MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=2R\]. Ο αντιστάτης \[R\] έχει αντίσταση \[R\], η πηγή έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Το ρεύμα σταθεροποιείται σε μέγιστη τιμή έντασης \[Ι\]. Τη χρονική στιγμή \[t_1\] η ένταση που διαρρέει το πηνίο είναι \[I_1 = \frac{I}{4}\]. Η τάση στους πόλους της πηγής τη χρονική στιγμή \[t_1\] είναι:
2. Σωληνοειδές πηνίο βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο με τον άξονά του παράλληλο στις δυναμικές γραμμές του πεδίου. Να επιλέξετε τη σωστή απάντηση. Η μαγνητική ροή που διέρχεται από μια σπείρα του σωληνοειδούς εκφράζει:
3. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή του ρεύματος που διαρρέει έναν αντιστάτη αντίστασης \[R=4\, Ω\] που έχουμε συνδέσει τα άκρα του με τα άκρα πλαισίου παραγωγής εναλλασσόμενης τάσης. Το πλαίσιο έχει αμελητέα αντίσταση.

Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;

Η εξίσωση της εναλλασσόμενης τάσης στα άκρα του πλαισίου είναι:

4. Μεταλλικό πλαίσιο βρίσκεται ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έτσι ώστε οι δυναμικές γραμμές του πεδίου να είναι κάθετες στο επίπεδό του. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της μαγνητικής του ροής με το χρόνο. Μεταλλικό πλαίσιο βρίσκεται ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έτσι ώστε οι δυναμικές γραμμές του πεδίου να είναι κάθετες στο επίπεδό του. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της μαγνητικής του ροής με το χρόνο.
Η επαγωγική ΗΕΔ με το χρόνο δίνεται απ’ τα παρακάτω διαγράμματα.

Το σωστό διάγραμμα είναι του σχήματος:

5. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\]. Σε μια περίοδο του εναλλασσόμενου ρεύματος η στιγμιαία ισχύς που καταναλώνει ο αντιστάτης είναι ίση με τη μέση ισχύ:
6. Στο παρακάτω σχήμα ο ευθύγραμμος αγωγός που διαρρέεται από ρεύμα έντασης \[I\] και το ακίνητο ορθογώνιο μεταλλικό πλαίσιο ΚΛΜΝ βρίσκονται πάνω στο ίδιο λείο οριζόντιο μονωτικό έδαφος. Ο ευθύγραμμος αγωγός στερεώνεται ακλόνητα ενώ το πλαίσιο μπορεί να κινείται ελεύθερα. Το πλαίσιο αρχίζει να απομακρύνεται απ’ τον ευθύγραμμο αγωγό με ταχύτητα παράλληλη στην ΚΛ. Ο ευθύγραμμος ακλόνητος αγωγός διαρρέεται από σταθερό ρεύμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στη διάρκεια της απομάκρυνσης, το πλαίσιο:
7. Πλαίσιο δημιουργίας εναλλασσόμενης τάσης συνδέεται με άκρα αντιστάτη. Η γωνιακή ταχύτητα περιστροφής του πλαισίου είναι \[200π\, \frac{rad}{s}\]. Η φορά του ρεύματος στον αντιστάτη αντιστρέφεται κάθε:
8. Ο συντελεστής αυτεπαγωγής ενός πηνίου εξαρτάται από:
9. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η στιγμιαία ισχύς \[p\] του εναλλασσόμενου ρεύματος που διαρρέει αντιστάτη \[R\] ενώ η ένταση του ρεύματος είναι της μορφής \[i=I\, ημωt\]:
10. Συρμάτινο ορθογώνιο πλαίσιο έχει συνολική αντίσταση \[R\] και στα άκρα του συνδέεται με αντιστάτη \[3R\]. Το πλαίσιο αποτελείται από \[Ν\] σπείρες που η καθεμιά έχει εμβαδόν \[Α\]. Το πλαίσιο βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] με το επίπεδό του κάθετο στις δυναμικές γραμμές του πεδίου. Την \[t=0\] το πλαίσιο αρχίζει να στρέφεται με σταθερή γωνιακή ταχύτητα ως προς άξονα κάθετο στις δυναμικές γραμμές του πεδίου. Όταν το πλαίσιο έχει διαγράψει γωνία ίση με \[60^0\], το επαγωγικό φορτίο που διέρχεται από μια διατομή του έχει απόλυτη τιμή:
11. Στο παρακάτω σχήμα ο ραβδόμορφος μαγνήτης αρχίζει να πλησιάζει το πηνίο με ταχύτητα που έχει τη διεύθυνση αυτή του κοινού τους άξονα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Ανοικτό συρμάτινο πλαίσιο αποτελείται από \[Ν\] σπείρες εμβαδού \[Α\] η καθεμία. Το πλαίσιο βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] με τις δυναμικές γραμμές του πεδίου να είναι κάθετες στο πλαίσιο και έτσι από το πλαίσιο διέρχεται η μέγιστη δυνατή μαγνητική ροή. Την \[t=0\] το πλαίσιο αρχίζει να στρέφεται με σταθερή γωνιακή ταχύτητα \[ω\] ως προς άξονα κάθετο στις δυναμικές γραμμές.

