MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα φαίνεται η μεταβολή της μαγνητικής ροής ενός συρμάτινου πλαισίου σε συνάρτηση με το χρόνο. Το συρμάτινο πλαίσιο έχει αντίσταση \[R\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
2. Συρμάτινο πλαίσιο βρίσκεται εξ’ ολοκλήρου μέσα σε ομογενές μαγνητικό πεδίο με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Το πλαίσιο έχει αντίσταση \[R\] και αποτελείται από \[N\] όμοιες σπείρες. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της μαγνητικής ροής μιας σπείρας του πλαισίου με το χρόνο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
3. Συρμάτινο πλαίσιο αποτελείται από \[Ν\] ορθογώνιες σπείρες που η καθεμιά έχει εμβαδόν \[Α\] και η συνολική αντίσταση του πλαισίου είναι \[R\]. Στα άκρα του πλαισίου έχουμε συνδέσει αντιστάτη αντίστασης \[R\]. Το πλαίσιο είναι αρχικά ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] έτσι ώστε το επίπεδό του να είναι κάθετο στις δυναμικές γραμμές του και έτσι η μαγνητική ροή που διέρχεται απ’ το πλαίσιο είναι μέγιστη. Την \[t=0\] το πλαίσιο αρχίζει να στρέφεται με σταθερή γωνιακή ταχύτητα \[ω\] ως προς άξονα κάθετο στις δυναμικές γραμμές.

Α) Τη στιγμή που η μαγνητική ροή της κάθε σπείρας γίνεται  \[\frac{ΒΑ}{2}\], το ρεύμα που διαρρέει κάθε σπείρα του πλαισίου έχει ένταση:

α) \[\frac{ΝωΒΑ \sqrt{3} }{4R}\],                  
β) \[\frac{ΝωΒΑ \sqrt{3} }{2R}\],                  
γ) \[ \frac{ΝωΒΑ}{2R}\],
δ) \[ \frac{ΝωΒΑ}{4R}\].

B) Όταν η μαγνητική ροή του πλαισίου μηδενίζεται για πρώτη φορά, την ίδια στιγμή η ένταση που διαρρέει τον αντιστάτη \[R\] είναι:

α) \[ 0 \],                            
β) \[ \frac{ΝωΒΑ}{2R} \],             
γ) \[ \frac{ΝωΒΑ}{4R} \],      
δ) \[ \frac{ΝωΒΑ \sqrt{3} }{ 4R  }  \]

