MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στα άκρα αντιστάτη αντίστασης \[R=10 \,Ω\], εφαρμόζουμε εναλλασσόμενη τάση που η μεταβολή της με το χρόνο φαίνεται στο παρακάτω διάγραμμα. Η τάση αυτή παράγεται από περιστρεφόμενο πλαίσιο μηδενικής αντίστασης.

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

2. Στο παρακάτω σχήμα φαίνεται η μεταβολή της μαγνητικής ροής ενός συρμάτινου πλαισίου σε συνάρτηση με το χρόνο. Το συρμάτινο πλαίσιο έχει αντίσταση \[R\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
3. Το τετράγωνο συρμάτινο πλαίσιο του παρακάτω σχήματος έχει πλευρά \[2α\] και κινείται μπαίνοντας απ’ την \[t=0\] σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Η ταχύτητα του πλαισίου είναι σταθερή και κάθετη στις δυναμικές γραμμές και στην πλευρά ΛM του πλαισίου. Το πεδίο εκτείνεται σε πλάτος \[α\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το πλαίσιο διαρρέεται από επαγωγικό ρεύμα που έχει φορά ομόρροπη των δεικτών του ρολογιού τη χρονική διάρκεια:
4. Να επιλέξετε τις σωστές προτάσεις. Το πηνίο του παρακάτω σχήματος διαρρέεται από ρεύμα που έχει φορά απ’ το Κ προς το Λ. Στο πηνίο εμφανίζεται ΗΕΔ από αυτεπαγωγή και δημιουργείται θετικός πόλος στο Λ. Αυτό σημαίνει ότι το ρεύμα που διαρρέει το πηνίο έχει:
5. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργεί ο αγωγός. Αφήνουμε τον αγωγό ΚΛ ελεύθερο να κινηθεί απ’ την ηρεμία. Αυτός αρχίζει να κατέρχεται χωρίς τα άκρα του να χάνουν την επαφή τους με τους αγωγούς \[Αy_1,\, Γy_2\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Μετά την απόκτηση της μέγιστης ταχύτητάς του αγωγού ΚΛ, η μείωση της βαρυτικής δυναμικής του ενέργειας γίνεται:
6. Στο παρακάτω σχήμα η αγώγιμη ράβδος ΟΓ έχει μήκος \[\ell \], αντίσταση \[R\] και στρέφεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] γύρω από άξονα κάθετο στο επίπεδο περιστροφής και παράλληλο στις δυναμικές γραμμές του πεδίου. Κατά την περιστροφή της ράβδου η γωνιακή ταχύτητά της είναι σταθερή και έχει μέτρο \[ω\] ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\] . Το άκρο Γ της ράβδου έχει γραμμική ταχύτητα μέτρου \[υ\], είναι συνεχώς σε επαφή με κυκλικό αγωγό αμελητέας αντίστασης που έχει κέντρο το Ο και ακτίνα \[\ell\]. Στη διάρκεια της περιστροφής της ράβδου παρατηρείται στο άκρο της Ο αρνητικός πόλος. Αν διπλασιάσουμε την περίοδο περιστροφής της ράβδου και ταυτόχρονα υποδιπλασιάσουμε το μέτρο της έντασης \[\vec{B}\] του μαγνητικού πεδίου, τότε η ένταση του ρεύματος που διαρρέει τον αντιστάτη \[R_1\]:
7. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της συνάρτησης της μαγνητικής ροής που διέρχεται από μια σπείρα ενός συρμάτινου πλαισίου με το χρόνο. Το πλαίσιο αποτελείται από \[Ν\] σπείρες και έχει συνολική αντίσταση \[R\]. Απ’ τη χρονική στιγμή \[t_0=0\] ως τη στιγμή \[t_1\] η ΗΕΔ που εμφανίζεται στο πλαίσιο είναι \[ \mathcal{ E }_{επ_1 }\] και η επαγωγική ΗΕΔ απ’ τη στιγμή \[t_1\] ως τη στιγμή \[4t_1\] είναι \[ \mathcal{E}_{επ_2 } \].
A) H σχέση των επαγωγικών ΗΕΔ που εμφανίζονται στο πλαίσιο είναι:

α) \[ \mathcal{E}_{επ_1 }=\mathcal{E}_{επ_2 } \],        
β) \[ \mathcal{E}_{επ_1 }=2\mathcal{E}_{επ_2 }\],      
γ) \[ \mathcal{E}_{επ_1 }=-\mathcal{E}_{επ_2 }\],       
δ) \[\mathcal{E}_{επ_1 }=-\frac{3}{2} \mathcal{E}_{επ_2 }\].

