MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα φαίνεται η μεταβολή της επαγωγικής ΗΕΔ που δημιουργείται σε συρμάτινο πλαίσιο που βρίσκεται εξ’ ολοκλήρου μέσα σε ομογενές μαγνητικό πεδίο. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το εμβαδόν του τραπεζίου που δημιουργεί η γραφική παράσταση με τον άξονα των χρόνων είναι αριθμητικά ίσο με:
2. Το τετράγωνο πλαίσιο πλευράς \[α\] του παρακάτω σχήματος βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[B\], έχει πλευρά \[α\] και την \[t=0\] αρχίζει να εξέρχεται απ’ το πεδίο με σταθερή ταχύτητα \[υ\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου. Στη διάρκεια της εξόδου το επίπεδο του πλαισίου παραμένει κάθετο στις δυναμικές γραμμές. Να επιλέξετε τη σωστή απάντηση. Το επαγωγικό φορτίο που περνά απ’ τη διατομή του πλαισίου μέχρι αυτό να εξέλθει ολόκληρο από το πεδίο αν το πλαίσιο έχει \[Ν\] σπείρες και αντίσταση \[R\] είναι:
3. Στο παρακάτω σχήμα το σωληνοειδές και ο ραβδόμορφος μαγνήτης έχουν κοινό άξονα και ένα γαλβανόμετρο μετρά την ένταση του ρεύματος που διαρρέει το πηνίο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Οι δύο ομόκεντροι κυκλικοί αγωγοί \[(1),\, (2)\] βρίσκονται πάνω στο ίδιο οριζόντιο επίπεδο. Ο αγωγός \[(1)\] διαρρέεται από ρεύμα που έχει αρχικά σταθερή ένταση \[I\] και φορά αυτή που φαίνεται στο σχήμα. Σε χρονικό διάστημα \[Δt\] μειώνουμε την ένταση του ρεύματος στον αγωγό \[(1)\] χωρίς να μεταβάλλουμε τη φορά του μέχρι που αυτό μηδενίζεται μόνιμα. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Στη χρονική διάρκεια \[Δt\]:
5. Ποια από τις παρακάτω προτάσεις είναι σωστή; Για να δημιουργηθεί επαγωγικό ρεύμα σ’ ένα πηνίο πρέπει:
6. Αντιστάτης αντίστασης \[R\] συνδέεται με ιδανική πηγή εναλλασσόμενης τάσης της μορφής \[v=V ημ \frac{ 2π}{Τ} t\].

Α) Η μέγιστη χρονική διάρκεια μεταξύ δύο διαδοχικών φορών που η ισχύς που καταναλώνει ο αντιστάτης είναι ίση με το  \[\frac{1}{4}\]  της μέγιστης ισχύος του είναι:

α) \[Δt_{max}=\frac{T}{4}\],                      
β) \[Δt_{max}=\frac{Τ}{2}\],                       
γ) \[Δt_{max}=\frac{T}{3}\],          
δ) \[Δt_{max}=\frac{2T}{3}\].

Β) Το ελάχιστο αντίστοιχο χρονικό διάστημα είναι:

α) \[Δt_{min}=\frac{T}{4}\],                       
β) \[Δt_{min}=\frac{T}{6}\],                       
γ) \[Δt_{min}=\frac{T}{3}\],                       
δ) \[Δt_{min}=\frac{T}{12}\].

7. Τα πλαίσια \[Π_1,\, Π_2\] του παρακάτω σχήματος έχουν πλευρές \[α_1,\, α_2\] με \[α_1=2α_2\] και αριθμό σπειρών \[Ν_1,\, Ν_2\] με \[Ν_1=2Ν_2\]. Τα πλαίσια βρίσκονται ακλόνητα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_0\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδό τους και έχουν φορά απ’ τον αναγνώστη προς τη σελίδα. Την \[t=0\] το μέτρο της έντασης αρχίζει να αυξάνεται σύμφωνα με τη σχέση \[Β=Β_0+λt\] όπου \[λ\] θετική σταθερά.

