MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Η ράβδος ΟΑ του παρακάτω σχήματος έχει μήκος \[\ell\] και αντίσταση \[R\] και στρέφεται με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το σημείο Γ της ράβδου που απέχει απ’ το Ο απόσταση \[ΟΓ=\frac{\ell}{4}\] βρίσκεται συνεχώς σε επαφή με την περιφέρεια κυκλικού οριζόντιου αγωγού κέντρου Ο ακτίνας \[\frac{\ell}{4}\] και αμελητέας αντίστασης που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Η ράβδος δεν δέχεται καμία τριβή κατά την κίνησή της. Το άκρο Ο γεφυρώνεται με το σημείο Κ της περιφέρειας του κυκλικού αγωγού με αντιστάτη αντίστασης \[R_1=R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου ασκούμε στο άκρο Α της ράβδου οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η ράβδος κατά την κίνησή της δέχεται δύναμη Laplace απ’ το μαγνητικό πεδίο μέτρου \[F_L\]. Ο λόγος των μέτρων \[\frac{F}{F_L}\] είναι:
2. Μεταλλικό πλαίσιο αποτελείται από \[Ν=3\] σπείρες εμβαδού \[Α\] και αντίστασης \[R_σ\] η καθεμία. Στα άκρα του πλαισίου συνδέουμε μεταβλητό αντιστάτη που η αρχική τιμή της αντίστασής του είναι \[R_σ\]. Το πλαίσιο στρέφεται μέσα σε ομογενές μαγνητικό πεδίο ως προς άξονα κάθετο στις δυναμικές γραμμές του πεδίου με σταθερή γωνιακή ταχύτητα \[ω\]. Η μέγιστη ισχύς που καταναλώνεται στην μεταβλητή αντίσταση είναι \[P_1\]. Αν διπλασιάσουμε την γωνιακή ταχύτητα του πλαισίου και την τιμή της μεταβλητής αντίστασης, τότε η μέγιστη ισχύς που αυτή καταναλώνει είναι \[P_2\]. Ο λόγος \[\frac{P_1}{P_2}\] είναι:
3. Εάν είναι γνωστό ότι ο συντελεστής αυτεπαγωγής ενός πηνίου (μετρημένος σε \[H\]) είναι αριθμητικά διπλάσιος από την ΗΕΔ αυτεπαγωγής (κατά απόλυτη τιμή και μετρημένης σε \[V\]) που εμφανίζεται στο πηνίο τότε το ρεύμα που διαρρέει το πηνίο μεταβάλλεται με ρυθμό ίσο με:
4. Αντιστάτης αντίστασης \[R\] διαρρέεται από εναλλασσόμενο ρεύμα με ένταση της μορφής \[i=I ημ\frac{ 2π}{Τ} t\]. Σε ποιο απ’ τα παρακάτω σχήματα απεικονίζεται σωστά ο στιγμιαίος ρυθμός κατανάλωσης ηλεκτρικής ενέργειας απ’ τον αντιστάτη;
5. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η μέση ισχύς του εναλλασσόμενου ρεύματος είναι:
6. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η ενεργός ένταση ενός εναλλασσόμενου ρεύματος είναι:
7. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Κατά τη διάρκεια του πλησιάσματος του μαγνήτη προς το ακίνητο πηνίο που έχει ίδιο άξονα με αυτόν:
8. Στο παρακάτω σχήμα ο ραβδόμορφος μαγνήτης πλησιάζει το μεταλλικό δακτύλιο με σταθερή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Η μαγνητική ροή που διέρχεται από τη σπείρα ενός αγώγιμου πλαισίου \[Π_1\] φαίνεται στο διάγραμμα \[1\] ενώ η μαγνητική ροή που διέρχεται από τη σπείρα ενός αγώγιμου πλαισίου \[Π_2\] φαίνεται στο διάγραμμα \[2\]. Τα πλαίσια έχουν αντιστάσεις \[R_1,\, R_2\] αντίστοιχα με \[R_1=2R_2\] και ίδιο αριθμό σπειρών \[Ν\].