Α) Όταν η μαγνητική ροή της κάθε σπείρας του πλαισίου γίνει  \[\frac{ ΒΑ \sqrt{3}  }{ 2 } \]  για πρώτη φορά, η τάση στα άκρα του πλαισίου είναι:

α) \[\frac{NωΒΑ \sqrt{ 3 }   }{ 2 } \],                     
β) \[ \frac{ ωΒΑ \sqrt{3} }{ 2} \],                        
γ) \[ \frac{ωΒΑ}{2} \],       
δ) \[ \frac{ΝωΒΑ}{2} \].

Β) Τη στιγμή που η μαγνητική ροή που διέρχεται από κάθε σπείρα μηδενίζεται για πρώτη φορά, η τάση στα άκρα του γίνεται:

α) \[ ΝωΒΑ \],                   β) \[\frac{ ΝωΒΑ }{ 2 }\],                γ) \[ \frac{ΝωΒΑ \sqrt{2} }{ 2 }\],          δ) \[0\].

13. Το πηνίο στο παρακάτω κύκλωμα έχει συντελεστή αυτεπαγωγής \[L\], ωμική αντίσταση \[R\] και συνδέεται με πηγή σταθερής ΗΕΔ \[Ε\] και εσωτερικής αντίστασης \[r=R\]. Αν κλείσουμε τον διακόπτη \[δ\] του κυκλώματος η μέγιστη ενέργεια που αποθηκεύεται στο μαγνητικό πεδίο του πηνίου είναι ίση με \[U_0\]. Αντικαθιστούμε το πηνίο με άλλο το οποίο έχει τον ίδιο συντελεστή αυτεπαγωγής και διπλάσια αντίσταση και κλείνουμε πάλι τον διακόπτη. Η μέγιστη ενέργεια που αποθηκεύεται στο μαγνητικό πεδίο του πηνίου είναι ίση με:
14. Δύο πανομοιότυποι μαγνήτες (1), (2) έχουν τους άξονές τους κατακόρυφους και αυτοί διέρχονται απ’ τα κέντρα πανομοιότυπων μεταλλικών δακτυλίων (1), (2) που κρατούνται ακίνητοι. Ο δακτύλιος (1) είναι κλειστός ενώ ο (2) παρουσιάζει μικρή εγκοπή. Οι μαγνήτες αφήνονται απ’ το ίδιο ύψος h απ’ το οριζόντιο έδαφος όπως φαίνεται στο παρακάτω σχήμα. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες. Αν ο μαγνήτης \[(1)\] φτάνει σε χρονικό διάστημα \[Δt_1\] στο έδαφος απ’ τη στιγμή που τον αφήσαμε και ο μαγνήτης \[(2)\] σε \[Δt_2\] αντίστοιχα, τότε ισχύει:
15. Ραβδόμορφος κατακόρυφος μαγνήτης Μ μάζας \[m\] βρίσκεται πάνω από οριζόντιο μεταλλικό δακτύλιο και ο άξονάς του είναι κατακόρυφος και περνά απ’ το κέντρο του δακτυλίου όπως φαίνεται στο παρακάτω σχήμα. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες και το μέτρο της επιτάχυσνης της βαρύτητας είναι \[g\]. Αφήνουμε το μαγνήτη από ύψος \[h\] απ’ το οριζόντιο έδαφος. Ο μαγνήτης φτάνει στον ακλόνητο δακτύλιο, τον ξεπερνά και συνεχίζοντας να πέφτει, φτάνει στο έδαφος.