Β) Το φορτίο που μετατοπίζεται από μία διατομή του σύρματος του πλαισίου απ’ την \[t_0=0\] ως την \[t=4t_1\]  έχει απόλυτη τιμή:

α) \[\frac{2ΝΦ_0}{R}\],                        
β) \[\frac{ΝΦ_0}{R}\],              
γ) \[\frac{Φ_0}{R}\],                              
δ) \[\frac{3ΝΦ_0}{R} \].

Γ) Το φορτίο που περνά από τη διατομή του σύρματος ενός πλαισίου ανεξαρτήτως φοράς απ’ την \[t=0\] ως τη στιγμή \[t=4t_1\]  έχει απόλυτη τιμή:

α) \[ \frac {2ΝΦ_0} {R} \],                        
β) \[ \frac{ 3Φ_0 } { R } \],                           
γ) \[\frac{3ΝΦ_0}{R}\],                            
δ) \[\frac{2ΝΦ_0}{R} \].

8. Κυκλικό μεταλλικό πλαίσιο \[Ν\] σπειρών βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο του πλαισίου όπως φαίνεται στο σχήμα α. Το πλαίσιο έχει αντίσταση \[R\]. Στο σχήμα β φαίνεται η μεταβολή της ροής του μαγνητικού πεδίου από το πλαίσιο με το χρόνο. Το επαγωγικό ρεύμα που διαρρέει το πλαίσιο στη χρονική διάρκεια από \[0\] ως \[t_1\] έχει:

Α)α) την ωρολογιακή φορά.

β) την αντιωρολογιακή φορά.

γ) μηδενική τιμή.

Β) Απ’ την \[t_2\]  ως την \[t_3\]  το επαγωγικό ρεύμα που διαρρέει το πλαίσιο έχει:

α) την ωρολογιακή φορά.

β) την αντιωρολογιακή φορά.

γ) μηδενική τιμή.

Γ) Το φορτίο που διέρχεται απ’ τη διατομή του σύρματος του πλαισίου ανεξαρτήτως φοράς απ’ τη στιγμή \[t=0\] ως την \[t'=t_3\]  έχει απόλυτη τιμή:

α) \[ \frac{ Φ_0 }{ R } \],                    β) \[\frac{3Φ_0}{R}\],                γ) \[\frac{2Φ_0}{R}\].

9. Αντιστάτης \[R\] τροφοδοτείται από εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Να επιλέξετε τις σωστές προτάσεις. Στο πηνίο του σχήματος αναπτύσσεται ηλεκτρεγερτική δύναμη από αυτεπαγωγή, με την πολικότητα που δείχνει το σχήμα. Το πηνίο διαρρέεται από ρεύμα που
11. Μια συνεχής σταθερή τάση \[V_Σ\] δημιουργεί στον αντιστάτη \[R\] ίδια θερμικά αποτελέσματα με αυτά που δημιουργεί μια ημιτονοειδής εναλλασσόμενη τάση ενεργού τιμής \[V_{εν}\] σε μια αντίσταση \[4R\] στο ίδιο χρονικό διάστημα. Ποια από τις παρακάτω προτάσεις είναι σωστή; Ο λόγος \[ \frac{ V_{εν} }{ V_{Σ} }\] είναι:
12. Μεταλλικό πλαίσιο εισέρχεται σε χρόνο \[Δt\] μέσα σε ομογενές μαγνητικό πεδίο κάθετα στις δυναμικές γραμμές του. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Αν εισάγουμε το πλαίσιο στο ίδιο μαγνητικό πεδίο σε χρόνο \[Δt'=2Δt\]:
13. Συρμάτινο τετράγωνο πλαίσιο αμελητέας αντίστασης αποτελείται από \[Ν\] σπείρες που η καθεμιά έχει εμβαδόν \[Α\]. Το πλαίσιο βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[B\] με το επίπεδό του κάθετο στις δυναμικές γραμμές του πεδίου και στα άκρα του έχουμε συνδέσει αντιστάτη αντίστασης \[R\]. Την \[t=0\] αρχίζει να στρέφεται με σταθερή περίοδο περιστροφής \[Τ\] ως προς άξονα κάθετο στις δυναμικές γραμμές του πεδίου.