Α) Για τις επαγωγικές ΗΕΔ που δημιουργούνται στα πλαίσια ισχύει:

α) \[   \mathcal{E}_{επ_1 }=3\mathcal{E}_{επ_2 }=-\frac{3ΝΦ_0}{t_1}  \] ,     

β) \[  \mathcal{E}_{επ_1}=3\mathcal{E}_{επ_2}=-\frac{2Φ_0}{t_1}  \] ,

γ) \[   \mathcal{E}_{επ_1 }=3\mathcal{E}_{επ_2 }=\frac{3ΝΦ_0}{t_1} \] ,

δ) \[ \mathcal{ E}_{επ_1}=\mathcal{E}_{επ_2 }=-\frac{3ΝΦ_0}{t_1} \] .

Β) Για τις εντάσεις \[Ι_1,\, Ι_2\]  των ρευμάτων που διαρρέουν τα δύο πλαίσια αντίστοιχα ισχύει:

α) \[Ι_1=Ι_2\],                  β) \[Ι_1=3Ι_2\],                γ) \[Ι_1=\frac{3}{2} Ι_2 \].

10. Ραβδόμορφος κατακόρυφος μαγνήτης Μ μάζας \[m\] βρίσκεται πάνω από οριζόντιο μεταλλικό δακτύλιο και ο άξονάς του είναι κατακόρυφος και περνά απ’ το κέντρο του δακτυλίου όπως φαίνεται στο παρακάτω σχήμα. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες και το μέτρο της επιτάχυσνης της βαρύτητας είναι \[g\]. Αφήνουμε το μαγνήτη από ύψος \[h\] απ’ το οριζόντιο έδαφος. Ο μαγνήτης φτάνει στον ακλόνητο δακτύλιο, τον ξεπερνά και συνεχίζοντας να πέφτει, φτάνει στο έδαφος.

Α) Η κινητική ενέργεια \[Κ\] του μαγνήτη όταν φτάνει στο έδαφος είναι:

α) \[Κ=mgh\],                        β) \[K > mgh\],                   γ) \[K < mgh\].

Β) Στη διάρκεια του πλησιάσματος του μαγνήτη, η επαγωγική τάση που δημιουργείται στα άκρα Κ, Λ του Δ είναι:

α) μηδενική,

β) μη μηδενική με \[(+)\] στο άκρο Λ,

γ) μη μηδενική με \[(+)\] στο άκρο Κ.

11. Η μεταλλική ράβδος ΚΛ μήκους \[\ell\] του παρακάτω σχήματος κινείται με ταχύτητα μέτρου \[υ\] μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[υ\] με τέτοιο τρόπο ώστε η ταχύτητα, η διεύθυνση της ράβδου και οι δυναμικές γραμμές να είναι πάντα μεταξύ τους κάθετες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
12. Ο συντελεστής αυτεπαγωγής ενός πηνίου εξαρτάται από:
13. Ένα σωληνοειδές πηνίο όταν διαρρέεται από ρεύμα του οποίου η ένταση μεταβάλλεται με σταθερό ρυθμό \[λ_1\] η ΗΕΔ αυτεπαγωγής στο πηνίο είναι ίση με \[\mathcal{E}_{ΑΥT_1}\]. Όταν το ίδιο πηνίο διαρρέεται από ρεύμα του οποίου η ένταση μεταβάλλεται με σταθερό ρυθμό \[λ_2=4λ_1\] η ΗΕΔ αυτεπαγωγής που εμφανίζεται είναι ίση με \[\mathcal{E}_{ΑΥΤ _2}\]. Το πηλίκο \[\frac{\mathcal{E}_{ΑΥΤ_1} }{\mathcal{E}_{ΑΥΤ_2} }\] είναι ίσο με:
14. Το κυκλικό μεταλλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ολόκληρο και ακίνητο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδό του. Σε χρονικό διάστημα \[Δt\] μειώνουμε το μέτρο της έντασης του μαγνητικού πεδίου απ’ την τιμή \[B_0\] στην τιμή \[Β_1\] χωρίς ν’ αλλάξουμε την κατεύθυνση της \[\vec{B}\]. Αμέσως μετά, το διάνυσμα της \[\vec{B}\] σταθεροποιείται ξανά. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
15. Ο δακτύλιος του παρακάτω σχήματος α είναι κρεμασμένος με τη βοήθεια μονωτικών και αβαρών νημάτων από οροφή ώστε το επίπεδό του να είναι οριζόντιο. Ραβδόμορφος μαγνήτης κινείται με ταχύτητα κάθετη στο επίπεδο του δακτυλίου που ο φορέας της περνά απ’ το κέντρο του.

