1. Στο παρακάτω σχήμα ο οριζόντιος άξονας του ραβδόμορφου μαγνήτη περνά απ’ το κέντρο του κυκλικού αγωγού που σ’ αυτόν έχει δημιουργηθεί εγκοπή. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν ο μαγνήτης αρχίζει να κινείται προς τα δεξιά:
3. Δύο ευθύγραμμοι λεπτοί μεταλλικοί αγωγοί ΟΑ και ΟΓ στρέφονται στο ίδιο επίπεδο γύρω από άξονα που διέρχεται απ’ το κοινό άκρο Ο και είναι κάθετος σ’ αυτούς με την ίδια σταθερή γωνιακή ταχύτητα κατά μέτρο και φορά. Οι αγωγοί έχουν μήκη \[\ell_{OA}\, , \, \ell_{ΟΓ} \] αντίστοιχα με \[\ell_{OA}=\frac{\ell_{ΟΓ} }{ 2 }\] και βρίσκονται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο περιστροφής τους. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Για τις επαγωγικές ΗΕΔ που δημιουργούνται στους αγωγούς ισχύει: 4. Το τετράγωνο αγώγιμο πλαίσιο ΚΛΜΝ του παρακάτω σχήματος έχει πλευρά μήκους \[α\] και βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] με το επίπεδό του κάθετο στις δυναμικές γραμμές του πεδίου. Σε ποια απ’ τα παρακάτω πειράματα που θα πραγματοποιηθούν στο ίδιο χρονικό διάστημα \[Δt\] θα εμφανιστεί στο πλαίσιο μεγαλύτερη κατ’ απόλυτη τιμή μέση επαγωγική ΗΕΔ;
5. Ο ανοικτός μεταλλικός δακτύλιος του παρακάτω σχήματος διατηρείται ακλόνητος. Ο ραβδόμορφος μαγνήτης πλησιάζει τον δακτύλιο με σταθερή ταχύτητα \[υ\].
Α) Στη διάρκεια του πλησιάσματος :
α) ο δακτύλιος αποκτά βόρειο και νότιο πόλο.
β) ο δακτύλιος διαρρέεται από επαγωγικό ρεύμα.
γ) προσφέρουμε συνεχώς ενέργεια στο μαγνήτη.
δ) ο δακτύλιος αποκτά επαγωγική ΗΕΔ.
Β) Στη διάρκεια του πλησιάσματος του μαγνήτη:
α) στα άκρα του δακτυλίου δημιουργείται επαγωγική τάση με (+) στο άκρο Κ.
β) στα άκρα του δακτυλίου δημιουργείται επαγωγική τάση με (+) στο άκρο Λ.
γ) στο δακτύλιο δεν εμφανίζεται επαγωγική τάση.
8. Ο μεταλλικός δακτύλιος του παρακάτω σχήματος είναι ανοικτός και κρέμεται με τη βοήθεια αβαρούς μονωτικού νήματος έτσι ώστε το επίπεδό του να παραμένει κατακόρυφο. Πλησιάζω στο δακτύλιο ραβδόμορφο μαγνήτη που ο άξονάς του ταυτίζεται με τον οριζόντιο άξονα που διέρχεται απ’ το κέντρο του δακτυλίου. Στη διάρκεια της προσέγγισης του μαγνήτη στο δακτύλιο:
13. Η ράβδος ΟΓ του παρακάτω σχήματος έχει μήκος \[ \ell \] και αποτελείται από δύο ίσα τμήματα. Το ένα τμήμα ΟΑ είναι από πλαστικό και το άλλο τμήμα ΑΓ είναι από μέταλλο. Η ράβδος στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] ως προς άξονα κάθετο σ’ αυτήν, που διέρχεται απ’ το άκρο της Ο. Η ράβδος βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι γραμμές του είναι παράλληλες στον άξονα περιστροφής. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η επαγωγική ΗΕΔ που εμφανίζεται στο τμήμα ΑΓ της ράβδου είναι ίση με:
18. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν σε ένα μαγνητικό πεδίο τοποθετήσω μια κλειστή επιφάνεια, τότε η μαγνητική ροή που διέρχεται απ’ την επιφάνεια αυτή είναι \[0\] γιατί: 20. Τετράγωνο ορθογώνιο μεταλλικό πλαίσιο αμελητέας αντίστασης στρέφεται μέσα σε Ο.Μ.Π. ως προς άξονα που διέρχεται από τα μέσα δύο απέναντι πλευρών του και είναι κάθετος στις δυναμικές γραμμές με σταθερή γωνιακή ταχύτητα. Τα άκρα του πλαισίου συνδέονται με αντιστάτη \[R\]. Διπλασιάζω το μέτρο της γωνιακής ταχύτητας περιστροφής του πλαισίου. Τότε: 22. Τα πανομοιότυπα τετραγωνικά πλαίσια (1), (2) του παρακάτω σχήματος έχουν εμβαδά \[S\] αποτελούνται από \[Ν\] σπείρες και βρίσκονται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\]. Το πλαίσιο (1) είναι αρχικά κάθετο στις δυναμικές γραμμές του μαγνητικού πεδίου ενώ το πλαίσιο (2) είναι παράλληλο στις δυναμικές του γραμμές. Στρέφουμε τα πλαίσια κατά γωνία \[30^0\] κατά τη φορά που φαίνεται στο σχήμα. Αν \[ΔΦ_1\] και \[ΔΦ_2\] είναι οι μεταβολές των μαγνητικών ροών μιας σπείρας του πλαισίου (1) και του πλαισίου (2) αντίστοιχα, τότε ισχύει:
27. Δύο ορθογώνια μεταλλικά πλαίσια \[(1),\, (2)\] αμελητέας αντίστασης έχουν ίδιο αριθμό σπειρών και στρέφονται με σταθερές γωνιακές ταχύτητες μέσα στο ίδιο Ο.Μ.Π. ως προς άξονες κάθετους στις δυναμικές γραμμές που διέρχονται από τα μέσα των δύο απέναντι πλευρών τους. Στα άκρα του κάθε πλαισίου έχουμε συνδέσει από έναν ίδιο αντιστάτη αντίστασης \[R\]. Στα παρακάτω σχήματα φαίνονται τα διαγράμματα των τάσεων που δημιουργούνται στα άκρα του κάθε πλαισίου.
Α α) Το πλαίσιο \[(2)\] περιστρέφεται με διπλάσια γωνιακή ταχύτητα απ’ το πλαίσιο \[(1)\], ενώ τα εμβαδά των σπειρών των δύο πλαισίων είναι ίσα.
β) Το πλαίσιο \[(2)\] περιστρέφεται με διπλάσια γωνιακή ταχύτητα απ’ το πλαίσιο \[(1)\] και κάθε σπείρα του έχει το μισό εμβαδόν από κάθε σπείρα του πλαισίου \[(1)\].
γ) Το πλαίσιο \[(1)\] περιστρέφεται με διπλάσια γωνιακή ταχύτητα απ’ το πλαίσιο \[(2)\] και κάθε σπείρα του έχει το μισό εμβαδόν από κάθε σπείρα του πλαισίου \[(2)\].
Β) Για τη μέση ισχύ \[\bar{P}_1\] που καταναλώνεται στον αντιστάτη του πλαισίου \[(1)\] και για την αντίστοιχη \[\bar{P}_2\] στο πλαίσιο \[(2)\] ισχύει:
α) \[\bar{P}_1=\bar{P}_2\],
β) \[\bar{P}_1=2\bar{P}_2\],
γ) \[\bar{P}_1=\frac{ \bar{P}_2 }{ 2 } \].