Α) Η κινητική ενέργεια \[Κ\] του μαγνήτη όταν φτάνει στο έδαφος είναι:

α) \[Κ=mgh\],                        β) \[K > mgh\],                   γ) \[K < mgh\].

Β) Στη διάρκεια του πλησιάσματος του μαγνήτη, η επαγωγική τάση που δημιουργείται στα άκρα Κ, Λ του Δ είναι:

α) μηδενική,

β) μη μηδενική με \[(+)\] στο άκρο Λ,

γ) μη μηδενική με \[(+)\] στο άκρο Κ.

16. To τετράγωνο πλαίσιο ΚΛΜΝ βρίσκεται στο ίδιο οριζόντιο επίπεδο με τον ευθύγραμμο αγωγό μεγάλου μήκους. Το πλαίσιο είναι αρχικά ακίνητο και ο ευθύγραμμος αγωγός διαρρέεται από ρεύμα σταθερής έντασης και φοράς.

Α) α) Κάθε πλευρά του πλαισίου δέχεται δυνάμεις Laplace που ανά δύο εξουδετερώνονται.

β) Το πλαίσιο έλκεται απ’ τον ευθύγραμμο αγωγό.

γ) Στο πλαίσιο δημιουργείται επαγωγική ΗΕΔ.

δ) Η μαγνητική ροή που διέρχεται απ’ την επιφάνεια του πλαισίου μένει σταθερή με το χρόνο.

Β) Αρχίζουμε να μειώνουμε την ένταση του ρεύματος στον ευθύγραμμο αγωγό χωρίς να μεταβάλλουμε τη φορά της.

α) Το πλαίσιο έλκεται απ’ τον ευθύγραμμο αγωγό.

β) Οι πλευρές ΚΛ και ΜΝ δέχονται απ’ τον αγωγό δυνάμεις ίσου μέτρου και αντίθετης φοράς.

γ) Στο πλαίσιο δεν δημιουργείται επαγωγική ΗΕΔ.

17. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Κατά τη διάρκεια του πλησιάσματος του μαγνήτη προς το ακίνητο πηνίο που έχει ίδιο άξονα με αυτόν:
18. Αντιστάτης αντίστασης \[R=100\, Ω\] διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=10\, ημ200πt\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Δύο όμοιοι κατακόρυφοι ραβδόμορφοι μαγνήτες \[Μ_1\] και \[Μ_2\] βρίσκονται σε ύψος \[h\] απ’ το οριζόντιο έδαφος και πάνω από δύο ακλόνητους μεταλλικούς κυκλικούς δακτυλίους \[Δ_1,\, Δ_2\] αντίστασης \[R\] ο καθένας. Ο \[Δ_1\] είναι κλειστός ενώ ο \[Δ_2\] παρουσιάζει μια εγκοπή. Οι άξονες των μαγνητών \[Μ_1 ,\, Μ_2\] περνούν απ’ τα κέντρα των δακτυλίων \[Δ_1,\, Δ_2\] αντίστοιχα. Οι δακτύλιοι με κατάλληλο μηχανισμό διατηρούνται ακίνητοι.

Α) Αν \[g\] το μέτρο της επιτάχυνσης της βαρύτητας και οι αντιστάσεις του αέρα αμελητέες , τα μέτρα των ταχυτήτων των μαγνητών \[υ_1,\, υ_2\]  όταν αυτοί φτάνουν στο έδαφος ισχύει:

α) \[υ_1 = υ_2 = \sqrt{2gh}\],                  β) \[υ_2=\sqrt{2gh} > υ_1\],      γ) \[υ_2 = \sqrt{2gh} < υ_1\].

B) Στη διάρκεια της πτώσης του μαγνήτη Μ2 στα άκρα Κ, Λ του δακτυλίου Δ2:

α) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ.

β) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ όταν ο Μ2 πλησιάζει τον Δ2 και με \[(+)\] στο Κ όταν όταν ο Μ2 απομακρύνεται απ’ τον Δ2.

γ) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ.

δ) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ όταν ο Μ2 πλησιάζει τον Δ2 και με \[(+)\] στο Λ όταν ο Μ2 απομακρύνεται απ’ το Δ2.

Θεωρήστε ότι σ’ όλη τη διάρκεια της κίνησης του Μ2 οι δυναμικές γραμμές του Μ2 περνούν απ’ την επιφάνεια του Δ2.