Α) α) Στη διάρκεια του πλησιάσματος στην κάτω επιφάνεια του δακτυλίου, δημιουργείται νότιος μαγνητικός πόλος.

β) τα νήματα κινδυνεύουν να σπάσουν.

γ) τα νήματα ζαρώνουν, αν ο δακτύλιος έχει μικρό βάρος.

Β) Δημιουργώ στον παραπάνω δακτύλιο μια εγκοπή και πλησιάζω πάλι προς αυτόν το ραβδόμορφο μαγνήτη με τον ίδιο τρόπο. Στο άκρο Κ, Λ του δακτυλίου:

α) δημιουργείται επαγωγική τάση με \[(+)\] στο Κ.

β) δημιουργείται επαγωγική τάση με \[(+)\] στο Λ.

γ) δεν δημιουργείται επαγωγική τάση.

16. Τα βολτόμετρα και τα αμπερόμετρα για τη μέτρηση εναλλασσόμενων τάσεων και ρευμάτων μετρούν:
17. Διαθέτουμε δύο συρμάτινα πλαίσια \[(1),\, (2)\] που έχουν αντιστάσεις \[R_1,\, R_2\] με \[R_1=R_2\] και αριθμό σπειρών \[Ν_1,\, Ν_2\] με \[Ν_1=Ν_2\] αντίστοιχα. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των μαγνητικών ροών μιας σπείρας απ’ το κάθε πλαίσιο σε συνάρτηση με το χρόνο σε κοινό σύστημα αξόνων. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Απ’ τη χρονική στιγμή \[t=0\] ως τη στιγμή \[t_1\]:
18. Μια συνεχής σταθερή τάση \[V_Σ\] δημιουργεί στον αντιστάτη \[R\] ίδια θερμικά αποτελέσματα με αυτά που δημιουργεί μια ημιτονοειδής εναλλασσόμενη τάση ενεργού τιμής \[V_{εν}\] σε μια αντίσταση \[4R\] στο ίδιο χρονικό διάστημα. Ποια από τις παρακάτω προτάσεις είναι σωστή; Ο λόγος \[ \frac{ V_{εν} }{ V_{Σ} }\] είναι:
19. Η ράβδος ΟΑ του παρακάτω σχήματος έχει μήκος \[\ell \] και αντίσταση \[R\] και στρέφεται γύρω από άξονα κάθετο σ’ αυτήν που περνά απ’ το άκρο της Ο με σταθερή γωνιακή ταχύτητα \[ω\]. Κατά την περιστροφή της ράβδου, το άκρο της Α ολισθαίνει χωρίς τριβές σε κυκλικό αγωγό κέντρου Ο και ακτίνας \[R\] αμελητέας αντίστασης που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου όπως φαίνεται στο σχήμα. Το άκρο Ο συνδέεται με το σημείο Κ του αγωγού μέσω αντιστάτη \[R_1\] που έχει αντίσταση \[R_1=R\]. Το σύστημα των αγωγών βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο του συστήματος. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Σε ένα ανοικτό πλαίσιο παραγωγής εναλλασσόμενης τάσης που δημιουργείται στα άκρα του, η τάση έχει χρονοεξίσωση \[v=V ημωt\]. Ποια απ’ της παρακάτω προτάσεις είναι σωστή; Αν υποδιπλασιάσω το μέτρο της έντασης του μαγνητικού πεδίου μέσα στο οποίο βρίσκεται το πλαίσιο και ταυτόχρονα υποδιπλασιάσω την περίοδο περιστροφής του πλαισίου, η τάση στα άκρα του θα έχει εξίσωση:
