MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ο ευθύγραμμος αγωγός μεγάλου μήκους του παρακάτω σχήματος διαρρέεται από ρεύμα έντασης \[I\] και βρίσκεται στο ίδιο κατακόρυφο επίπεδο με το επίπεδο ενός κυκλικού αγωγού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για να διαρρέεται ο κυκλικός αγωγός από επαγωγικό ρεύμα πρέπει:
2. Συρμάτινο ορθογώνιο πλαίσιο αποτελείται από \[Ν\] σπείρες που η καθεμία έχει αντίσταση \[R_σ\] και εμβαδόν \[Α\]. Στα άκρα του πλαισίου συνδέουμε αντιστάτη αντίστασης \[2R_σ\]. Το πλαίσιο βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] και στρέφεται με σταθερή συχνότητα περιστροφής \[f\] ως προς άξονα κάθετο στις δυναμικές γραμμές του. Η μέση ισχύς που καταναλώνει ο αντιστάτης είναι:
3. Το κυκλικό ορθογώνιο πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο και ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδό του. Σε χρονικό διάστημα \[Δt\] αυξάνω το μέτρο της έντασης \[\vec{B}\] από \[Β_0\] σε \[Β_1\] και κατόπιν η \[\vec{B}\] σταθεροποιείται ξανά. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
4. Το συρμάτινο πλαίσιο ΚΛΜΝ σχήματος ορθογωνίου παραλληλογράμμου του παρακάτω σχήματος αρχικά βρίσκεται έξω απ’ το ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και αρχίζει να εισέρχεται σε αυτό με σταθερή ταχύτητα \[υ\] που έχει διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου και στην πλευρά ΛΜ όπως φαίνεται στο παρακάτω σχήμα.Επαναλαμβάνουμε το πείραμα \[(Ι)\] που μόλις αναφέραμε με ακριβώς τον ίδιο τρόπο, όμως τώρα (πείραμα \[ΙΙ\]) έχουμε αντιστρέψει τη φορά των δυναμικών γραμμών του ομογενούς μαγνητικού πεδίου. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στο πείραμα \[ΙΙ\] σε σχέση με το πείραμα \[Ι\], στη διάρκεια της εισόδου στο πεδίο:
5. Ανοικτό συρμάτινο πλαίσιο αποτελείται από \[Ν\] σπείρες εμβαδού \[Α\] η καθεμία. Το πλαίσιο βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] με τις δυναμικές γραμμές του πεδίου να είναι κάθετες στο πλαίσιο και έτσι από το πλαίσιο διέρχεται η μέγιστη δυνατή μαγνητική ροή. Την \[t=0\] το πλαίσιο αρχίζει να στρέφεται με σταθερή γωνιακή ταχύτητα \[ω\] ως προς άξονα κάθετο στις δυναμικές γραμμές.

Α) Όταν η μαγνητική ροή της κάθε σπείρας του πλαισίου γίνει  \[\frac{ ΒΑ \sqrt{3}  }{ 2 } \]  για πρώτη φορά, η τάση στα άκρα του πλαισίου είναι:

α) \[\frac{NωΒΑ \sqrt{ 3 }   }{ 2 } \],                     
β) \[ \frac{ ωΒΑ \sqrt{3} }{ 2} \],                        
γ) \[ \frac{ωΒΑ}{2} \],       
δ) \[ \frac{ΝωΒΑ}{2} \].

Β) Τη στιγμή που η μαγνητική ροή που διέρχεται από κάθε σπείρα μηδενίζεται για πρώτη φορά, η τάση στα άκρα του γίνεται:

α) \[ ΝωΒΑ \],                   β) \[\frac{ ΝωΒΑ }{ 2 }\],                γ) \[ \frac{ΝωΒΑ \sqrt{2} }{ 2 }\],          δ) \[0\].

6. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της χρονοεξίσωσης της μαγνητικής ροής ενός κυκλικού αγωγού που βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με το επίπεδό του κάθετο στις δυναμικές γραμμές. Ο αγωγός έχει αντίσταση \[R\].

Α) Τη χρονική στιγμή \[t\] όπου \[3 t_1 < t < 4 t_1\]  η φορά του επαγωγικού ρεύματος

α) είναι ομόρροπη με αυτήν της στιγμής \[ t_α\].

β) είναι αντίρροπη με αυτήν της στιγμής \[t_α\].

γ) δεν υπάρχει αφού ο κυκλικός αγωγός δεν διαρρέεται από επαγωγικό ρεύμα.

Β) Το επαγωγικό φορτίο που μετατοπίζεται σε μια διατομή του κυκλικού αγωγού απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t=4t_1\]  έχει απόλυτη τιμή:

α) \[0\],                 β) \[\frac{Φ_0}{R}\],                    γ) \[\frac{2Φ_0}{R}\],                δ) \[\frac{5Φ_0}{R}\].