4. Ο δίσκος του παρακάτω σχήματος έχει ακτίνα \[r\] και στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] γύρω από άξονα που είναι κάθετος στο επίπεδό του και περνά απ’ το κέντρο του Κ. Ο δίσκος βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι παράλληλες στον άξονα περιστροφής του. Αν προσθέσουμε δύο ολισθαίνουσες ψήκτρες, μία στην περιφέρειά του και μία στον άξονα περιστροφής του τότε ο δίσκος αυτός μπορεί να λειτουργεί:
5. Ο κατακόρυφος ραβδόμορφος μαγνήτης Μ του παρακάτω σχήματος έχει άξονα που περνά απ’ το κέντρο του οριζόντιου μεταλλικού ακλόνητου δακτυλίου Δ. Απ’ τη θέση (Ι) ο μαγνήτης αφήνεται να πέσει κατακόρυφα. Απ’ τη θέση (Ι) μέχρι τη θέση (ΙΙ) περνούν δυναμικές γραμμές του μαγνητικού πεδίου του Μ απ’ το επίπεδο του δακτυλίου ενώ απ’ τη (ΙΙ) μέχρι τη θέση (ΙΙΙ) που ο Μ φτάνει στο έδαφος δεν περνούν πια δυναμικές γραμμές του Μ.Π. του μαγνήτη απ’ το επίπεδο του δακτυλίου Δ. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες.
6. Τετράγωνο μεταλλικό πλαίσιο αποτελείται από \[Ν\] σπείρες εμβαδού \[Α\] η καθεμία και συνολική αντίσταση \[R_π\]. Tο πλαίσιο συνδέεται στα άκρα του με αντιστάτη αντίστασης \[3R_π\]. Το πλαίσιο βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] και το επίπεδό του είναι κάθετο στις δυναμικές του γραμμές. Την \[t=0\] το πλαίσιο αρχίζει να στρέφεται με σταθερή περίοδο περιστροφής \[T\] ως προς άξονα κάθετο στις δυναμικές γραμμές του ομογενούς μαγνητικού πεδίου. Η εξίσωση της στιγμιαίας ισχύος στην αντίσταση του πλαισίου είναι:
7. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα με ένταση της μορφής \[i=I\, ημωt\] που αρχίζει να τον διαρρέει την \[t=0\]. Τη στιγμή \[t_1\] η ένταση γίνεται \[\frac{Ι}{2}\] για πρώτη φορά μετά την \[t=0\] και την \[t_2\] γίνεται \[–\frac{Ι}{2}\] για πρώτη φορά μετά την \[t=0\]. Αν ισχύει \[t_2-t_1=10\, ms\], τότε ο χρόνος μεταξύ δύο διαδοχικών μηδενισμών της έντασης του ρεύματος είναι:
8. Ποια από τις παρακάτω προτάσεις είναι σωστή; Για να δημιουργηθεί επαγωγικό ρεύμα σ’ ένα πηνίο πρέπει:
9. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της συνάρτησης της μαγνητικής ροής που διέρχεται από μια σπείρα ενός συρμάτινου πλαισίου με το χρόνο. Το πλαίσιο αποτελείται από \[Ν\] σπείρες και έχει συνολική αντίσταση \[R\]. Απ’ τη χρονική στιγμή \[t_0=0\] ως τη στιγμή \[t_1\] η ΗΕΔ που εμφανίζεται στο πλαίσιο είναι \[ \mathcal{ E }_{επ_1 }\] και η επαγωγική ΗΕΔ απ’ τη στιγμή \[t_1\] ως τη στιγμή \[4t_1\] είναι \[ \mathcal{E}_{επ_2 } \].
A) H σχέση των επαγωγικών ΗΕΔ που εμφανίζονται στο πλαίσιο είναι:

α) \[ \mathcal{E}_{επ_1 }=\mathcal{E}_{επ_2 } \],        
β) \[ \mathcal{E}_{επ_1 }=2\mathcal{E}_{επ_2 }\],      
γ) \[ \mathcal{E}_{επ_1 }=-\mathcal{E}_{επ_2 }\],       
δ) \[\mathcal{E}_{επ_1 }=-\frac{3}{2} \mathcal{E}_{επ_2 }\].

Β) Το φορτίο που μετατοπίζεται από μία διατομή του σύρματος του πλαισίου απ’ την \[t_0=0\] ως την \[t=4t_1\]  έχει απόλυτη τιμή:

α) \[\frac{2ΝΦ_0}{R}\],                        
β) \[\frac{ΝΦ_0}{R}\],              
γ) \[\frac{Φ_0}{R}\],                              
δ) \[\frac{3ΝΦ_0}{R} \].

Γ) Το φορτίο που περνά από τη διατομή του σύρματος ενός πλαισίου ανεξαρτήτως φοράς απ’ την \[t=0\] ως τη στιγμή \[t=4t_1\]  έχει απόλυτη τιμή:

α) \[ \frac {2ΝΦ_0} {R} \],                        
β) \[ \frac{ 3Φ_0 } { R } \],                           
γ) \[\frac{3ΝΦ_0}{R}\],                            
δ) \[\frac{2ΝΦ_0}{R} \].

10. Αντιστάτης συνδέεται με ημιτονοειδή πηγή εναλλασσόμενης τάσης και διαρρέεται από εναλλασσόμενο ρεύμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν διπλασιάσουμε το πλάτος της εναλλασσόμενης τάσης στα άκρα του αντιστάτη τότε η μέση ηλεκτρική ισχύς που αυτός καταναλώνει:
11. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή του ρεύματος που διαρρέει έναν αντιστάτη αντίστασης \[R=4\, Ω\] που έχουμε συνδέσει τα άκρα του με τα άκρα πλαισίου παραγωγής εναλλασσόμενης τάσης. Το πλαίσιο έχει αμελητέα αντίσταση.

Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;

Η εξίσωση της εναλλασσόμενης τάσης στα άκρα του πλαισίου είναι:

12. Η ράβδος ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και κινείται με σταθερή ταχύτητα μέτρου \[υ\] που είναι κάθετη στη διεύθυνση της ράβδου και στις δυναμικές γραμμές του ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στη ράβδο:
13. Το σωληνοειδές του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], \[n\] αριθμό σπειρών ανά μονάδα μήκους και διαρρέεται από σταθερό ρεύμα έντασης \[Ι\]. Στο εσωτερικό του σωληνοειδούς έχουμε τοποθετήσει κυκλικό πλαίσιο \[Ν\] σπειρών που το επίπεδό του σχηματίζει γωνία \[θ=30^0\] με τον άξονα του σωληνοειδούς όπως φαίνεται στο σχήμα. Το πλαίσιο έχει αντίσταση \[R_π\] και ακτίνα \[α\]. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Σε χρονικό διάστημα \[Δt\] στρέφουμε το πλαίσιο έτσι ώστε το επίπεδό του να γίνει παράλληλο στον άξονα του σωληνοειδούς.
Α) Το επαγωγικό ρεύμα που διαρρέει το πλαίσιο σε χρόνο \[Δt\] έχει ένταση μέσης τιμής:

α) \[Ι_{επ}=\frac{Νμ_0  π α^2}{2R_π  Δt} Ι\, n\],                   
β) \[Ι_{επ}=\frac{Νμ_0   π α^2 \sqrt{3}  }{2  (R_π+R_1+r) Δt}  I\, n\],
γ) \[Ι_{επ}=\frac{Νμ_0  π α^2 \sqrt{3} }{2R_π  Δt}  Ι\, n\],              
δ) \[Ι_{επ}=\frac{ Νμ_0  π α^2 \sqrt{3}  }{ 8R_π  Δt} I\, n\].

Β) Το επαγωγικό φορτίο \[q_{επ}\]  που περνά από μια διατομή του σύρματος του πλαισίου στη διάρκεια της παραπάνω στροφής του είναι:

α) ανάλογο του τετραγώνου της ακτίνας \[α\] του κυκλικού πλαισίου.

β) ανάλογο του χρονικού διαστήματος \[Δt\] που διαρκεί η μεταβολή της μαγνητικής ροής.

γ) αντιστρόφως ανάλογο του χρονικού διαστήματος \[Δt\] που διαρκεί η μεταβολή της μαγνητικής του ροής.

14. Ένας αντιστάτης διαρρέεται ταυτόχρονα από δύο εναλλασσόμενα ρεύματα που έχουν εντάσεις \[i_1=i_2=I\, ημωt\]. Η ενεργός ένταση του συνολικού ρεύματος που διαρρέει το σύρμα είναι:
15. Στο παρακάτω σχήμα φαίνεται η μεταβολή της μαγνητικής ροής ενός μεταλλικού πλαισίου με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
16. Ο ραβδόμορφος μαγνήτης των παρακάτω σχημάτων κινείται κατακόρυφα στη διεύθυνση του άξονά του που διέρχεται απ’ το κέντρο του κυκλικού αγωγού. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το επαγωγικό ρεύμα στον αγωγό έχει σχεδιαστεί σωστά:
17. Αντιστάτης αντίστασης \[R=2\, Ω\] έχει στα άκρα του εναλλασσόμενη τάση με εξίσωση \[v=4\, ημ100πt\] (S.I.). Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
18. Στο παρακάτω σχήμα η μεταλλική ράβδος ΟΓ έχει αντίσταση \[R\], στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο και το σημείο της Δ και το άκρο της Γ είναι συνεχώς σε επαφή με ομόκεντρους οριζόντιους κυκλικούς αγωγούς ακτίνας \[α_1=α\] και \[α_2=3α\] αντίστοιχα που έχουν ίδιο κέντρο το σημείο Ο και αμελητέα αντίσταση. Τα άκρα Κ και Λ συνδέονται με συσκευή Σ αντίστασης \[R_Σ=R\]. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Η συσκευή διαρρέεται από επαγωγικό ρεύμα και λειτουργεί κανονικά. Η τάση κανονικής λειτουργίας της συσκευής είναι:
19. Σε αντιστάτη αντίστασης \[R\] εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\] και αυτός διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\]. Ποιες από τις παρακάτω σχέσεις για τη στιγμιαία ισχύ \[p\] και για τη μέγιστη τιμή της \[P_{max}\] είναι σωστές;
20. Τα κυκλικά πλαίσια \[Π_1,\, Π_2\] βρίσκονται ακλόνητα μέσα σε ένα ομογενές μαγνητικό πεδίο έντασης \[Β_0\] με τις δυναμικές του γραμμές να είναι κάθετες στα επίπεδα των πλαισίων και έχουν τη φορά που φαίνεται στο παρακάτω σχήμα. Το πλαίσιο \[Π_1\] αποτελείται από \[N_1\] σπείρες με ακτίνες \[α_1\] η καθεμία ενώ το πλαίσιο \[Π_2\] έχει αντίστοιχα \[Ν_2=2Ν_1\] σπείρες ακτίνας \[α_2=\frac{α_1}{2}\]. Απ’ τη στιγμή \[t=0\] και μετά, το μέτρο της έντασης του μαγνητικού πεδίου αρχίζει να μεταβάλλεται σύμφωνα με τη σχέση \[B=B_0-λt\] όπου \[λ\] μια θετική σταθερά, μέχρι την \[t_1\] που η έντασή του σταθεροποιείται.
Α. Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\]:

