διαδίδεται κατά τη θετική φορά. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή της απομάκρυνσης σημείου Σ που βρίσκεται στη θέση \[x_Σ=3,2\, m\]. Την \[t=0\] αρχίζει να ταλαντώνεται η αρχή του άξονα Ο. Τη στιγμή που το Σ αρχίζει να ταλαντώνεται, η αρχή Ο έχει φάση \[φ=8π\, rad\]. Η εξίσωση του τρέχοντος κύματος είναι:
26. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, ,\, Π_2\] παράγουν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα πλάτους \[Α\] και μήκους κύματος \[λ\]. Η εξίσωση ταλάντωσης της πηγής \[Π_1\] είναι \[y_{Π_1 }=Α ημωt\]. Η απόσταση των δύο πηγών είναι \[Π_1Π_2=d=3,5λ\]. Σημείο Κ της επιφάνειας του υγρού και του ευθύγραμμου τμήματος \[Π_1Π_2\] αρχίζει να ταλαντώνεται λόγω του κύματος που φτάνει απ’ την πηγή \[Π_2\]. Στο σημείο Κ αρχίζει η συμβολή τη στιγμή που αυτό περνά απ’ τη Θ.Ι. του για τρίτη φορά απ’ την έναρξη της ταλάντωσής του. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή του πλάτους του σημείου Κ. Το σημείο Κ απέχει απ’ την πηγή \[Π_1\]:
27. Δύο σύγχρονες πηγές κυμάτων δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\] και περιόδου \[Τ\]. Στο διπλανό σχήμα φαίνονται οι υπερβολές ενισχυτικής συμβολής (συνεχείς γραμμές) και οι υπερβολές αναιρετικής συμβολής (διακεκομμένες γραμμές). Το σημείο Μ είναι το μέσο του ευθύγραμμου τμήματος \[Π_1Π_2\].
28. Στην επιφάνεια υγρού δύο σύγχρονες πηγές κυμάτων δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\] και περιόδου \[Τ\]. Η ευθεία \[ε\] της επιφάνειας του υγρού είναι κάθετη στο ευθύγραμμο τμήμα \[Π_1Π_2\]. Το μήκος του \[Π_1Π_2\] είναι \[d=3,7\, λ\]. Στο σημείο Ζ της ευθείας \[ε\] τα κύματα που συμβάλλουν φτάνουν με χρονοκαθυστέρηση το ένα απ’ το άλλο ίση με \[\frac{3T }{ 2} \]. Πάνω σ’ όλη την ευθεία \[ε\] ο αριθμός των σημείων που παρουσιάζουν απόσβεση είναι:
29. Δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], περιόδου \[Τ\] και μήκους κύματος \[λ\]. Στο παρακάτω σχήμα φαίνεται η μεταβολή του πλάτους σημείου Σ της επιφάνειας του υγρού με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
30. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, ,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και περιόδου \[Τ\]. Σημείο Ζ της επιφάνειας απέχει απ’ τις δύο πηγές αποστάσεις \[r_1=2\, m\] και \[r_2=1,75\, m\]. Η ταχύτητα διάδοσης του κύματος είναι \[υ_δ=2\, \frac{m}{s}\]. Αν η συχνότητα των δύο πηγών είναι \[f=88\, Hz\], τότε ο αριθμός των ταλαντώσεων που εκτελεί το Ζ μέχρι την έναρξη της συμβολής σ’ αυτό είναι:

    +30

    CONTACT US
    CALL US