3. Το σωληνοειδές του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], \[n\] αριθμό σπειρών ανά μονάδα μήκους και διαρρέεται από σταθερό ρεύμα έντασης \[Ι\]. Στο εσωτερικό του σωληνοειδούς έχουμε τοποθετήσει κυκλικό πλαίσιο \[Ν\] σπειρών που το επίπεδό του σχηματίζει γωνία \[θ=30^0\] με τον άξονα του σωληνοειδούς όπως φαίνεται στο σχήμα. Το πλαίσιο έχει αντίσταση \[R_π\] και ακτίνα \[α\]. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Σε χρονικό διάστημα \[Δt\] στρέφουμε το πλαίσιο έτσι ώστε το επίπεδό του να γίνει παράλληλο στον άξονα του σωληνοειδούς.
Α) Το επαγωγικό ρεύμα που διαρρέει το πλαίσιο σε χρόνο \[Δt\] έχει ένταση μέσης τιμής: α) \[Ι_{επ}=\frac{Νμ_0 π α^2}{2R_π Δt} Ι\, n\],
β) \[Ι_{επ}=\frac{Νμ_0 π α^2 \sqrt{3} }{2 (R_π+R_1+r) Δt} I\, n\],
γ) \[Ι_{επ}=\frac{Νμ_0 π α^2 \sqrt{3} }{2R_π Δt} Ι\, n\],
δ) \[Ι_{επ}=\frac{ Νμ_0 π α^2 \sqrt{3} }{ 8R_π Δt} I\, n\].
Β) Το επαγωγικό φορτίο \[q_{επ}\] που περνά από μια διατομή του σύρματος του πλαισίου στη διάρκεια της παραπάνω στροφής του είναι:
α) ανάλογο του τετραγώνου της ακτίνας \[α\] του κυκλικού πλαισίου.
β) ανάλογο του χρονικού διαστήματος \[Δt\] που διαρκεί η μεταβολή της μαγνητικής ροής.
γ) αντιστρόφως ανάλογο του χρονικού διαστήματος \[Δt\] που διαρκεί η μεταβολή της μαγνητικής του ροής.
5. Το κυκλικό ανοικτό μεταλλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που είναι κάθετη στο επίπεδο του πλαισίου όπως φαίνεται στο παρακάτω σχήμα. Το μέτρο της έντασης του πεδίου αρχίζει να αυξάνεται για χρονική διάρκεια \[Δt\] χωρίς ν’ αλλάξει η κατεύθυνσή της. Ποιες από τις επόμενες προτάσεις είναι σωστές; Στη χρονική διάρκεια \[Δt\]:
8. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Ένας αντιστάτης τροφοδοτείται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\]. 9. Μια θερμική συσκευή έχει χαρακτηριστικά λειτουργίας \[220\, V / 110\, W\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν στα άκρα της συσκευής εφαρμόσουμε εναλλασσόμενη τάση πλάτους \[220\, V\]: 13. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το φαινόμενο Joule παρατηρείται σ’ έναν αντιστάτη: 14. Στο παρακάτω σχήμα ο ραβδόμορφος μαγνήτης πλησιάζει το μεταλλικό δακτύλιο με σταθερή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
16. Στα άκρα ενός αντιστάτη αντίστασης \[R\] εφαρμόζουμε εναλλασσόμενη τάση της μορφής \[v=V\, ημ\frac{ 2π}{Τ} t\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η μέση ισχύς που καταναλώνει ο αντιστάτης είναι: 19. Οι οριζόντιοι ευθύγραμμοι αγωγοί ΟΓ και ΟΑ έχουν μήκη \[\ell\] και \[\frac{\ell }{ 2 }\] αντίστοιχα και στρέφονται στο ίδιο οριζόντιο επίπεδο με ίδια σταθερή γωνιακή ταχύτητα μέτρου \[ω\] γύρω από κατακόρυφο άξονα που διέρχεται απ’ το κοινό τους άκρο Ο. Το σύστημα των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Αν ο αγωγός ΟΓ στρέφονταν κατά την ωρολογιακή φορά ενώ ο αγωγός ΟΑ αντιωρολογιακά με ίσες κατά μέτρο γωνιακές ταχύτητες \[ω\], τότε η διαφορά δυναμικού \[V_{ΑΓ}\] γίνεται:
20. Δύο όμοιοι κατακόρυφοι ραβδόμορφοι μαγνήτες \[Μ_1\] και \[Μ_2\] βρίσκονται σε ύψος \[h\] απ’ το οριζόντιο έδαφος και πάνω από δύο ακλόνητους μεταλλικούς κυκλικούς δακτυλίους \[Δ_1,\, Δ_2\] αντίστασης \[R\] ο καθένας. Ο \[Δ_1\] είναι κλειστός ενώ ο \[Δ_2\] παρουσιάζει μια εγκοπή. Οι άξονες των μαγνητών \[Μ_1 ,\, Μ_2\] περνούν απ’ τα κέντρα των δακτυλίων \[Δ_1,\, Δ_2\] αντίστοιχα. Οι δακτύλιοι με κατάλληλο μηχανισμό διατηρούνται ακίνητοι.
