MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο πηνίο είναι \[\left| \frac{di }{ dt} \right|= \frac{E }{2L} \]. Από τη χρονική στιγμή \[t=0\] ως τη στιγμή \[t_1\], η θερμότητα που έχει εκλυθεί από όλους τους αντιστάτες του κυκλώματος είναι:
2. Στο παρακάτω σχήμα α το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L_1\] ενώ στο σχήμα β το πηνίο έχει συντελεστή αυτεπαγωγής \[L_2=L_1\] και αντίσταση \[R_π=2R\]. Και στα δύο σχήματα οι πηγές έχουν την ίδια ΗΕΔ \[\mathcal{E}\] και την αντίσταση \[r=R\]. Κάποια στιγμή κλείνουμε τους διακόπτες \[δ_1\, , \, δ_2\].

Όταν τα ρεύματα στα δύο κυκλώματα αποκτήσουν σταθερές εντάσεις, οι αποθηκευμένες ενέργειες των μαγνητικών πεδίων των δύο πηνίων είναι \[U_1,U_2\]  αντίστοιχα. Ο λόγος \[\frac{U_1}{U_2}\] είναι:

3. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Η αποθηκευμένη ενέργεια του μαγνητικού πεδίου του πηνίου αμέσως πριν την \[t_0=0\] είναι:
4. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι παράλληλα και έχουν αντιστάσεις \[R_1,\, R_2=2R_1\] αντίστοιχα. Στα κοινά άκρα τους εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Αν \[\bar{P}_1, \bar{ P}_2\] είναι η μέση ισχύς που καταναλώνει ο κάθε αντιστάτης αντίστοιχα, τότε ποια απ’ τις παρακάτω προτάσεις είναι η σωστή;
5. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι αμελητέας αντίστασης και μεγάλου μήκους ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\]. Αρχικά ο διακόπτης δ είναι ανοικτός. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=R\] κινείται κατακόρυφα με σταθερή ταχύτητα \[ \vec{ υ }_1 \] με φορά προς τα πάνω χωρίς να δέχεται τριβές και παραμένει συνεχώς κάθετος στους αγωγούς \[Ay_1,\, Αy_2\] ενώ τα άκρα του παραμένουν συνεχώς σε επαφή με τους κατακόρυφους αγωγούς. Στο μέσο του αγωγού ασκείται κατακόρυφη σταθερή δύναμη \[F\] κάθετη στη διεύθυνσή του και φοράς προς τα πάνω. Οι αντιστάτες \[R_2,\, R_3\], έχουν αντιστάσεις \[ R _ 2 = R _ 3 = \frac { R } { 2 } \]. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] που οι δυναμικές γραμμές τους είναι κάθετες στο επίπεδό τους. Τη στιγμή \[t =0\] κλείνω το διακόπτη δ χωρίς να καταργήσω τη δύναμη \[F\].

Α) Αμέσως μετά τη χρονική στιγμή \[t=0\] ο αγωγός:

α) θ’ αρχίσει να επιταχύνεται.

β) θ’ αρχίσει να επιβραδύνεται.

γ) θα εκτελεί ομαλά μεταβαλλόμενη κίνηση.

Β) Κάποια στιγμή \[t_1\]  μετά την \[t=0\] ο αγωγός αποκτά οριακή ταχύτητα μέτρου \[υ_2\]  για τον οποίο ισχύει:

α) \[ υ_2= \frac{3}{4} υ_1\],                 β) \[υ_2=\frac{3υ_1}{2}\],                    γ) \[υ_2=\frac{2υ_1}{3}\].