20. Οι οριζόντιοι ευθύγραμμοι αγωγοί ΟΓ και ΟΑ έχουν μήκη \[\ell\] και \[\frac{\ell }{ 2 }\] αντίστοιχα και στρέφονται στο ίδιο οριζόντιο επίπεδο με ίδια σταθερή γωνιακή ταχύτητα μέτρου \[ω\] γύρω από κατακόρυφο άξονα που διέρχεται απ’ το κοινό τους άκρο Ο. Το σύστημα των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Αν ο αγωγός ΟΓ στρέφονταν κατά την ωρολογιακή φορά ενώ ο αγωγός ΟΑ αντιωρολογιακά με ίσες κατά μέτρο γωνιακές ταχύτητες \[ω\], τότε η διαφορά δυναμικού \[V_{ΑΓ}\] γίνεται:
21. Στα άκρα αντιστάτη εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=V\, ημ \frac{2π}{Τ} t\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η ενεργός τιμή της εναλλασσόμενης τάσης είναι:
22. Επίπεδη επιφάνεια βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Η μαγνητική ροή που διέρχεται απ’ την επιφάνεια αυτή εξαρτάται:
23. Τα κυκλικά πλαίσια \[Π_1,\, Π_2\] βρίσκονται ακλόνητα μέσα σε ένα ομογενές μαγνητικό πεδίο έντασης \[Β_0\] με τις δυναμικές του γραμμές να είναι κάθετες στα επίπεδα των πλαισίων και έχουν τη φορά που φαίνεται στο παρακάτω σχήμα. Το πλαίσιο \[Π_1\] αποτελείται από \[N_1\] σπείρες με ακτίνες \[α_1\] η καθεμία ενώ το πλαίσιο \[Π_2\] έχει αντίστοιχα \[Ν_2=2Ν_1\] σπείρες ακτίνας \[α_2=\frac{α_1}{2}\]. Απ’ τη στιγμή \[t=0\] και μετά, το μέτρο της έντασης του μαγνητικού πεδίου αρχίζει να μεταβάλλεται σύμφωνα με τη σχέση \[B=B_0-λt\] όπου \[λ\] μια θετική σταθερά, μέχρι την \[t_1\] που η έντασή του σταθεροποιείται.
Α. Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\]:

α) Τα δύο πηνία διαρρέονται από ομόρροπα ρεύματα που έχουν την αντιωρολογιακή φορά.

β) Το πλαίσιο Π1 δεν διαρρέεται από ρεύμα ενώ το πλαίσιο Π2 διαρρέεται από ρεύμα έντασης \[I_2\]  που έχει την αντιωρολογιακή φορά.

γ) Το πλαίσιο Π1 δεν διαρρέεται από ρεύμα ενώ το πλαίσιο Π2 διαρρέεται από ρεύμα έντασης \[Ι_2\]  που έχει την ωρολογιακή φορά.

Β. Ο λόγος των επαγωγικών ΗΕΔ που δημιουργούνται στα δύο πηνία  \[\frac{ \mathcal{ E }_{επ_1 } } { \mathcal{E} _ {επ_2 } } \]   είναι:

α) \[\frac{1}{2}\],              β) \[2\],                 γ) \[\frac{1}{4}\],              δ) \[4\].

Γ. Αν αμέσως μετά τη στιγμή \[t_1\]  η φορά των δυναμικών γραμμών του μαγνητικού πεδίου αντιστρέφεται σε σχέση με αυτήν της \[t=0\] και το μέτρο της έντασής του αρχίζει να αυξάνεται με σταθερό ρυθμό \[λ\], τότε το Π2 διαρρέεται από επαγωγικό ρεύμα έντασης \[Ι_2'\]. Για τις απόλυτες τιμές \[Ι_2,\, Ι_2'\]  των εντάσεων των ρευμάτων που διαρρέει το Π2 ισχύει:

α) \[Ι_2=Ι_2'\]  και είναι ομόρροπα.

β) \[I_2=I_2'\]  και είναι αντίρροπα.

γ) \[Ι_2 > Ι_2'\]  και είναι ομόρροπα.

δ) \[ Ι_2 < Ι_2'\]  και είναι αντίρροπα.

