1. Η αγώγιμη ράβδος ΟΑ μήκους \[\ell\] στρέφεται γύρω από άξονα που διέρχεται απ’ το Ο και είναι κάθετη σ’ αυτήν με σταθερή γωνιακή ταχύτητα \[ω\]. Η ράβδος βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές του είναι παράλληλες στον άξονα περιστροφής της. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Σύμφωνα με το νόμο της επαγωγής (Faraday), η ΗΕΔ από επαγωγή που δημιουργείται σ’ ένα πηνίο: 4. Το τετράγωνο αγώγιμο πλαίσιο ΚΛΜΝ του παρακάτω σχήματος έχει πλευρά μήκους \[α\] και βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] με το επίπεδό του κάθετο στις δυναμικές γραμμές του πεδίου. Σε ποια απ’ τα παρακάτω πειράματα που θα πραγματοποιηθούν στο ίδιο χρονικό διάστημα \[Δt\] θα εμφανιστεί στο πλαίσιο μεγαλύτερη κατ’ απόλυτη τιμή μέση επαγωγική ΗΕΔ;
6. Η σφαιρική επιφάνεια του παρακάτω σχήματος είναι τοποθετημένη μέσα σε μαγνητικό πεδίο. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
8. Δύο ευθύγραμμοι λεπτοί μεταλλικοί αγωγοί ΟΑ και ΟΓ στρέφονται στο ίδιο επίπεδο γύρω από άξονα που διέρχεται απ’ το κοινό άκρο Ο και είναι κάθετος σ’ αυτούς με την ίδια σταθερή γωνιακή ταχύτητα κατά μέτρο και φορά. Οι αγωγοί έχουν μήκη \[\ell_{OA}\, , \, \ell_{ΟΓ} \] αντίστοιχα με \[\ell_{OA}=\frac{\ell_{ΟΓ} }{ 2 }\] και βρίσκονται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο περιστροφής τους. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Για τις επαγωγικές ΗΕΔ που δημιουργούνται στους αγωγούς ισχύει: 13. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στις οικίες το πλάτος της εναλλασσόμενης τάσης \[V\] και η συχνότητά της είναι \[f\]. Για τις τιμές αυτές ισχύει: 16. Ο μεταλλικός δακτύλιος του παρακάτω σχήματος είναι ανοικτός και κρέμεται με τη βοήθεια αβαρούς μονωτικού νήματος έτσι ώστε το επίπεδό του να παραμένει κατακόρυφο. Πλησιάζω στο δακτύλιο ραβδόμορφο μαγνήτη που ο άξονάς του ταυτίζεται με τον οριζόντιο άξονα που διέρχεται απ’ το κέντρο του δακτυλίου. Στη διάρκεια της προσέγγισης του μαγνήτη στο δακτύλιο:
30. Δύο ορθογώνια μεταλλικά πλαίσια \[(1),\, (2)\] αμελητέας αντίστασης έχουν ίδιο αριθμό σπειρών και στρέφονται με σταθερές γωνιακές ταχύτητες μέσα στο ίδιο Ο.Μ.Π. ως προς άξονες κάθετους στις δυναμικές γραμμές που διέρχονται από τα μέσα των δύο απέναντι πλευρών τους. Στα άκρα του κάθε πλαισίου έχουμε συνδέσει από έναν ίδιο αντιστάτη αντίστασης \[R\]. Στα παρακάτω σχήματα φαίνονται τα διαγράμματα των τάσεων που δημιουργούνται στα άκρα του κάθε πλαισίου.
Α α) Το πλαίσιο \[(2)\] περιστρέφεται με διπλάσια γωνιακή ταχύτητα απ’ το πλαίσιο \[(1)\], ενώ τα εμβαδά των σπειρών των δύο πλαισίων είναι ίσα.
β) Το πλαίσιο \[(2)\] περιστρέφεται με διπλάσια γωνιακή ταχύτητα απ’ το πλαίσιο \[(1)\] και κάθε σπείρα του έχει το μισό εμβαδόν από κάθε σπείρα του πλαισίου \[(1)\].
γ) Το πλαίσιο \[(1)\] περιστρέφεται με διπλάσια γωνιακή ταχύτητα απ’ το πλαίσιο \[(2)\] και κάθε σπείρα του έχει το μισό εμβαδόν από κάθε σπείρα του πλαισίου \[(2)\].
Β) Για τη μέση ισχύ \[\bar{P}_1\] που καταναλώνεται στον αντιστάτη του πλαισίου \[(1)\] και για την αντίστοιχη \[\bar{P}_2\] στο πλαίσιο \[(2)\] ισχύει:
α) \[\bar{P}_1=\bar{P}_2\],
β) \[\bar{P}_1=2\bar{P}_2\],
γ) \[\bar{P}_1=\frac{ \bar{P}_2 }{ 2 } \].