6. Ομογενές και ισοπαχές σύρμα διαρρέεται από συνεχές ρεύμα \[Ι_Σ\] και σε χρόνο \[Δt\] εκλύει θερμότητα \[Q_1\]. Δεύτερο ομογενές και ισοπαχές σύρμα είναι φτιαγμένο απ’ το ίδιο υλικό με το πρώτο αλλά έχει διπλάσιο μήκος και υποδιπλάσιο εμβαδόν διατομής απ’ αυτό. Το δεύτερο σύρμα διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\] και στον ίδιο χρόνο εκλύει θερμότητα \[Q_2=2Q_1\]. Για την ενεργό τιμή \[Ι_{εν}\] του εναλλασσόμενου ρεύματος ισχύει
7. Η ένταση του ρεύματος που διαρρέει ένα πηνίο αυξάνεται με σταθερό ρυθμό. Κάποια στιγμή που η ένταση του ρεύματος που το διαρρέει είναι \[i_1\] ο ρυθμός αποθήκευσης ενέργειας στο μαγνητικό πεδίο του πηνίου είναι \[λ_1\]. Την στιγμή που η ένταση του ρεύματος που διαρρέει το πηνίο γίνεται \[2i_1\] ο ρυθμός αποθήκευσης ενέργειας μαγνητικού πεδίου στο πηνίο είναι:
8. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο ιδανικό. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο:
10. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Το μέγιστο μέτρο της έντασης του ρεύματος είναι:
11. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι σε σειρά και έχουν αντιστάσεις \[R_1\] και \[R_2=4R_1\] αντίστοιχα. Στο σύστημα των δύο αντιστατών έχουμε εφαρμόσει εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Οι μέγιστες τιμές των ισχύων που καταναλώνουν οι δύο αντιστάτες είναι \[P_{1_{max} },\, P_{2_{max} } \] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι η σωστή;
12. Ένα πηνίο έχει \[Ν\] σπείρες και ο συντελεστής αυτεπαγωγής του είναι ίσος με \[L\]. Η ένταση του ρεύματος που διαρρέει το πηνίο αυξάνεται με σταθερό ρυθμό ίσο με \[λ\]. Κάποια στιγμή που η ένταση του ρεύματος που διαρρέει το πηνίο έχει την τιμή \[Ι_0\], ο ρυθμός αποθήκευσης ενέργειας στο μαγνητικό πεδίο του πηνίου είναι ίσος με
13. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης έχει αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Αν \[i\] η στιγμιαία ένταση του ρεύματος που διαρρέει το κύκλωμα για μια χρονική στιγμή \[t≥0\], το μέτρο του ρυθμού μεταβολής της έντασης του ρεύματος στο κύκλωμα την ίδια χρονική στιγμή \[t\] δίνεται απ’ τη σχέση.
14. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του. Δημιουργούμε στον κυκλικό αγωγό εγκοπή μεταξύ των σημείων Κ, Λ και πλησιάζουμε το ραβδόμορφο μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή και είναι κάθετος με τους λείους κατακόρυφους παράλληλους ευθύγραμμους \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των τριών αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που δημιουργούν οι τρεις αγωγοί. Την \[t=0\] δίνουμε μια αρχική ταχύτητα \[υ_0\] κατακόρυφη προς τα πάνω και ο αγωγός αρχίζει να ανέρχεται κατακόρυφα και τα άκρα του διατηρούνται σε επαφή με τους κατακόρυφους αγωγούς. Τη χρονική στιγμή \[t_1\] ο αγωγός ακινητοποιείται στιγμιαία και κατόπιν αρχίζει να κατέρχεται κατακόρυφα με τον ίδιο τρόπο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Δύο όμοιοι αντιστάτες συνδέονται παράλληλα και στα άκρα τους εφαρμόζεται συνεχώς σταθερή τάση \[V_Σ\]. Συνδέουμε τους δύο αντιστάτες σε σειρά και στα άκρα του συστήματός τους εφαρμόζουμε εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Η συνολική θερμότητα και στις δύο περιπτώσεις είναι ίδια. Για την ενεργό τιμή της εναλλασσόμενης τάσης ισχύει:
17. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει αντίσταση \[R\], μήκος \[\ell\] και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα. Ο αγωγός κινείται με σταθερή ταχύτητα πάνω στους λείους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και αμελητέας αντίστασης που τα άκρα τους Α, Γ είναι συνδεμένα με αντιστάτη αντίστασης \[R_1=R\]. Ο αγωγός ΚΛ ακουμπά στους αγωγούς μεγάλου μήκους στα σημεία Ν, Ζ που έχουν απόσταση \[ΝΖ=\frac{ \ell } { 2 }\] ενώ τα τμήματα του αγωγού που προεξέχουν απ’ τους αγωγούς \[Αx_1\] και \[Γx_2\] έχουν ίδιο μήκος. Το σύστημα όλων των αγωγών βρίσκεται σε ομογενές κατακόρυφο μαγνητικό πεδίο έντασης μέτρου \[\vec{B}\] που περιορίζεται στο χώρο μεταξύ των αγωγών \[Ax_1\] και \[Γx_2\] και οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Το μέτρο της οριζόντιας εξωτερικής δύναμης \[F\] που πρέπει να ασκούμε στο μέσο Μ του αγωγού ΚΛ και κάθετα στη διεύθυνσή του ώστε αυτός να διατηρεί σταθερή την ταχύτητά του είναι:
18. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργεί ο αγωγός. Αφήνουμε τον αγωγό ΚΛ ελεύθερο να κινηθεί απ’ την ηρεμία. Αυτός αρχίζει να κατέρχεται χωρίς τα άκρα του να χάνουν την επαφή τους με τους αγωγούς \[Αy_1,\, Γy_2\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
19. Το κυκλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ακλόνητο με το επίπεδό του κατακόρυφο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το πλαίσιο αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\]. Το πλαίσιο συνδέεται μέσω αβαρών συρμάτων αμελητέας αντίστασης με δύο κατακόρυφους αγωγούς \[y_1 y_1'\] και \[y_2 y_2'\] που και αυτοί έχουν αμελητέα αντίσταση. Ευθύγραμμος αγωγός ΑΓ είναι κάθετος στους κατακόρυφους αγωγούς και τα άκρα του Α, Γ είναι σε επαφή με αυτούς. Οι τριβές μεταξύ του αγωγού ΑΓ και των κατακόρυφων αγωγών θεωρούνται αμελητέες. Ο αγωγός ΑΓ βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η φορά της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει στερεωθεί απ’ το κέντρο του στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Όταν η ένταση του μαγνητικού πεδίου \[\vec{Β}_1\] αρχίζει να μεταβάλλει το μέτρο της με σταθερό ρυθμό \[\left| \frac{ΔΒ_1}{Δt} \right|=λ\] χωρίς να μεταβάλλεται η φορά της, ο αγωγός ΑΓ ισορροπεί και το ελατήριο είναι συσπειρωμένο κατά \[Δ\ell\]. Ο αγωγός ΑΓ έχει αντίσταση \[R_1=NR\], μήκος \[\ell=2α\] και μάζα \[m\] ενώ το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].
A) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[B_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε να γνωρίζουμε αν αυξάνεται ή μειώνεται.