α) Τα δύο πηνία διαρρέονται από ομόρροπα ρεύματα που έχουν την αντιωρολογιακή φορά.

β) Το πλαίσιο Π1 δεν διαρρέεται από ρεύμα ενώ το πλαίσιο Π2 διαρρέεται από ρεύμα έντασης \[I_2\]  που έχει την αντιωρολογιακή φορά.

γ) Το πλαίσιο Π1 δεν διαρρέεται από ρεύμα ενώ το πλαίσιο Π2 διαρρέεται από ρεύμα έντασης \[Ι_2\]  που έχει την ωρολογιακή φορά.

Β. Ο λόγος των επαγωγικών ΗΕΔ που δημιουργούνται στα δύο πηνία  \[\frac{ \mathcal{ E }_{επ_1 } } { \mathcal{E} _ {επ_2 } } \]   είναι:

α) \[\frac{1}{2}\],              β) \[2\],                 γ) \[\frac{1}{4}\],              δ) \[4\].

Γ. Αν αμέσως μετά τη στιγμή \[t_1\]  η φορά των δυναμικών γραμμών του μαγνητικού πεδίου αντιστρέφεται σε σχέση με αυτήν της \[t=0\] και το μέτρο της έντασής του αρχίζει να αυξάνεται με σταθερό ρυθμό \[λ\], τότε το Π2 διαρρέεται από επαγωγικό ρεύμα έντασης \[Ι_2'\]. Για τις απόλυτες τιμές \[Ι_2,\, Ι_2'\]  των εντάσεων των ρευμάτων που διαρρέει το Π2 ισχύει:

α) \[Ι_2=Ι_2'\]  και είναι ομόρροπα.

β) \[I_2=I_2'\]  και είναι αντίρροπα.

γ) \[Ι_2 > Ι_2'\]  και είναι ομόρροπα.

δ) \[ Ι_2 < Ι_2'\]  και είναι αντίρροπα.

21. Ανοικτό συρμάτινο πλαίσιο αποτελείται από \[Ν\] σπείρες εμβαδού \[Α\] η καθεμία. Το πλαίσιο βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] με τις δυναμικές γραμμές του πεδίου να είναι κάθετες στο πλαίσιο και έτσι από το πλαίσιο διέρχεται η μέγιστη δυνατή μαγνητική ροή. Την \[t=0\] το πλαίσιο αρχίζει να στρέφεται με σταθερή γωνιακή ταχύτητα \[ω\] ως προς άξονα κάθετο στις δυναμικές γραμμές.

Α) Όταν η μαγνητική ροή της κάθε σπείρας του πλαισίου γίνει  \[\frac{ ΒΑ \sqrt{3}  }{ 2 } \]  για πρώτη φορά, η τάση στα άκρα του πλαισίου είναι:

α) \[\frac{NωΒΑ \sqrt{ 3 }   }{ 2 } \],                     
β) \[ \frac{ ωΒΑ \sqrt{3} }{ 2} \],                        
γ) \[ \frac{ωΒΑ}{2} \],       
δ) \[ \frac{ΝωΒΑ}{2} \].