Γ) Το επαγωγικό φορτίο που περνά απ’ τη διατομή του κυκλικού αγωγού ανεξαρτήτως φοράς την ίδια χρονική διάρκεια, έχει απόλυτη τιμή:

α) \[0\],                 β) \[\frac{Φ_0}{R}\],                    γ) \[ \frac{2Φ_0}{R} \],                δ) \[ \frac{5Φ_0}{R} \].

7. Ο κυκλικός αγωγός του παρακάτω σχήματος είναι τοποθετημένος γύρω απ’ το σωληνοειδές έτσι ώστε τα κέντρα τους να ταυτίζονται και ο άξονας του σωληνοειδούς να είναι κάθετος στο επίπεδο του κυκλικού αγωγού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Στον κυκλικό δακτύλιο εμφανίζεται επαγωγική ΗΕΔ στη διάρκεια που:
8. Αντιστάτης διαρρέεται ταυτόχρονα από δύο ρεύματα που το ένα είναι συνεχές σταθερής έντασης \[Ι\] και το άλλο εναλλασσόμενο που η έντασή του έχει χρονοεξίσωση \[i=I \sqrt{2} ημ \frac{ 2π }{ Τ } t\]. Σε χρόνο μιας περιόδου \[Τ\], το φορτίο που μετατοπίζεται από μια διατομή του αντιστάτη έχει απόλυτη τιμή:
9. Το μεταλλικό πλαίσιο του παρακάτω σχήματος κινείται με τέτοια ταχύτητα ώστε το επίπεδό του να είναι συνεχώς κάθετο στις δυναμικές γραμμές του ομογενούς μαγνητικού πεδίου έντασης \[\vec{B}\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στο πλαίσιο εμφανίζεται επαγωγική ΗΕΔ:
10. Δύο κυκλικοί αγωγοί (1), (2) έχουν ακτίνες \[r,\, 2r\] και αντιστάσεις \[R,\, 2R\] αντίστοιχα. Οι δύο αγωγοί βρίσκονται ακλόνητοι οριζόντιοι σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο κατακόρυφο επίπεδο των δύο αυτών αγωγών. Την \[t=0\] το μέτρο της έντασης του μαγνητικού πεδίου αρχίζει να μειώνεται με σταθερό ρυθμό μέχρι τη χρονική στιγμή \[t_1\] που μηδενίζεται.


Α) Απ’ την \[t=0\] ως τη στιγμή \[t_1\]:

α) οι δύο αγωγοί διαρρέονται από ρεύματα σταθερών εντάσεων που έχουν την ωρολογιακή φορά.

β) Οι δύο αγωγοί διαρρέονται από ρεύματα σταθερών εντάσεων που έχουν την αντιωρολογιακή φορά.

γ) Ο αγωγός (1) διαρρέεται από σταθερό ρεύμα ωρολογιακής φοράς και ο (2) από σταθερό ρεύμα αντιωρολογιακής φοράς.

δ) Οι δύο αγωγοί διαρρέονται από ρεύματα χρονικά μεταβαλλόμενα.

Β) Απ’ την \[t=0\] ως τη στιγμή \[t_1\], τα επαγωγικά φορτία που διέρχονται απ’ τις διατομές των (1) και (2) αντίστοιχα έχουν απόλυτες τιμές \[q_1,\, q_2\]  για τις οποίες ισχύει:

α) \[q_1=\frac{q_2}{2} \],              β) \[q_1= 2 q_2 \],               γ) \[q_1=q_2\].

Γ) Στο χρονικό διάστημα από \[t=0\] ως την \[t_1\]  απ’ τους αντιστάτες των δύο αγωγών εκλύονται θερμότητες \[Q_1,\, Q_2\]  αντίστοιχα για τις οποίες ισχύει:

α) \[Q_1=\frac{Q_2}{2}\],         β) \[Q_1=2 Q_2\],          γ) \[Q_1=\frac{Q_2}{8}\],             δ) \[Q_1=4Q_2\].

