MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
2. Ένα σωληνοειδές Σ έχει \[n\] αριθμό σπειρών ανά μονάδα μήκους και κάθε σπείρα έχει ακτίνα \[α_1\]. Κυκλικό πλαίσιο Π αποτελείται από \[Ν\] σπείρες ακτίνας \[α_2\] που η καθεμιά έχει αντίσταση \[R\] και περιβάλλει το σωληνοειδές ακριβώς στο κέντρο του με τις σπείρες του να έχουν κοινό κέντρο Κ και κοινό κατακόρυφο επίπεδο με την κεντρική σπείρα του σωληνοειδούς. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Μεταβάλλοντας κατάλληλα την αντίσταση \[R_1\] του κυκλώματος του σωληνοειδούς Σ, η ένταση που το διαρρέει μεταβάλλεται με σταθερό ρυθμό \[ \frac{ΔΙ}{Δt} = λ > 0\]. Το ρεύμα που διαρρέει το πλαίσιο Π έχει:
3. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] το ρεύμα στο κύκλωμα έχει ένταση ίση με:
4. Στο παρακάτω σχήμα στο εσωτερικό του σωληνοειδούς Σ υπάρχει σιδηρομαγνητικό υλικό που σ’ ένα σημείο έχουμε τοποθετήσει ελαφρύ αγώγιμο δακτύλιο Δ. Όταν κλείσουμε το διακόπτη δ, τότε ο δακτύλιος:
5. Αντιστάτης τροφοδοτείται με εναλλασσόμενη τάση της μορφής \[v=10\, ημωt\] (S.I.). Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ο αντιστάτης με το χρόνο.

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

6. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει αντίσταση \[R\], μήκος \[\ell\] και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα. Ο αγωγός κινείται με σταθερή ταχύτητα πάνω στους λείους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και αμελητέας αντίστασης που τα άκρα τους Α, Γ είναι συνδεμένα με αντιστάτη αντίστασης \[R_1=R\]. Ο αγωγός ΚΛ ακουμπά στους αγωγούς μεγάλου μήκους στα σημεία Ν, Ζ που έχουν απόσταση \[ΝΖ=\frac{ \ell } { 2 }\] ενώ τα τμήματα του αγωγού που προεξέχουν απ’ τους αγωγούς \[Αx_1\] και \[Γx_2\] έχουν ίδιο μήκος. Το σύστημα όλων των αγωγών βρίσκεται σε ομογενές κατακόρυφο μαγνητικό πεδίο έντασης μέτρου \[\vec{B}\] που περιορίζεται στο χώρο μεταξύ των αγωγών \[Ax_1\] και \[Γx_2\] και οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Το μέτρο της οριζόντιας εξωτερικής δύναμης \[F\] που πρέπει να ασκούμε στο μέσο Μ του αγωγού ΚΛ και κάθετα στη διεύθυνσή του ώστε αυτός να διατηρεί σταθερή την ταχύτητά του είναι:
7. Ραβδόμορφος μαγνήτης με τον άξονά του κατακόρυφο που διέρχεται απ’ το κέντρο του μεταλλικού δακτυλίου που κρατείται ακίνητος, αφήνεται να πέσει στο κενό. Ποια από τις παρακάτω προτάσεις είναι σωστή; Η μείωση της βαρυτικής δυναμικής ενέργειας του μαγνήτη μετατρέπεται:
8. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της αποθηκευμένης ενέργειας στο πηνίο είναι:
9. Το κυκλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ακλόνητο με το επίπεδό του κατακόρυφο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το πλαίσιο αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\]. Το πλαίσιο συνδέεται μέσω αβαρών συρμάτων αμελητέας αντίστασης με δύο κατακόρυφους αγωγούς \[y_1 y_1'\] και \[y_2 y_2'\] που και αυτοί έχουν αμελητέα αντίσταση. Ευθύγραμμος αγωγός ΑΓ είναι κάθετος στους κατακόρυφους αγωγούς και τα άκρα του Α, Γ είναι σε επαφή με αυτούς. Οι τριβές μεταξύ του αγωγού ΑΓ και των κατακόρυφων αγωγών θεωρούνται αμελητέες. Ο αγωγός ΑΓ βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η φορά της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει στερεωθεί απ’ το κέντρο του στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Όταν η ένταση του μαγνητικού πεδίου \[\vec{Β}_1\] αρχίζει να μεταβάλλει το μέτρο της με σταθερό ρυθμό \[\left| \frac{ΔΒ_1}{Δt} \right|=λ\] χωρίς να μεταβάλλεται η φορά της, ο αγωγός ΑΓ ισορροπεί και το ελατήριο είναι συσπειρωμένο κατά \[Δ\ell\]. Ο αγωγός ΑΓ έχει αντίσταση \[R_1=NR\], μήκος \[\ell=2α\] και μάζα \[m\] ενώ το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].
A) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[B_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε να γνωρίζουμε αν αυξάνεται ή μειώνεται.