Β) Τη στιγμή που η μαγνητική ροή που διέρχεται από κάθε σπείρα μηδενίζεται για πρώτη φορά, η τάση στα άκρα του γίνεται:

α) \[ ΝωΒΑ \],                   β) \[\frac{ ΝωΒΑ }{ 2 }\],                γ) \[ \frac{ΝωΒΑ \sqrt{2} }{ 2 }\],          δ) \[0\].

22. Οι οριζόντιοι παράλληλοι λείοι αγωγοί \[Αx_1\] και \[Γx_2\] είναι μεγάλου μήκους και αμελητέας αντίστασης . Το αμπερόμετρο έχει εσωτερική αντίσταση \[R\]. Η οριζόντια αγώγιμη ράβδος ΚΛ έχει μήκος \[\ell\] και αντίσταση \[R\]. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Την \[t=0\] δίνω στη ράβδο ΚΛ αρχική ταχύτητα \[\vec{υ}_0\] παράλληλα στους αγωγούς \[Αx_1\] και \[Γx_2\] και ταυτόχρονα ασκώ στο μέσο της σταθερή οριζόντια δύναμη μέτρου \[F\] ομόρροπη της \[υ_0\]. Το μέτρο της αρχικής ταχύτητας είναι \[υ_0=\frac{F 2R}{B^2 \ell^2 }\]. Η ράβδος ΚΛ κινείται με τα άκρα της Κ, Λ να είναι συνεχώς σε επαφή με τους παράλληλους αγωγούς. Στη διάρκεια της κίνησης της ράβδου η ένδειξη του αμπερομέτρου:
23. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\]. Σε μια περίοδο του εναλλασσόμενου ρεύματος η στιγμιαία ισχύς που καταναλώνει ο αντιστάτης είναι ίση με τη μέση ισχύ:
24. Δύο κυκλικοί αγωγοί (1), (2) έχουν ακτίνες \[r,\, 2r\] και αντιστάσεις \[R,\, 2R\] αντίστοιχα. Οι δύο αγωγοί βρίσκονται ακλόνητοι οριζόντιοι σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο κατακόρυφο επίπεδο των δύο αυτών αγωγών. Την \[t=0\] το μέτρο της έντασης του μαγνητικού πεδίου αρχίζει να μειώνεται με σταθερό ρυθμό μέχρι τη χρονική στιγμή \[t_1\] που μηδενίζεται.


Α) Απ’ την \[t=0\] ως τη στιγμή \[t_1\]:

α) οι δύο αγωγοί διαρρέονται από ρεύματα σταθερών εντάσεων που έχουν την ωρολογιακή φορά.

β) Οι δύο αγωγοί διαρρέονται από ρεύματα σταθερών εντάσεων που έχουν την αντιωρολογιακή φορά.

γ) Ο αγωγός (1) διαρρέεται από σταθερό ρεύμα ωρολογιακής φοράς και ο (2) από σταθερό ρεύμα αντιωρολογιακής φοράς.

δ) Οι δύο αγωγοί διαρρέονται από ρεύματα χρονικά μεταβαλλόμενα.

Β) Απ’ την \[t=0\] ως τη στιγμή \[t_1\], τα επαγωγικά φορτία που διέρχονται απ’ τις διατομές των (1) και (2) αντίστοιχα έχουν απόλυτες τιμές \[q_1,\, q_2\]  για τις οποίες ισχύει:

α) \[q_1=\frac{q_2}{2} \],              β) \[q_1= 2 q_2 \],               γ) \[q_1=q_2\].

Γ) Στο χρονικό διάστημα από \[t=0\] ως την \[t_1\]  απ’ τους αντιστάτες των δύο αγωγών εκλύονται θερμότητες \[Q_1,\, Q_2\]  αντίστοιχα για τις οποίες ισχύει:

α) \[Q_1=\frac{Q_2}{2}\],         β) \[Q_1=2 Q_2\],          γ) \[Q_1=\frac{Q_2}{8}\],             δ) \[Q_1=4Q_2\].

25. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της χρονοεξίσωσης της μαγνητικής ροής ενός κυκλικού αγωγού που βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με το επίπεδό του κάθετο στις δυναμικές γραμμές. Ο αγωγός έχει αντίσταση \[R\].