Α) Οι επαγωγικές ΗΕΔ που αναπτύσσονται στα δύο πλαίσια \[ \mathcal{E}_{επ_1}, \, \mathcal{ E}_{επ_2} \] στη διάρκεια της μεταβολής του μέτρου της \[B\] έχουν λόγο  \[\frac{ \mathcal{ E}_{επ_1 } }{ \mathcal{ E}_{επ_2 }  } \]   ίσο με:

α) \[ \frac{ \mathcal {E}   _{επ_1 } }{ \mathcal{  E  }_{επ_2 } } =8  \],                
β) \[  \frac{ \mathcal{ E }_{επ_1 } }{ \mathcal{ E } _{επ_2 } }=4  \],                
γ) \[ \frac{ \mathcal{ E }_{επ_1 } }{ \mathcal{ E }_{επ_2 } }=\frac{ 1 }{ 8 }  \],             
δ) \[ \frac{ \mathcal{ E }_{επ_1 }  }{ \mathcal{ E }_{επ_2 } } =\frac{1 }{ 4 } \].

Β) Η φορά του ρεύματος που διαρρέει το Π2 στη διάρκεια της μεταβολής της \[Β\] έχει:

α) την ωρολογιακή φορά,                   

β) την αντιωρολογιακή φορά,

γ) έχει φορά περιοδικά μεταβαλλόμενη.

Γ) Στα άκρα Κ, Λ του Π1 στη διάρκεια της μεταβολής της \[Β\]:

α) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ.

β) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ.

γ) δεν δημιουργείται επαγωγική τάση γιατί το Π1 είναι ανοικτό.

δ) δημιουργείται επαγωγική τάση που η πολικότητά της περιοδικά αντιστρέφεται.

8. Το σωληνοειδές του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], \[n\] αριθμό σπειρών ανά μονάδα μήκους και διαρρέεται από σταθερό ρεύμα έντασης \[Ι\]. Στο εσωτερικό του σωληνοειδούς έχουμε τοποθετήσει κυκλικό πλαίσιο \[Ν\] σπειρών που το επίπεδό του σχηματίζει γωνία \[θ=30^0\] με τον άξονα του σωληνοειδούς όπως φαίνεται στο σχήμα. Το πλαίσιο έχει αντίσταση \[R_π\] και ακτίνα \[α\]. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Σε χρονικό διάστημα \[Δt\] στρέφουμε το πλαίσιο έτσι ώστε το επίπεδό του να γίνει παράλληλο στον άξονα του σωληνοειδούς.
Α) Το επαγωγικό ρεύμα που διαρρέει το πλαίσιο σε χρόνο \[Δt\] έχει ένταση μέσης τιμής:

α) \[Ι_{επ}=\frac{Νμ_0  π α^2}{2R_π  Δt} Ι\, n\],                   
β) \[Ι_{επ}=\frac{Νμ_0   π α^2 \sqrt{3}  }{2  (R_π+R_1+r) Δt}  I\, n\],
γ) \[Ι_{επ}=\frac{Νμ_0  π α^2 \sqrt{3} }{2R_π  Δt}  Ι\, n\],              
δ) \[Ι_{επ}=\frac{ Νμ_0  π α^2 \sqrt{3}  }{ 8R_π  Δt} I\, n\].

Β) Το επαγωγικό φορτίο \[q_{επ}\]  που περνά από μια διατομή του σύρματος του πλαισίου στη διάρκεια της παραπάνω στροφής του είναι:

α) ανάλογο του τετραγώνου της ακτίνας \[α\] του κυκλικού πλαισίου.

β) ανάλογο του χρονικού διαστήματος \[Δt\] που διαρκεί η μεταβολή της μαγνητικής ροής.

γ) αντιστρόφως ανάλογο του χρονικού διαστήματος \[Δt\] που διαρκεί η μεταβολή της μαγνητικής του ροής.