Β) Το μέτρο \[λ\] του ρυθμού μεταβολής της έντασης \[B_1\]  είναι:

α) \[λ=\frac{mgR}{α^3 πΒ_2 }\],                      
β) \[λ=\frac{  (mg+kΔ\ell) R }{Nα^3 πB_2 }\],                    
γ) \[λ=\frac{(mg+kΔ\ell)R}{α^3 πB_2 }\].

10. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Το μέτρο της δύναμης Laplace που δέχεται ο αγωγός ΟΓ απ’ το μαγνητικό πεδίο έχει μέτρο:
11. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου του πηνίου είναι \[U_1\]. Ο λόγος \[\frac{U}{U_1}\] είναι:
12. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή και είναι κάθετος με τους λείους κατακόρυφους παράλληλους ευθύγραμμους \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των τριών αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που δημιουργούν οι τρεις αγωγοί. Την \[t=0\] δίνουμε μια αρχική ταχύτητα \[υ_0\] κατακόρυφη προς τα πάνω και ο αγωγός αρχίζει να ανέρχεται κατακόρυφα και τα άκρα του διατηρούνται σε επαφή με τους κατακόρυφους αγωγούς. Τη χρονική στιγμή \[t_1\] ο αγωγός ακινητοποιείται στιγμιαία και κατόπιν αρχίζει να κατέρχεται κατακόρυφα με τον ίδιο τρόπο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
13. Το σωληνοειδές Σ του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], εμβαδόν σπείρας \[S\], αριθμό σπειρών \[N\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που οι δυναμικές γραμμές είναι παράλληλες με τον άξονα του σωληνοειδούς. Τα άκρα του σωληνοειδούς συνδέονται μέσω κατακόρυφων συρμάτων αμελητέας αντίστασης με μεταλλικό ευθύγραμμο οριζόντιο αγωγό ΖΛ που έχει μήκος \[\ell\], αντίσταση \[R\] και βάρος μέτρου \[w\]. Ο αγωγός ΖΛ είναι προσδεμένος στο κέντρο του με ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\]. Ο αγωγός ΖΛ βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που οι δυναμικές του γραμμές είναι κάθετες στον αγωγό αυτό. Αν το μέτρο της έντασης του \[B_1\] μεταβάλλεται σύμφωνα με τη σχέση \[Β_1=3+2t\] (S.I.) χωρίς να μεταβάλλεται η φορά της, τότε ο αγωγός ΖΛ ισορροπεί οριζόντιος και το ελατήριο έχει το φυσικό του μήκος.


Α) Οι δυναμικές γραμμές του μαγνητικού πεδίου  έντασης \[B_2\]  έχουν φορά:

α) απ’ τον αναγνώστη προς τη σελίδα.

β) απ’ τη σελίδα προς τον αναγνώστη.

γ) μη προσδιορίσιμη με τα δεδομένα της άσκησης.

Β) Το μέτρο της έντασης \[Β_2\]  με όλα τα μεγέθη μετρημένα στο S.I. είναι:

α) \[Β_2=\frac{ w (R_Σ+R) }{ 2 N S  \ell }\],                  
β) \[Β_2=\frac{w (R_Σ+R) }{ 3NS \ell }\],    
γ) \[Β_2=\frac{ w (R_Σ+R) }{ N S \ell } \].

14. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του. Δημιουργούμε στον κυκλικό αγωγό εγκοπή μεταξύ των σημείων Κ, Λ και πλησιάζουμε το ραβδόμορφο μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Το ορθογώνιο μεταλλικό πλαίσιο ΚΛΜΝ και ο ευθύγραμμος αγωγός μεγάλου μήκους βρίσκονται πάνω στο ίδιο οριζόντιο λείο και μονωτικό δάπεδο. Ο ευθύγραμμος αγωγός είναι ακλόνητος και διαρρέεται από ρεύμα έντασης \[Ι\] και φοράς όπως φαίνεται στο σχήμα. Το πλαίσιο αρχικά είναι ακίνητο. Αρχίζω να μετακινώ το πλαίσιο με οριζόντια ταχύτητα \[υ\] που είναι παράλληλη στην πλευρά του ΚΛ και έχει φορά προς τα δεξιά.

Α) Καθώς το πλαίσιο απομακρύνεται απ’ τον ευθύγραμμο αγωγό δημιουργείται στο πλαίσιο:

α) επαγωγικό ρεύμα που έχει την ωρολογιακή φορά.

β) επαγωγικό ρεύμα που έχει την αντιωρολογιακή φορά.

γ) επαγωγική ΗΕΔ αλλά όχι επαγωγικό ρεύμα.