21. Τετράγωνο μεταλλικό πλαίσιο αποτελείται από \[Ν\] σπείρες εμβαδού \[Α\] η καθεμία και συνολική αντίσταση \[R_π\]. Tο πλαίσιο συνδέεται στα άκρα του με αντιστάτη αντίστασης \[3R_π\]. Το πλαίσιο βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] και το επίπεδό του είναι κάθετο στις δυναμικές του γραμμές. Την \[t=0\] το πλαίσιο αρχίζει να στρέφεται με σταθερή περίοδο περιστροφής \[T\] ως προς άξονα κάθετο στις δυναμικές γραμμές του ομογενούς μαγνητικού πεδίου. Η εξίσωση της στιγμιαίας ισχύος στην αντίσταση του πλαισίου είναι:
22. Στο παρακάτω σχήμα έχουμε ακίνητο σωληνοειδές και ακίνητο ραβδόμορφο μαγνήτη που οι άξονές τους ταυτίζονται. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Για να δημιουργηθεί ΗΕΔ από επαγωγή στο σωληνοειδές πρέπει:
23. Ποια από τις παρακάτω προτάσεις είναι σωστή; Μια θερμική συσκευή που λειτουργεί με εναλλασσόμενη τάση αναγράφει τα στοιχεία "\[400W,\, 200V\]". Αυτό σημαίνει ότι για να λειτουργεί κανονικά η συσκευή:
24. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται από το σημείο της Κ για το οποίο ισχύει \[ΟΚ=\frac{\ell }{ 3 }\]. Η ράβδος βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να γίνει η διαφορά δυναμικού \[V_{ΟΓ}\] μηδενική πρέπει η ράβδος να στρέφεται ως προς κατακόρυφο άξονα που διέρχεται απ’ το σημείο της Κ' για το οποίο η απόσταση ΟΚ' είναι:
25. Η ένταση του ρεύματος στο παρακάτω κύκλωμα μεταβάλλεται με τη βοήθεια του μεταβλητού αντιστάτη \[R\]. Ποιες από τις προτάσεις που ακολουθούν είναι σωστές; Η ΗΕΔ λόγω αυτεπαγωγής που δημιουργείται στο πηνίο έχει πολικότητα
26. Στο παρακάτω σχήμα ο ραβδόμορφος μαγνήτης αρχίζει να πλησιάζει το πηνίο με ταχύτητα που έχει τη διεύθυνση αυτή του κοινού τους άξονα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Συρμάτινο τετράγωνο πλαίσιο αμελητέας αντίστασης αποτελείται από \[Ν\] σπείρες που η καθεμιά έχει εμβαδόν \[Α\]. Το πλαίσιο βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[B\] με το επίπεδό του κάθετο στις δυναμικές γραμμές του πεδίου και στα άκρα του έχουμε συνδέσει αντιστάτη αντίστασης \[R\]. Την \[t=0\] αρχίζει να στρέφεται με σταθερή περίοδο περιστροφής \[Τ\] ως προς άξονα κάθετο στις δυναμικές γραμμές του πεδίου.

Α) Μέχρι τη χρονική στιγμή \[t_1=\frac{T}{4}\], η απόλυτη τιμή του φορτίου που μετατοπίζεται από τη διατομή  του σύρματος του πλαισίου είναι:
α) \[\frac{NBA}{2R}\],               
β) \[\frac{ΝΒΑ}{R}\],                 
γ) \[\frac{ΝΒΑ}{4R}\],    
δ) \[\frac{ ΝΒΑ\sqrt{3} }{2R}\].