11. Τα δύο πλαίσια \[(1),\, (2)\] του παρακάτω σχήματος έχουν εμβαδά \[S_1,\, S_2\] με \[S_2=2S_1\], ίδιο αριθμό σπειρών και ίδια αντίσταση \[R\]. Τα πλαίσια εισέρχονται στο ίδιο ομογενές μαγνητικό πεδίο έντασης \[B\]. Το πλαίσιο \[(1)\] εισέρχεται στο πεδίο σε χρόνο \[Δt_1\] και το πλαίσιο \[(2)\] σε χρόνο \[Δt_2\] και ισχύει \[Δt_2=2Δt_1\]. Αν \[q_1,\, q_2\] τα επαγωγικά φορτία που περνούν απ’ τις διατομές των δύο πλαισίων αντίστοιχα και \[\bar{\mathcal{E}}_{επ_1 },\,\bar{\mathcal{ E }}_{επ_2 }\] οι μέσες ΗΕΔ που δημιουργούνται σ’ αυτά αντίστοιχα στη διάρκεια της εισαγωγής τους στο πεδίο, ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
12. Σε ένα ανοικτό πλαίσιο παραγωγής εναλλασσόμενης τάσης που δημιουργείται στα άκρα του, η τάση έχει χρονοεξίσωση \[v=V ημωt\]. Ποια απ’ της παρακάτω προτάσεις είναι σωστή; Αν υποδιπλασιάσω το μέτρο της έντασης του μαγνητικού πεδίου μέσα στο οποίο βρίσκεται το πλαίσιο και ταυτόχρονα υποδιπλασιάσω την περίοδο περιστροφής του πλαισίου, η τάση στα άκρα του θα έχει εξίσωση:
13. Ο ευθύγραμμος αγωγός ΚΛ είναι αρχικά ακίνητος έχοντας τα άκρα του σε επαφή με τους παράλληλους οριζόντιους λείους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνω στον αγωγό αρχική ταχύτητα μέτρου \[υ_0\] και αυτός κινείται παράλληλα στους αγωγούς \[Αx_1\] και \[Γx_2\] έχοντας τα άκρα του συνεχώς σε επαφή με αυτούς. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στη διάρκεια της κίνησης του αγωγού:
14. Στο παρακάτω σχήμα ο ραβδόμορφος μαγνήτης απομακρύνεται από το πηνίο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Η μεταλλική ράβδος ΚΛ μήκους \[\ell\] του παρακάτω σχήματος κινείται με ταχύτητα μέτρου \[υ\] μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[υ\] με τέτοιο τρόπο ώστε η ταχύτητα, η διεύθυνση της ράβδου και οι δυναμικές γραμμές να είναι πάντα μεταξύ τους κάθετες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Οι οριζόντιοι ευθύγραμμοι αγωγοί ΟΓ και ΟΑ έχουν μήκη \[\ell\] και \[\frac{\ell }{ 2 }\] αντίστοιχα και στρέφονται στο ίδιο οριζόντιο επίπεδο με ίδια σταθερή γωνιακή ταχύτητα μέτρου \[ω\] γύρω από κατακόρυφο άξονα που διέρχεται απ’ το κοινό τους άκρο Ο. Το σύστημα των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Αν ο αγωγός ΟΓ στρέφονταν κατά την ωρολογιακή φορά ενώ ο αγωγός ΟΑ αντιωρολογιακά με ίσες κατά μέτρο γωνιακές ταχύτητες \[ω\], τότε η διαφορά δυναμικού \[V_{ΑΓ}\] γίνεται:
17. Η μαγνητική ροή που διέρχεται από ένα πλαίσιο \[Π_1\] μεταβάλλεται με το χρόνο σύμφωνα με το διάγραμμα \[1\] ενώ ενός δεύτερου πλαισίου \[Π_2\] σύμφωνα με το διάγραμμα \[2\]. Το πλαίσιο \[Π_1\] έχει αντίσταση \[R_1\] και το πλαίσιο \[Π_2\] έχει αντίσταση \[R_2\] με \[R_2=8R_1\].
A) Οι επαγωγικές ΗΕΔ \[ \mathcal{E}_1,\, \mathcal{E}_2 \] που δημιουργούνται στα δύο πλαίσια αντίστοιχα συνδέονται με τη σχέση:

α) \[ \mathcal{E}_1=\mathcal{E}_2 \],              
β) \[ \mathcal{E}_1=2\mathcal{E}_2 \],                        
γ) \[ \mathcal{E}_1=\frac{ \mathcal{E}_2 }{ 2 } \].

Β) Για τις εντάσεις \[Ι_1,\, Ι_2\]  των επαγωγικών ρευμάτων που δημιουργούνται στα δύο πλαίσια ισχύει:

α) \[Ι_1=Ι_2\],                  β) \[Ι_1=4Ι_2\],                γ) \[Ι_1=8Ι_2\].