24. Ακλόνητος ευθύγραμμος αγωγός (1) μεγάλου μήκους διαρρέεται από σταθερό ρεύμα έντασης \[Ι_1\]. Αγωγός ΚΛ έχει μήκος \[\ell\], είναι παράλληλος με τον αγωγό (1) και αρχικά ηρεμεί σε απόσταση \[r_0\] απ’ τον αγωγό αυτό. Την \[t=0\] ο αγωγός ΚΛ αρχίζει να απομακρύνεται με σταθερή ταχύτητα μέτρου \[υ\] παραμένοντας συνεχώς παράλληλος με τον αγωγό (1) όπως φαίνεται στο παρακάτω σχήμα. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Κατά την κίνηση του αγωγού ΚΛ δημιουργείται σ’ αυτόν ΗΕΔ λόγω επαγωγής που έχει τιμή \[ \mathcal{ E }_{επ}\] ίση με:
25. Σε ένα ανοικτό πλαίσιο παραγωγής εναλλασσόμενης τάσης που δημιουργείται στα άκρα του, η τάση έχει χρονοεξίσωση \[v=V ημωt\]. Ποια απ’ της παρακάτω προτάσεις είναι σωστή; Αν υποδιπλασιάσω το μέτρο της έντασης του μαγνητικού πεδίου μέσα στο οποίο βρίσκεται το πλαίσιο και ταυτόχρονα υποδιπλασιάσω την περίοδο περιστροφής του πλαισίου, η τάση στα άκρα του θα έχει εξίσωση:
26. Η ενέργεια που αποθηκεύεται στο μαγνητικό πεδίο ενός πηνίου αντίστασης \[R\] όταν συνδεθεί με μια ιδανική πηγή \[(r=0)\] είναι ίση με \[U_0\]. Κόβουμε το πηνίο στην μέση και συνδέουμε ένα κομμάτι στην ίδια πηγή. Η ενέργεια που αποθηκεύεται στο νέο πηνίο είναι
27. Η μεταλλική ράβδος του παρακάτω σχήματος έχει μήκος \[\ell\] και κινείται με σταθερή ταχύτητα παράλληλα στις δυναμικές γραμμές του ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\]. Η ταχύτητα έχει τη διεύθυνση της ράβδου και είναι συνεχώς παράλληλη στις δυναμικές γραμμές του αγωγού. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
28. Στο ανοικτό στρεφόμενο πλαίσιο παραγωγής εναλλασσόμενης τάσης, η συχνότητα περιστροφής του είναι \[f\] και το πλάτος της τάσης που δημιουργείται στα άκρα του είναι \[V\]. Ποιες από της παρακάτω προτάσεις είναι σωστές; Για να τετραπλασιαστεί το πλάτος της εναλλασσόμενης τάσης χωρίς ν’ αλλάξει η περίοδός της μπορώ:
29. Στα άκρα ενός αντιστάτη αντίστασης \[R\] εφαρμόζουμε εναλλασσόμενη τάση της μορφής \[v=V\, ημ\frac{ 2π}{Τ} t\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η μέση ισχύς που καταναλώνει ο αντιστάτης είναι:
30. Κυκλικό μεταλλικό πλαίσιο \[Ν\] σπειρών βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο του πλαισίου όπως φαίνεται στο σχήμα α. Το πλαίσιο έχει αντίσταση \[R\]. Στο σχήμα β φαίνεται η μεταβολή της ροής του μαγνητικού πεδίου από το πλαίσιο με το χρόνο. Το επαγωγικό ρεύμα που διαρρέει το πλαίσιο στη χρονική διάρκεια από \[0\] ως \[t_1\] έχει:

Α)α) την ωρολογιακή φορά.

β) την αντιωρολογιακή φορά.

γ) μηδενική τιμή.

Β) Απ’ την \[t_2\]  ως την \[t_3\]  το επαγωγικό ρεύμα που διαρρέει το πλαίσιο έχει:

α) την ωρολογιακή φορά.

β) την αντιωρολογιακή φορά.

γ) μηδενική τιμή.

Γ) Το φορτίο που διέρχεται απ’ τη διατομή του σύρματος του πλαισίου ανεξαρτήτως φοράς απ’ τη στιγμή \[t=0\] ως την \[t'=t_3\]  έχει απόλυτη τιμή:

α) \[ \frac{ Φ_0 }{ R } \],                    β) \[\frac{3Φ_0}{R}\],                γ) \[\frac{2Φ_0}{R}\].


    +30

    CONTACT US
    CALL US