Β) Το μέτρο \[λ\] του ρυθμού μεταβολής της έντασης \[B_1\]  είναι:

α) \[λ=\frac{mgR}{α^3 πΒ_2 }\],                      
β) \[λ=\frac{  (mg+kΔ\ell) R }{Nα^3 πB_2 }\],                    
γ) \[λ=\frac{(mg+kΔ\ell)R}{α^3 πB_2 }\].

20. Κλειστό συρμάτινο πλαίσιο αντίστασης \[R\] βρίσκεται εντός ομογενούς μαγνητικού πεδίου με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Η μεταβολή της αλγεβρικής τιμής της έντασης \[B\] του μαγνητικού πεδίου φαίνεται στο παρακάτω διάγραμμα. Το πλαίσιο έχει σχήμα τετραγώνου πλευράς \[α\] και αποτελείται από \[N\] όμοιες σπείρες. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
21. Στο παρακάτω σχήμα οι λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο είναι ιδανικό. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με δύο παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Την \[t=0\] ο αγωγός έχει αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο άλλους αγωγούς. Τη στιγμή αυτή ασκώ στον αγωγό σταθερή δύναμη \[F\] ομόρροπη της ταχύτητας. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές είναι κάθετες στο επίπεδο των αγωγών. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
23. Το τετράγωνο πλαίσιο πλευράς \[α\] του παρακάτω σχήματος, έχει \[Ν\] σπείρες, αντίσταση \[R\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το μέτρο της έντασης \[Β_1\] μεταβάλλεται με σταθερό ρυθμό που έχει μέτρο \[ \left| \frac {ΔΒ_1} {Δt} \right| = λ \] ενώ η κατεύθυνσή της μένει σταθερή. Το πλαίσιο συγκρατείται ακλόνητο με το επίπεδό του κατακόρυφο. Τα άκρα Κ, Λ του πλαισίου συνδέονται μέσω αβαρών συρμάτων αμελητέας αντίστασης με ευθύγραμμο οριζόντιο αγωγό ΑΓ αντίστασης \[R\] ο οποίος αιωρείται ακίνητος πάνω απ’ το έδαφος χωρίς να του ασκούμε καμία δύναμη στήριξης. Ολόκληρος ο ευθύγραμμος αγωγός βρίσκεται μέσα σε οριζόντιο μαγνητικό πεδίο σταθερής έντασης μέτρου \[Β_2\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει μάζα \[m_1\], μήκος \[\ell\] και το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].