B) Μέχρι τη χρονική στιγμή \[t_2=\frac{T}{2}\], η απόλυτη τιμή του φορτίου που μετατοπίζεται είναι ίση με:

α) \[\frac{ΝΒΑ}{R}\]  και ίδια με την απόλυτη τιμή του φορτίου που διέρχεται απ’ τη διατομή ανεξαρτήτως φοράς στον ίδιο χρόνο.

β) \[\frac{2ΝΒΑ}{R}\]  και ίδια με την απόλυτη τιμή του φορτίου που διέρχεται απ’ τη διατομή ανεξαρτήτως φοράς στον ίδιο χρόνο.

γ) \[\frac{2ΝΒΑ}{R}\]  αλλά διαφορετική της απόλυτης τιμής του φορτίου που διέρχεται ανεξαρτήτως φοράς απ’ τη διατομή στον ίδιο χρόνο.

28. Δύο μεταλλικά τετράγωνα πλαίσια (1), (2) με πλευρές \[α\] και \[2α\] αντίστοιχα, έχουν ίδιο αριθμό σπειρών \[Ν\] και αντίσταση ανά μονάδα μήκους \[R_1^*,\, R_2^*\] με \[R_1^*=2R_2^*\]. Την \[t=0\] τα πλαίσια βρίσκονται στο άκρο ΑΓ κατακόρυφου μαγνητικού πεδίου και κινούνται με σταθερές ταχύτητες \[ \vec{υ}_1 , \, \vec{ υ}_2\] που για τα μέτρα τους ισχύει \[ υ_1 > υ_2 \]. Οι ταχύτητες αυτές είναι κάθετες στο όριο ΑΓ του πεδίου. Τη στιγμή \[t_2\], το πλαίσιο (2) μπαίνει εξ’ ολοκλήρου στο μαγνητικό πεδίο, ενώ το πλαίσιο (1) κινείται ενώ βρίσκεται εξ’ ολοκλήρου μέσα σ’ αυτό.

Α) Το επαγωγικό φορτίο που πέρασε από μία διατομή του σύρματος του πλαισίου (1) μέχρι τη χρονική στιγμή \[t_2\]  έχει απόλυτη τιμή \[q_1\]  ενώ για το πλαίσιο (2) έχει απόλυτη τιμή \[q_2\]. Για το \[q_1\]  ισχύει:

α) \[ q_1=\frac{ B α }{ 4R_1^* } \],                        
β) \[ q_1=\frac{NBα}{4R_1^*} \],                     
γ) \[ q_1=\frac{  N^2 Bα  } {4R_1^* }  \].

Β) Για τις σχέσεις των \[q_1,\, q_2\]  ισχύει:

α) \[q_1 = q_2\],              β) \[ q_1=4q_2 \],              γ) \[ q_1=\frac{q_2}{4}\],           δ) \[q_1=\frac{q_2}{2}\].

29. Το τετράγωνο συρμάτινο πλαίσιο του παρακάτω σχήματος έχει πλευρά \[2α\] και κινείται μπαίνοντας απ’ την \[t=0\] σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Η ταχύτητα του πλαισίου είναι σταθερή και κάθετη στις δυναμικές γραμμές και στην πλευρά ΛM του πλαισίου. Το πεδίο εκτείνεται σε πλάτος \[α\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το πλαίσιο διαρρέεται από επαγωγικό ρεύμα που έχει φορά ομόρροπη των δεικτών του ρολογιού τη χρονική διάρκεια:
30. Η ράβδος ΚΛ του παρακάτω σχήματος έχει μήκος \[ \ell \] και κινείται με σταθερή ταχύτητα μέτρου \[υ\] που είναι κάθετη στη διεύθυνση της ράβδου και στις δυναμικές γραμμές του ομογενούς μαγνητικού πεδίου έντασης μέτρου \[Β\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Στα άκρα ΚΛ δημιουργείται επαγωγική τάση:

    +30

    CONTACT US
    CALL US