9. Το κυκλικό ανοικτό σιδερένιο πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο και ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο του πλαισίου. Το μέτρο της έντασης του μαγνητικού πεδίου αρχίζει να αυξάνεται για χρονική διάρκεια \[Δt\] χωρίς να μεταβληθεί η κατεύθυνσή της. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Στη διάρκεια \[Δt\]:
10. To τετράγωνο πλαίσιο ΚΛΜΝ βρίσκεται στο ίδιο οριζόντιο επίπεδο με τον ευθύγραμμο αγωγό μεγάλου μήκους. Το πλαίσιο είναι αρχικά ακίνητο και ο ευθύγραμμος αγωγός διαρρέεται από ρεύμα σταθερής έντασης και φοράς.

Α) α) Κάθε πλευρά του πλαισίου δέχεται δυνάμεις Laplace που ανά δύο εξουδετερώνονται.

β) Το πλαίσιο έλκεται απ’ τον ευθύγραμμο αγωγό.

γ) Στο πλαίσιο δημιουργείται επαγωγική ΗΕΔ.

δ) Η μαγνητική ροή που διέρχεται απ’ την επιφάνεια του πλαισίου μένει σταθερή με το χρόνο.

Β) Αρχίζουμε να μειώνουμε την ένταση του ρεύματος στον ευθύγραμμο αγωγό χωρίς να μεταβάλλουμε τη φορά της.

α) Το πλαίσιο έλκεται απ’ τον ευθύγραμμο αγωγό.

β) Οι πλευρές ΚΛ και ΜΝ δέχονται απ’ τον αγωγό δυνάμεις ίσου μέτρου και αντίθετης φοράς.

γ) Στο πλαίσιο δεν δημιουργείται επαγωγική ΗΕΔ.

11. Η μαγνητική ροή που διέρχεται από ένα πλαίσιο \[Π_1\] μεταβάλλεται με το χρόνο σύμφωνα με το διάγραμμα \[1\] ενώ ενός δεύτερου πλαισίου \[Π_2\] σύμφωνα με το διάγραμμα \[2\]. Το πλαίσιο \[Π_1\] έχει αντίσταση \[R_1\] και το πλαίσιο \[Π_2\] έχει αντίσταση \[R_2\] με \[R_2=8R_1\].
A) Οι επαγωγικές ΗΕΔ \[ \mathcal{E}_1,\, \mathcal{E}_2 \] που δημιουργούνται στα δύο πλαίσια αντίστοιχα συνδέονται με τη σχέση:

α) \[ \mathcal{E}_1=\mathcal{E}_2 \],              
β) \[ \mathcal{E}_1=2\mathcal{E}_2 \],                        
γ) \[ \mathcal{E}_1=\frac{ \mathcal{E}_2 }{ 2 } \].

Β) Για τις εντάσεις \[Ι_1,\, Ι_2\]  των επαγωγικών ρευμάτων που δημιουργούνται στα δύο πλαίσια ισχύει:

α) \[Ι_1=Ι_2\],                  β) \[Ι_1=4Ι_2\],                γ) \[Ι_1=8Ι_2\].

12. Η ένταση του ρεύματος που διαρρέει ένα πηνίο μεταβάλλεται από την τιμή \[I\] στην τιμή \[2I\]. Η μέση ηλεκτρεγερτική δύναμη από αυτεπαγωγή που αναπτύσσεται στο πηνίο
13. Πλαίσιο παραγωγής εναλλασσόμενης τάσης έχει αμελητέα αντίσταση, αποτελείται από \[Ν\] σπείρες που η καθεμιά έχει εμβαδόν \[Α\]. Το πλαίσιο βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] και την \[t=0\] είναι κάθετο στις δυναμικές γραμμές του πεδίου. Η περίοδος περιστροφής του πλαισίου είναι \[T\].