Α) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[Β_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε με τα δεδομένα της άσκησης να βρούμε αν αυξάνεται ή μειώνεται.

Β) Στην διάρκεια της ισορροπίας του αγωγού η σταθερά \[λ\] είναι:

α) \[\frac{mgR}{B_1 Nα^2 \ell  }\]     β) \[\frac{mgR}{B_2 Nα^2 \ell}\],     γ) \[\frac{2mgR}{B_2 Nα^2 \ell}\].

24. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Ο αγωγός έχει αρχική ταχύτητα \[υ_0\] που είναι παράλληλη στους αγωγούς \[Αx_1,\, Γx_2\]. Την \[t=0\] ασκούμε στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ίδιας διεύθυνσης με τη \[υ_0\] και τέτοια ώστε ο αγωγός να αρχίσει να επιβραδύνεται ομαλά μέχρι να σταματήσει. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Ο λόγος \[\frac{U }{ U_1}\] είναι:
26. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του όπως φαίνεται στο παρακάτω σχήμα. Πλησιάζουμε τον μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
27. Στο παρακάτω σχήμα ο ευθύγραμμος αγωγός ΚΛ μήκους \[\ell\] μπορεί να κινείται χωρίς τριβές με τα άκρα του Κ, Λ να βρίσκονται πάντα σε επαφή με τους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B\] που οι δυναμικές γραμμές του είναι συνεχώς κάθετες στον αγωγό. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] ασκώ στο μέσο του οριζόντια σταθερή δύναμη κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους οριζόντιους αγωγούς μέχρι που αποκτά σταθερή οριακή ταχύτητα \[υ_{ορ}\] τη χρονική στιγμή \[t_1\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
28. Ένας λαμπτήρας πυρακτώσεως λειτουργεί με εναλλασσόμενη τάση και αναγράφει στοιχεία κανονικής λειτουργίας \[ 60 \, V / 30\, W\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].


Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:

α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],

β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],

γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],

δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].

B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\]  του ελατηρίου είναι:

α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].

β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].

γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].

δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].

30. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι μεγάλου μήκους και έχουν αμελητέα αντίσταση ενώ για τις αντιστάσεις ισχύει \[R_1=R_2=R\]. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=1,5 R_1\] μάζας \[m\], μήκος \[\ell\] και μπορεί να κινείται χωρίς τριβές κατά μήκος των κατακόρυφων αγωγών. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] δίνουμε σ’ αυτόν μια κατακόρυφη ταχύτητα μέτρου \[υ_0\] με φορά προς τα πάνω. Η επιτάχυνση της βαρύτητας είναι \[g\].
A) Μετά τη στιγμή \[t_0=0\]:

α) ο αγωγός επιβραδύνεται ομαλά μέχρι να σταματήσει στιγμιαία και μετά εκτελεί ελεύθερη πτώση.

β) επιβραδύνεται μη ομαλά μέχρι να σταματήσει στιγμιαία και κατόπιν επιταχύνεται μη ομαλά μέχρι να αποκτήσει σταθερή ταχύτητα.

γ) ο αγωγός επιβραδύνεται μη ομαλά μέχρι που σταματά και εκεί ακινητοποιείται μόνιμα.

Β) Κάποια στιγμή \[t_1\]  ο αγωγός αποκτά οριακή ταχύτητα \[υ_1\]  που έχει:

α) μέτρο \[υ_1= \frac{ m g R }{ B^2  \ell^2 }\]  και φορά προς τα πάνω.

β) μέτρο \[ υ_1=\frac{mg2R}{B^2 \ell^2 }\]  και φορά προς τα κάτω.

γ) μέτρο \[υ_1=\frac{ mg5R}{ B^2 \ell^2 }\]  και φορά προς τα κάτω.


    +30

    CONTACT US
    CALL US