Α) Μέχρι τη χρονική στιγμή \[t_1=\frac{T}{4}\], η απόλυτη τιμή του φορτίου που μετατοπίζεται από τη διατομή  του σύρματος του πλαισίου είναι:
α) \[\frac{NBA}{2R}\],               
β) \[\frac{ΝΒΑ}{R}\],                 
γ) \[\frac{ΝΒΑ}{4R}\],    
δ) \[\frac{ ΝΒΑ\sqrt{3} }{2R}\].

B) Μέχρι τη χρονική στιγμή \[t_2=\frac{T}{2}\], η απόλυτη τιμή του φορτίου που μετατοπίζεται είναι ίση με:

α) \[\frac{ΝΒΑ}{R}\]  και ίδια με την απόλυτη τιμή του φορτίου που διέρχεται απ’ τη διατομή ανεξαρτήτως φοράς στον ίδιο χρόνο.

β) \[\frac{2ΝΒΑ}{R}\]  και ίδια με την απόλυτη τιμή του φορτίου που διέρχεται απ’ τη διατομή ανεξαρτήτως φοράς στον ίδιο χρόνο.

γ) \[\frac{2ΝΒΑ}{R}\]  αλλά διαφορετική της απόλυτης τιμής του φορτίου που διέρχεται ανεξαρτήτως φοράς απ’ τη διατομή στον ίδιο χρόνο.

14. Το κυκλικό ορθογώνιο πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο και ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδό του. Σε χρονικό διάστημα \[Δt\] αυξάνω το μέτρο της έντασης \[\vec{B}\] από \[Β_0\] σε \[Β_1\] και κατόπιν η \[\vec{B}\] σταθεροποιείται ξανά. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
15. Σε αντιστάτη αντίστασης \[R\] εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\] και αυτός διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\]. Ποιες από τις παρακάτω σχέσεις για τη στιγμιαία ισχύ \[p\] και για τη μέγιστη τιμή της \[P_{max}\] είναι σωστές;
16. Ο οριζόντιος ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Το σύστημα βρίσκεται σε κατακόρυφο ομογενές πεδίο που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Ο αγωγός την \[t=0\] έχει ταχύτητα παράλληλη στους αγωγούς \[Αx_1\] και \[Γx_2\] και μέτρου \[υ_0\]. Τη στιγμή αυτή ασκώ στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ομόρροπη της ταχύτητάς του \[υ_0\] και σταθερής κατεύθυνσης τέτοια ώστε ο αγωγός να εκτελεί ομαλά επιταχυνόμενη κίνηση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
17. Ποιες από της παρακάτω προτάσεις είναι σωστές; Η συχνότητα μιας εναλλασσόμενης τάσης είναι \[f=50\, Hz\]. Τότε:
18. Ανοικτό αγώγιμο πλαίσιο σχήματος ορθογωνίου παραλληλογράμμου αποτελείται από \[Ν\] σπείρες εμβαδού \[Α\] η καθεμία. Το πλαίσιο βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Την \[t=0\] το επίπεδο του πλαισίου είναι κάθετο στις δυναμικές γραμμές του και το πλαίσιο αρχίζει να στρέφεται γύρω από άξονα κάθετο στις δυναμικές του γραμμές με σταθερή γωνιακή ταχύτητα \[ω\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το πλάτος της εναλλασσόμενης τάσης στα άκρα του πλαισίου:
19. Το κυκλικό μεταλλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο και ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο του αγωγού. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν αυξήσω το μέτρο της έντασης \[\vec{B}\] χωρίς ν’ αλλάξω τη φορά της, τότε στο πλαίσιο κατά τη διάρκεια της αύξησης αυτής:
20. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η ενεργός ένταση του εναλλασσόμενου ρεύματος που έχει πλάτος \[Ι\] και περίοδο \[Τ\]:
21. Στο παρακάτω σχήμα η μεταλλική ράβδος ΟΓ έχει αντίσταση \[R\], στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο και το σημείο της Δ και το άκρο της Γ είναι συνεχώς σε επαφή με ομόκεντρους οριζόντιους κυκλικούς αγωγούς ακτίνας \[α_1=α\] και \[α_2=3α\] αντίστοιχα που έχουν ίδιο κέντρο το σημείο Ο και αμελητέα αντίσταση. Τα άκρα Κ και Λ συνδέονται με συσκευή Σ αντίστασης \[R_Σ=R\]. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Η συσκευή διαρρέεται από επαγωγικό ρεύμα και λειτουργεί κανονικά. Η τάση κανονικής λειτουργίας της συσκευής είναι:
22. Για να λειτουργεί κανονικά μια συσκευή, πρέπει να διαρρέεται από εναλλασσόμενο ρεύμα περιόδου \[0,02\, s\] και έχει χαρακτηριστικά στοιχεία κανονικής λειτουργίας \[220\, V/ 11\, W\] . Ποια από τις παρακάτω προτάσεις είναι σωστή; Για να λειτουργεί κανονικά η συσκευή πρέπει στα άκρα της να εφαρμόσουμε εναλλασσόμενη τάση με εξίσωση:
23. Τα πλαίσια \[Π_1,\, Π_2\] του παρακάτω σχήματος έχουν πλευρές \[α_1,\, α_2\] με \[α_1=2α_2\] και αριθμό σπειρών \[Ν_1,\, Ν_2\] με \[Ν_1=2Ν_2\]. Τα πλαίσια βρίσκονται ακλόνητα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_0\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδό τους και έχουν φορά απ’ τον αναγνώστη προς τη σελίδα. Την \[t=0\] το μέτρο της έντασης αρχίζει να αυξάνεται σύμφωνα με τη σχέση \[Β=Β_0+λt\] όπου \[λ\] θετική σταθερά.