Β) Αν το πλαίσιο είναι ακίνητο στην αρχική  του θέση και αρχίζω να αυξάνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε:

α) το πλαίσιο διαρρέεται από ρεύμα που έχει την ωρολογιακή φορά.

β) το πλαίσιο διαρρέεται από ρεύμα που έχει την αντιωρολογιακή φορά.

γ) το πλαίσιο δεν διαρρέεται από επαγωγικό ρεύμα.

Γ) Αν το πλαίσιο είναι ακίνητο στην αρχική του θέση και αρχίζω να μειώνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε το πλαίσιο:

α) θα έλκεται απ’ τον ευθύγραμμο αγωγό.

β) θα απωθείται απ’ τον ευθύγραμμο αγωγό.

γ) δεν θα δέχεται δύναμη απ’ τον ευθύγραμμο αγωγό.

16. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
17. Στη διάταξη του παρακάτω σχήματος οι οριζόντιοι λείοι αγωγοί \[Αx\] και \[Γy\] είναι παράλληλοι, έχουν αμελητέα αντίσταση και τα άκρα τους Α, Γ συνδέονται με αντιστάτη \[R_1=2R\]. Ο οριζόντιος αγωγός ΚΛ είναι κάθετος στους δύο αγωγούς, έχει αντίσταση \[R\], μήκος \[\ell\] και τα άκρα του βρίσκονται σε επαφή με αυτούς. Αρχικά ο αγωγός ΚΛ είναι ακίνητος. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνουμε στον αγωγό ΚΛ οριζόντια αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο αγωγούς ενώ ταυτόχρονα ασκούμε στο μέσο σταθερή δύναμη μέτρου \[F\] και κατεύθυνσης ομόρροπης της \[υ_0\].
A) Αν το μέτρο της \[υ_0\] είναι \[υ_0 > \frac{ 3FR }{ B^2 \ell^2 }\], τότε ο αγωγός ΚΛ μετά την \[t=0\]:

α) θα εκτελέσει ομαλά επιβραδυνόμενη κίνηση μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 < υ_0\].

β) θα εκτελέσει επιταχυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 > υ_0\].

γ) θα εκτελέσει επιβραδυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει ταχύτητα μέτρου \[ υ_1 < υ_0 \].

δ) θα εκτελέσει Ε.Ο.Κ. με ταχύτητα \[υ_0\].

B) Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\] που ο αγωγός ΚΛ  έχει σταθερή ταχύτητα \[\vec{υ}_1\], το έργο της δύναμης \[F\]:

α) έχει γίνει αύξηση της κινητικής του αγωγού.

β) είναι ίση με τη συνολική θερμότητα που εκλύεται στους αντιστάτες μέχρι τη στιγμή \[t_1\].

γ) και η μείωση της κινητικής του ενέργειας του αγωγού ΚΛ μέχρι τη στιγμή \[t_1\] μας δίνουν μαζί την θερμότητα που εκλύεται συνολικά στους αντιστάτες μέχρι τη στιγμή \[t_1\].

18. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι σε σειρά και έχουν αντιστάσεις \[R_1\] και \[R_2=4R_1\] αντίστοιχα. Στο σύστημα των δύο αντιστατών έχουμε εφαρμόσει εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Οι μέγιστες τιμές των ισχύων που καταναλώνουν οι δύο αντιστάτες είναι \[P_{1_{max} },\, P_{2_{max} } \] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι η σωστή;
19. Ομογενές και ισοπαχές σύρμα διαρρέεται από συνεχές ρεύμα \[Ι_Σ\] και σε χρόνο \[Δt\] εκλύει θερμότητα \[Q_1\]. Δεύτερο ομογενές και ισοπαχές σύρμα είναι φτιαγμένο απ’ το ίδιο υλικό με το πρώτο αλλά έχει διπλάσιο μήκος και υποδιπλάσιο εμβαδόν διατομής απ’ αυτό. Το δεύτερο σύρμα διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\] και στον ίδιο χρόνο εκλύει θερμότητα \[Q_2=2Q_1\]. Για την ενεργό τιμή \[Ι_{εν}\] του εναλλασσόμενου ρεύματος ισχύει
20. Τα παρακάτω πλαίσια \[(1),\, (2)\] του παρακάτω σχήματος εισέρχονται με ταχύτητες μέτρων \[υ_1,\, υ_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο για τα οποία ισχύει \[υ_1=2υ_2\]. Τα πλαίσια έχουν πλευρές \[α_1=α\] και \[α_2=2 α\] και οι ταχύτητές τους είναι κάθετες στις δυναμικές γραμμές του πεδίου και τις πλευρές των πλαισίων που πρώτα αυτές εισέρχονται στο πεδίο. Τα πλαίσια αποτελούνται από μια σπείρα και είναι ομογενή απ’ το ίδιο ομογενές και ισοπαχές σύρμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
21. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Το μέγιστο μέτρο της έντασης του ρεύματος είναι:
22. Στο παρακάτω σχήμα η αγώγιμη ράβδος ΟΓ έχει μήκος \[\ell \], αντίσταση \[R\] και στρέφεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] γύρω από άξονα κάθετο στο επίπεδο περιστροφής και παράλληλο στις δυναμικές γραμμές του πεδίου. Κατά την περιστροφή της ράβδου η γωνιακή ταχύτητά της είναι σταθερή και έχει μέτρο \[ω\] ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\] . Το άκρο Γ της ράβδου έχει γραμμική ταχύτητα μέτρου \[υ\], είναι συνεχώς σε επαφή με κυκλικό αγωγό αμελητέας αντίστασης που έχει κέντρο το Ο και ακτίνα \[\ell\]. Στη διάρκεια της περιστροφής της ράβδου παρατηρείται στο άκρο της Ο αρνητικός πόλος. Ο ρυθμός παραγωγής θερμότητας στη ράβδο είναι:
23. Η ένταση του ρεύματος που διαρρέει ένα πηνίο αυξάνεται με σταθερό ρυθμό. Κάποια στιγμή που η ένταση του ρεύματος που το διαρρέει είναι \[i_1\] ο ρυθμός αποθήκευσης ενέργειας στο μαγνητικό πεδίο του πηνίου είναι \[λ_1\]. Την στιγμή που η ένταση του ρεύματος που διαρρέει το πηνίο γίνεται \[2i_1\] ο ρυθμός αποθήκευσης ενέργειας μαγνητικού πεδίου στο πηνίο είναι:
24. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Ο αγωγός έχει αρχική ταχύτητα \[υ_0\] που είναι παράλληλη στους αγωγούς \[Αx_1,\, Γx_2\]. Την \[t=0\] ασκούμε στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ίδιας διεύθυνσης με τη \[υ_0\] και τέτοια ώστε ο αγωγός να αρχίσει να επιβραδύνεται ομαλά μέχρι να σταματήσει. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Ο ευθύγραμμος αγωγός ΚΛ είναι αρχικά ακίνητος έχοντας τα άκρα του σε επαφή με τους παράλληλους οριζόντιους λείους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνω στον αγωγό αρχική ταχύτητα μέτρου \[υ_0\] και αυτός κινείται παράλληλα στους αγωγούς \[Αx_1\] και \[Γx_2\] έχοντας τα άκρα του συνεχώς σε επαφή με αυτούς. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
26. Στο παρακάτω σχήμα ο μαγνήτης την \[t=0\] αρχίζει να κινείται στη διεύθυνση κοινού άξονα σωληνοειδούς μαγνήτη πλησιάζοντας το σωληνοειδές και ακινητοποιείται τη στιγμή \[t_1\] που δεν έχει έρθει ακόμα σε επαφή με το άκρο Κ του σωληνοειδούς. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
27. Στο παρακάτω σχήμα το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=2R\]. Ο αντιστάτης \[R\] έχει αντίσταση \[R\], η πηγή έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Το ρεύμα σταθεροποιείται σε μέγιστη τιμή έντασης \[Ι\]. Τη χρονική στιγμή \[t_1\] η ένταση που διαρρέει το πηνίο είναι \[I_1 = \frac{I}{4}\]. Απ’ τη στιγμή που η ένταση στο κύκλωμα σταθεροποιείται, ο ρυθμός κατανάλωσης της ηλεκτρικής ενέργειας στο πηνίο είναι:
28. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ένας αντιστάτης \[R\] όταν στα άκρα του εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=120\sqrt{2} ημωt\] (S.I.)

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

29. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργεί ο αγωγός. Αφήνουμε τον αγωγό ΚΛ ελεύθερο να κινηθεί απ’ την ηρεμία. Αυτός αρχίζει να κατέρχεται χωρίς τα άκρα του να χάνουν την επαφή τους με τους αγωγούς \[Αy_1,\, Γy_2\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
30. Ο ευθύγραμμος αγωγός του παρακάτω σχήματος έχει μήκος \[\ell \] και αντίσταση \[R\] και μπορεί να κινείται χωρίς τριβές έχοντας στα άκρα του συνεχώς σε επαφή με τους λείους ευθύγραμμους παράλληλους λείους αγωγούς \[Αx\] και \[Γy\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το επίπεδο των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Αρχικά ο αγωγός είναι ακίνητος. Ασκούμε στο κέντρο του οριζόντια σταθερή δύναμη μέτρου \[F\] κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους αγωγούς \[Αx\] και \[Γy\] με τα άκρα του να μένουν πάντα σ’ επαφή με αυτόν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US