18. Ο οριζόντιος ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Το σύστημα βρίσκεται σε κατακόρυφο ομογενές πεδίο που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Ο αγωγός την \[t=0\] έχει ταχύτητα παράλληλη στους αγωγούς \[Αx_1\] και \[Γx_2\] και μέτρου \[υ_0\]. Τη στιγμή αυτή ασκώ στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ομόρροπη της ταχύτητάς του \[υ_0\] και σταθερής κατεύθυνσης τέτοια ώστε ο αγωγός να εκτελεί ομαλά επιταχυνόμενη κίνηση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
19. Ο αγωγός τετραγωνικού σχήματος ΚΛΜΝ του παρακάτω σχήματος πλευράς \[α\] βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] με το επίπεδό του παράλληλο στις δυναμικές γραμμές του πεδίου. Αν στρέψουμε τον αγωγό ως προς άξονα που ταυτίζεται με την πλευρά του ΜΝ κατά \[60^0\] με φορά ομόρροπη των δεικτών του ρολογιού, τότε η μαγνητική ροή που διαρρέει το πλαίσιο γίνεται \[Φ\]. Ποια απ’ τις παρακάτω σχέσεις είναι η σωστή;
20. Σε ένα ανοικτό πλαίσιο παραγωγής εναλλασσόμενης τάσης δημιουργείται στα άκρα του τάση που έχει χρονοεξίσωση \[v=V ημωt\]. Ποια απ’ της παρακάτω σχέσεις είναι σωστή; Αν διπλασιάσω τη συχνότητα περιστροφής του πλαισίου και ταυτόχρονα το μέτρο της έντασης του μαγνητικού πεδίου μέσα στο οποίο βρίσκεται το πλαίσιο, τότε η χρονοεξίσωση της τάσης γίνεται:
21. Αντιστάτης \[R\] διαρρέεται από εναλλασσόμενο ρεύμα που η έντασή του έχει τη μορφή \[i=6\, ημωt\] (S.I.). Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ο αντιστάτης σε συνάρτηση με το χρόνο.

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

22. Πλαίσιο δημιουργίας εναλλασσόμενης τάσης έχει αμελητέα αντίσταση και τα άκρα του συνδέονται με αντιστάτη αντίστασης \[R\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Αν διπλασιάσουμε το μέτρο της έντασης του μαγνητικού πεδίου μέσα στο οποίο βρίσκεται το πλαίσιο και ταυτόχρονα διπλασιάσουμε τη γωνιακή ταχύτητα περιστροφής του, η μέση ισχύς που καταναλώνει ο αντιστάτης:
23. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται από το σημείο της Κ για το οποίο ισχύει \[ΟΚ=\frac{\ell }{ 3 }\]. Η ράβδος βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να γίνει η διαφορά δυναμικού \[V_{ΟΓ}\] μηδενική πρέπει η ράβδος να στρέφεται ως προς κατακόρυφο άξονα που διέρχεται απ’ το σημείο της Κ' για το οποίο η απόσταση ΟΚ' είναι:
24. Ένας αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημ \frac{2π}{Τ} t\]. Το συνολικό φορτίο που μετατοπίζεται από μια διατομή του σε χρονικό διάστημα \[2Τ\] είναι:
25. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα που η έντασή του είναι της μορφής \[i=I\, ημ \frac {2π}{Τ} t\]. Ποια από τις παρακάτω προτάσεις είναι σωστή; Ο ρυθμός παραγωγής θερμότητας στον αντιστάτη:
26. Στο παρακάτω σχήμα οι δύο πανομοιότυποι κατακόρυφοι κυκλικοί αγωγοί \[(1),\, (2)\] έχουν τα κέντρα τους στην οριζόντια ευθεία που ταυτίζεται με τον άξονα του μαγνήτη. Ο αγωγός \[(1)\] είναι κλειστός και ο αγωγός \[(2)\] έχει μια εγκοπή μεταξύ των σημείων του Κ, Λ. Ο μαγνήτης αρχίζει να πλησιάζει τους αγωγούς με ταχύτητα που η διεύθυνσή της ταυτίζεται με τον άξονά του. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Στη διάρκεια του πλησιάσματος:
27. Θερμική συσκευή συνδέεται από ακίνητο ρευματοδότη που δίνει εναλλασσόμενη τάση της μορφής \[v=220\sqrt{2}\, ημ100πt\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Σε \[10\, s\] η στιγμιαία ηλεκτρική ισχύς που καταναλώνει η αντίσταση ή αλλιώς ο ρυθμός έκλυσης θερμότητας απ’ την συσκευή γίνεται μηδέν:
28. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η μέση ισχύς του εναλλασσόμενου ρεύματος είναι:
29. Μια θερμική συσκευή έχει χαρακτηριστικά λειτουργίας \[220\, V / 110\, W\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Αν στα άκρα της συσκευής εφαρμόσουμε εναλλασσόμενη τάση πλάτους \[220\, V\]:
30. Η ενέργεια που αποθηκεύεται στο μαγνητικό πεδίο ενός πηνίου αντίστασης \[R\] όταν συνδεθεί με μια ιδανική πηγή \[(r=0)\] είναι ίση με \[10J\]. Κόβουμε το πηνίο στην μέση και συνδέουμε ένα κομμάτι στην ίδια πηγή. Η ενέργεια που αποθηκεύεται στο νέο πηνίο είναι

    +30

    CONTACT US
    CALL US