Α) Οι επαγωγικές ΗΕΔ που αναπτύσσονται στα δύο πλαίσια \[ \mathcal{E}_{επ_1}, \, \mathcal{ E}_{επ_2} \] στη διάρκεια της μεταβολής του μέτρου της \[B\] έχουν λόγο  \[\frac{ \mathcal{ E}_{επ_1 } }{ \mathcal{ E}_{επ_2 }  } \]   ίσο με:

α) \[ \frac{ \mathcal {E}   _{επ_1 } }{ \mathcal{  E  }_{επ_2 } } =8  \],                
β) \[  \frac{ \mathcal{ E }_{επ_1 } }{ \mathcal{ E } _{επ_2 } }=4  \],                
γ) \[ \frac{ \mathcal{ E }_{επ_1 } }{ \mathcal{ E }_{επ_2 } }=\frac{ 1 }{ 8 }  \],             
δ) \[ \frac{ \mathcal{ E }_{επ_1 }  }{ \mathcal{ E }_{επ_2 } } =\frac{1 }{ 4 } \].

Β) Η φορά του ρεύματος που διαρρέει το Π2 στη διάρκεια της μεταβολής της \[Β\] έχει:

α) την ωρολογιακή φορά,                   

β) την αντιωρολογιακή φορά,

γ) έχει φορά περιοδικά μεταβαλλόμενη.

Γ) Στα άκρα Κ, Λ του Π1 στη διάρκεια της μεταβολής της \[Β\]:

α) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ.

β) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ.

γ) δεν δημιουργείται επαγωγική τάση γιατί το Π1 είναι ανοικτό.

δ) δημιουργείται επαγωγική τάση που η πολικότητά της περιοδικά αντιστρέφεται.

24. Το κυκλικό ανοικτό μεταλλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που είναι κάθετη στο επίπεδο του πλαισίου όπως φαίνεται στο παρακάτω σχήμα. Το μέτρο της έντασης του πεδίου αρχίζει να αυξάνεται για χρονική διάρκεια \[Δt\] χωρίς ν’ αλλάξει η κατεύθυνσή της. Ποιες από τις επόμενες προτάσεις είναι σωστές; Στη χρονική διάρκεια \[Δt\]:
25. Η μαγνητική ροή που διέρχεται από τη σπείρα ενός αγώγιμου πλαισίου \[Π_1\] φαίνεται στο διάγραμμα \[1\] ενώ η μαγνητική ροή που διέρχεται από τη σπείρα ενός αγώγιμου πλαισίου \[Π_2\] φαίνεται στο διάγραμμα \[2\]. Τα πλαίσια έχουν αντιστάσεις \[R_1,\, R_2\] αντίστοιχα με \[R_1=2R_2\] και ίδιο αριθμό σπειρών \[Ν\].