Α) Αν \[g\] το μέτρο της επιτάχυνσης της βαρύτητας και οι αντιστάσεις του αέρα αμελητέες , τα μέτρα των ταχυτήτων των μαγνητών \[υ_1,\, υ_2\] όταν αυτοί φτάνουν στο έδαφος ισχύει:
α) \[υ_1 = υ_2 = \sqrt{2gh}\], β) \[υ_2=\sqrt{2gh} > υ_1\], γ) \[υ_2 = \sqrt{2gh} < υ_1\].
B) Στη διάρκεια της πτώσης του μαγνήτη Μ2 στα άκρα Κ, Λ του δακτυλίου Δ2:
α) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ.
β) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ όταν ο Μ2 πλησιάζει τον Δ2 και με \[(+)\] στο Κ όταν όταν ο Μ2 απομακρύνεται απ’ τον Δ2.
γ) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ.
δ) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ όταν ο Μ2 πλησιάζει τον Δ2 και με \[(+)\] στο Λ όταν ο Μ2 απομακρύνεται απ’ το Δ2.
Θεωρήστε ότι σ’ όλη τη διάρκεια της κίνησης του Μ2 οι δυναμικές γραμμές του Μ2 περνούν απ’ την επιφάνεια του Δ2.
22. Η μεταλλική ράβδος ΚΛ μήκους \[\ell\] του παρακάτω σχήματος κινείται με ταχύτητα μέτρου \[υ\] μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[υ\] με τέτοιο τρόπο ώστε η ταχύτητα, η διεύθυνση της ράβδου και οι δυναμικές γραμμές να είναι πάντα μεταξύ τους κάθετες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
24. Ποια απ’ της επόμενες προτάσεις είναι σωστή; Αν σ’ ένα ανοικτό πλαίσιο παραγωγής εναλλασσόμενης τάσης διπλασιάσω το μέτρο της γωνιακής συχνότητάς του, τότε για το χρόνο \[Δt\] που απαιτείται για μια πλήρη εναλλαγή της τάσης και το πλάτος της \[V\] ισχύει: 26. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της τάσης με το χρόνο στα άκρα ενός πλαισίου παραγωγής εναλλασσόμενης τάσης που έχει αμελητέα αντίσταση. Αν διπλασιάσουμε το μέτρο της γωνιακής ταχύτητας περιστροφής του πλαισίου, τότε η χρονοεξίσωση της στιγμιαίας τάσης στα άκρα του γίνεται:
28. Μεταλλικό πλαίσιο βρίσκεται ακίνητο μέσα σε ομογενές μαγνητικό πεδίο κάθετα στις δυναμικές γραμμές του. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της μαγνητικής ροής του πλαισίου σε συνάρτηση με το χρόνο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
29. Στο παρακάτω σχήμα ο κυκλικός αγωγός ακτίνας \[r\] βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο που την \[t=0\] έχει ένταση μέτρου \[Β_0\] κάθετη στο επίπεδο του αγωγού και με φορά από τον αναγνώστη προς τη σελίδα. Την \[t=0\] το μέτρο της έντασης του πεδίου μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Β=Β_0+λt\] όπου \[λ\] μια σταθερά και τότε ο αγωγός διαρρέεται από σταθερό επαγωγικό ρεύμα που έχει τη φορά του σχήματος.
Α) Η σταθερά \[λ\]:
α) είναι θετική,
β) είναι αρνητική,
γ) μπορεί να είναι θετική ή αρνητική αλλά όχι μηδενική.
Β) Αν ο αγωγός έχει αντίσταση ανά μονάδα μήκους \[R^*\] και αν η απόλυτη τιμή της έντασης του ρεύματος που διαρρέει τον αγωγό είναι \[Ι_{επ}\], τότε η απόλυτη τιμής της \[λ\] είναι:
α) \[ |λ| = \frac{ Ι_{επ} r^2}{2R^* } \],
β) \[ |λ|=\frac{Ι_{επ} R^*}{r} \],
γ) \[ |λ|=\frac{2Ι_{επ} R^*}{r} \].