Α) Από την \[t=0\] ως την \[t_1=\frac{3T}{4}\], το φορτίο που μετατοπίζεται από μια διατομή του πλαισίου έχει απόλυτη τιμή:

α) \[\frac{ΝΒΑ}{2R}\],    β) \[\frac{ΝΒΑ}{4R}\],    γ) \[\frac{ΝΒΑ}{R}\],       δ) \[0\].

Β) Στο ίδιο χρονικό διάστημα το φορτίο που διέρχεται από μια διατομή του πλαισίου ανεξαρτήτως φοράς έχει απόλυτη τιμή:

α) \[ \frac{2NBA}{R}\],    β) \[\frac{ΝΒΑ}{R}\],      γ) \[\frac{4ΝΒΑ}{R}\],     δ) \[\frac{3ΝΒΑ}{R}\].

14. Στο παρακάτω σχήμα ο ραβδόμορφος μαγνήτης πλησιάζει το μεταλλικό δακτύλιο με σταθερή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Ένας αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημ \frac{2π}{Τ} t\]. Το συνολικό φορτίο που μετατοπίζεται από μια διατομή του σε χρονικό διάστημα \[2Τ\] είναι:
16. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
17. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται από το σημείο της Κ για το οποίο ισχύει \[ΟΚ=\frac{\ell }{ 3 }\]. Η ράβδος βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να γίνει η διαφορά δυναμικού \[V_{ΟΓ}\] μηδενική πρέπει η ράβδος να στρέφεται ως προς κατακόρυφο άξονα που διέρχεται απ’ το σημείο της Κ' για το οποίο η απόσταση ΟΚ' είναι:
18. Συρμάτινο ορθογώνιο πλαίσιο αποτελείται από \[Ν\] σπείρες που η καθεμία έχει αντίσταση \[R_σ\] και εμβαδόν \[Α\]. Στα άκρα του πλαισίου συνδέουμε αντιστάτη αντίστασης \[2R_σ\]. Το πλαίσιο βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] και στρέφεται με σταθερή συχνότητα περιστροφής \[f\] ως προς άξονα κάθετο στις δυναμικές γραμμές του. Η μέση ισχύς που καταναλώνει ο αντιστάτης είναι:
19. Τα βολτόμετρα και τα αμπερόμετρα για τη μέτρηση εναλλασσόμενων τάσεων και ρευμάτων μετρούν:
20. Δύο πανομοιότυποι μαγνήτες (1), (2) έχουν τους άξονές τους κατακόρυφους και αυτοί διέρχονται απ’ τα κέντρα πανομοιότυπων μεταλλικών δακτυλίων (1), (2) που κρατούνται ακίνητοι. Ο δακτύλιος (1) είναι κλειστός ενώ ο (2) παρουσιάζει μικρή εγκοπή. Οι μαγνήτες αφήνονται απ’ το ίδιο ύψος h απ’ το οριζόντιο έδαφος όπως φαίνεται στο παρακάτω σχήμα. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες. Αν ο μαγνήτης \[(1)\] φτάνει σε χρονικό διάστημα \[Δt_1\] στο έδαφος απ’ τη στιγμή που τον αφήσαμε και ο μαγνήτης \[(2)\] σε \[Δt_2\] αντίστοιχα, τότε ισχύει:
21. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημ\frac{ 2π}{Τ} t\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Το κυκλικό συρμάτινο πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο του πλαισίου. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; Επαγωγικό ρεύμα στο κύκλωμα δημιουργείται:
23. Αντιστάτης αντίστασης \[R\] έχει τάση στα άκρα του \[v=V\, ημωt\] και διαρρέεται από ρεύμα έντασης \[i=I\, ημωt\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Ο νόμος του Ohm μπορεί να γραφεί:
24. Στα γειτονικά πηνία \[Π_1,\, Π_2\] του παρακάτω σχήματος, οι άξονές τους ταυτίζονται: Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το πηνίο \[Π_1\] διαρρέεται από επαγωγικό ρεύμα στη διάρκεια:
25. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\] και σε χρόνο \[Δt\] εκλύεται στο περιβάλλον θερμότητα \[Q_1\]. Ποια από τις παρακάτω προτάσεις είναι σωστή; Αν διπλασιάσω το πλάτος της έντασης του ρεύματος, τότε στον ίδιο χρόνο \[Δt\] ο αντιστάτης θα εκλύει θερμότητα \[Q_2\] για την οποία ισχύει:
26. Σε ένα ανοικτό πλαίσιο παραγωγής εναλλασσόμενης τάσης δημιουργείται στα άκρα του τάση που έχει χρονοεξίσωση \[v=V ημωt\]. Ποια απ’ της παρακάτω σχέσεις είναι σωστή; Αν διπλασιάσω τη συχνότητα περιστροφής του πλαισίου και ταυτόχρονα το μέτρο της έντασης του μαγνητικού πεδίου μέσα στο οποίο βρίσκεται το πλαίσιο, τότε η χρονοεξίσωση της τάσης γίνεται:
27. Ο δακτύλιος του παρακάτω σχήματος α είναι κρεμασμένος με τη βοήθεια μονωτικών και αβαρών νημάτων από οροφή ώστε το επίπεδό του να είναι οριζόντιο. Ραβδόμορφος μαγνήτης κινείται με ταχύτητα κάθετη στο επίπεδο του δακτυλίου που ο φορέας της περνά απ’ το κέντρο του.