Α) Για τις επαγωγικές ΗΕΔ που δημιουργούνται στα πλαίσια ισχύει:

α) \[   \mathcal{E}_{επ_1 }=3\mathcal{E}_{επ_2 }=-\frac{3ΝΦ_0}{t_1}  \] ,     

β) \[  \mathcal{E}_{επ_1}=3\mathcal{E}_{επ_2}=-\frac{2Φ_0}{t_1}  \] ,

γ) \[   \mathcal{E}_{επ_1 }=3\mathcal{E}_{επ_2 }=\frac{3ΝΦ_0}{t_1} \] ,

δ) \[ \mathcal{ E}_{επ_1}=\mathcal{E}_{επ_2 }=-\frac{3ΝΦ_0}{t_1} \] .

Β) Για τις εντάσεις \[Ι_1,\, Ι_2\]  των ρευμάτων που διαρρέουν τα δύο πλαίσια αντίστοιχα ισχύει:

α) \[Ι_1=Ι_2\],                  β) \[Ι_1=3Ι_2\],                γ) \[Ι_1=\frac{3}{2} Ι_2 \].

26. Ο αγωγός τετραγωνικού σχήματος ΚΛΜΝ του παρακάτω σχήματος πλευράς \[α\] βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με το επίπεδό του παράλληλο στις δυναμικές γραμμές του πεδίου. Αν στρέψουμε τον αγωγό ως προς άξονα που ταυτίζεται με την πλευρά του ΜΝ κατά \[60^0\] με φορά ομόρροπη των δεικτών του ρολογιού, τότε η μαγνητική ροή που διαρρέει το πλαίσιο γίνεται \[Φ\]. Ποια απ’ τις παρακάτω σχέσεις είναι η σωστή;
27. Η ράβδος ΟΑ του παρακάτω σχήματος έχει μήκος \[\ell\] και αντίσταση \[R\] και στρέφεται με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το σημείο Γ της ράβδου που απέχει απ’ το Ο απόσταση \[ΟΓ=\frac{\ell}{4}\] βρίσκεται συνεχώς σε επαφή με την περιφέρεια κυκλικού οριζόντιου αγωγού κέντρου Ο ακτίνας \[\frac{\ell}{4}\] και αμελητέας αντίστασης που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Η ράβδος δεν δέχεται καμία τριβή κατά την κίνησή της. Το άκρο Ο γεφυρώνεται με το σημείο Κ της περιφέρειας του κυκλικού αγωγού με αντιστάτη αντίστασης \[R_1=R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου ασκούμε στο άκρο Α της ράβδου οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η ράβδος κατά την κίνησή της δέχεται δύναμη Laplace απ’ το μαγνητικό πεδίο μέτρου \[F_L\]. Ο λόγος των μέτρων \[\frac{F}{F_L}\] είναι:
28. Ο δίσκος του παρακάτω σχήματος έχει ακτίνα \[r\] και στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] γύρω από άξονα που είναι κάθετος στο επίπεδό του και περνά απ’ το κέντρο του Κ. Ο δίσκος βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου Β που οι δυναμικές γραμμές του είναι παράλληλες στον άξονα περιστροφής του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Πλαίσιο δημιουργίας εναλλασσόμενης τάσης έχει αμελητέα αντίσταση και τα άκρα του συνδέονται με αντιστάτη αντίστασης \[R\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν διπλασιάσουμε το μέτρο της έντασης του μαγνητικού πεδίου μέσα στο οποίο βρίσκεται το πλαίσιο και ταυτόχρονα διπλασιάσουμε τη γωνιακή ταχύτητα περιστροφής του, η μέση ισχύς που καταναλώνει ο αντιστάτης:
30. Ο ραβδόμορφος μαγνήτης των παρακάτω σχημάτων κινείται κατακόρυφα στη διεύθυνση του άξονά του που διέρχεται απ’ το κέντρο του κυκλικού αγωγού. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το επαγωγικό ρεύμα στον αγωγό έχει σχεδιαστεί σωστά:

    +30

    CONTACT US
    CALL US