Α) Τη χρονική στιγμή \[t\] όπου \[3 t_1 < t < 4 t_1\]  η φορά του επαγωγικού ρεύματος

α) είναι ομόρροπη με αυτήν της στιγμής \[ t_α\].

β) είναι αντίρροπη με αυτήν της στιγμής \[t_α\].

γ) δεν υπάρχει αφού ο κυκλικός αγωγός δεν διαρρέεται από επαγωγικό ρεύμα.

Β) Το επαγωγικό φορτίο που μετατοπίζεται σε μια διατομή του κυκλικού αγωγού απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t=4t_1\]  έχει απόλυτη τιμή:

α) \[0\],                 β) \[\frac{Φ_0}{R}\],                    γ) \[\frac{2Φ_0}{R}\],                δ) \[\frac{5Φ_0}{R}\].

Γ) Το επαγωγικό φορτίο που περνά απ’ τη διατομή του κυκλικού αγωγού ανεξαρτήτως φοράς την ίδια χρονική διάρκεια, έχει απόλυτη τιμή:

α) \[0\],                 β) \[\frac{Φ_0}{R}\],                    γ) \[ \frac{2Φ_0}{R} \],                δ) \[ \frac{5Φ_0}{R} \].

26. Ο ευθύγραμμος αγωγός ΟΓ του παρακάτω σχήματος είναι κατά το ήμισυ φτιαγμένος από μονωτικό υλικό (τμήμα ΟΜ) και ο άλλος μισός (τμήμα ΜΓ) από μέταλλο. Ο αγωγός μπορεί να στρέφεται γύρω από σταθερό άξονα κάθετο σ’ αυτόν και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο με τις δυναμικές γραμμές του παράλληλες στον άξονα περιστροφής. Όταν ο αγωγός στρέφεται ως προς άξονα που διέρχεται απ’ το άκρο του Γ, η επαγωγική ΗΕΔ έχει μέτρο \[\mathcal{E}_{ΕΠ_1 }\] ενώ αν στρέφεται ως προς άξονα που διέρχεται απ’ το άκρο του Ο, έχει μέτρο \[\mathcal{E}_{ΕΠ_2 }\]. Ο λόγος \[\frac{\mathcal{E}_{ΕΠ_1 }}{ \mathcal{E}_{ΕΠ_2 } }\] είναι ίσος με:
27. Ευθύγραμμος αγωγός διαρρέεται από αρμονικό εναλλασσόμενο ρεύμα με περίοδο \[10\, ms\]. Ποια από τις παρακάτω προτάσεις είναι σωστή; Η ένταση του μαγνητικού πεδίου του αγωγού σε ένα σημείο Σ που απέχει \[r\] απ’ αυτόν αλλάζει φορά κάθε:
28. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργεί ο αγωγός. Αφήνουμε τον αγωγό ΚΛ ελεύθερο να κινηθεί απ’ την ηρεμία. Αυτός αρχίζει να κατέρχεται χωρίς τα άκρα του να χάνουν την επαφή τους με τους αγωγούς \[Αy_1,\, Γy_2\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Στον αγωγό ΚΛ, μέχρι να αποκτήσει τη μέγιστη κατά μέτρο ταχύτητά του:
29. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Ο συντελεστής αυτεπαγωγής ενός πηνίου:
30. Το πηνίο στο παρακάτω κύκλωμα έχει συντελεστή αυτεπαγωγής \[L\], ωμική αντίσταση \[R\] και συνδέεται με πηγή σταθερής ΗΕΔ \[Ε\] και εσωτερικής αντίστασης \[r=R\]. Αν κλείσουμε τον διακόπτη \[δ\] του κυκλώματος η μέγιστη ενέργεια που αποθηκεύεται στο μαγνητικό πεδίο του πηνίου είναι ίση με \[U_0\]. Αντικαθιστούμε το πηνίο με άλλο το οποίο έχει τον ίδιο συντελεστή αυτεπαγωγής και διπλάσια αντίσταση και κλείνουμε πάλι τον διακόπτη. Η μέγιστη ενέργεια που αποθηκεύεται στο μαγνητικό πεδίο του πηνίου είναι ίση με:

    +30

    CONTACT US
    CALL US