Α) α) Στη διάρκεια του πλησιάσματος στην κάτω επιφάνεια του δακτυλίου, δημιουργείται νότιος μαγνητικός πόλος.

β) τα νήματα κινδυνεύουν να σπάσουν.

γ) τα νήματα ζαρώνουν, αν ο δακτύλιος έχει μικρό βάρος.

Β) Δημιουργώ στον παραπάνω δακτύλιο μια εγκοπή και πλησιάζω πάλι προς αυτόν το ραβδόμορφο μαγνήτη με τον ίδιο τρόπο. Στο άκρο Κ, Λ του δακτυλίου:

α) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ.

β) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ.

γ) δεν δημιουργείται επαγωγική τάση.

28. Ο δίσκος του παρακάτω σχήματος έχει ακτίνα \[r\] και στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] γύρω από άξονα που είναι κάθετος στο επίπεδό του και περνά απ’ το κέντρο του Κ. Ο δίσκος βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι παράλληλες στον άξονα περιστροφής του. Αν προσθέσουμε δύο ολισθαίνουσες ψήκτρες, μία στην περιφέρειά του και μία στον άξονα περιστροφής του τότε ο δίσκος αυτός μπορεί να λειτουργεί:
29. Το πηνίο στο παρακάτω κύκλωμα έχει συντελεστή αυτεπαγωγής \[L\], ωμική αντίσταση \[R\] και συνδέεται με πηγή σταθερής ΗΕΔ \[Ε\] και εσωτερικής αντίστασης \[r=R\]. Αν κλείσουμε τον διακόπτη \[δ\] του κυκλώματος η τελική τιμή της έντασης του ρεύματος είναι ίση με \[Ι_0\]. Αντικαθιστούμε το πηνίο με άλλο το οποίο έχει τον ίδιο συντελεστή αυτεπαγωγής και διπλάσια αντίσταση και κλείνουμε πάλι τον διακόπτη. Η τελική τιμή της έντασης του ρεύματος στο κύκλωμα είναι:
30. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα με ένταση της μορφής \[i=I\, ημωt\]. Η αλγεβρική τιμή της έντασης του ρεύματος γίνεται δύο φορές ίση με την ενεργό τιμή της χωρίς να αλλάξει πρόσημο στη χρονική διάρκεια που μεσολαβεί. Η χρονική διάρκεια μεταξύ των δύο αυτών φορών είναι \[Δt=2,5\, ms\]. Η συχνότητα του εναλλασσόμενου ρεύματος είναι:

    +30

    CONTACT US
    CALL US