MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Ο δίσκος του Faraday ακτίνας \[r\] στο παρακάτω σχήμα στρέφεται με σταθερή γωνιακή ταχύτητα γύρω από άξονα \[xx'\] που περνά απ’ το κέντρο του και είναι κάθετο στο επίπεδό του. Δύο ολισθαίνουσες επαφές (ψήκτρες) έχουν τοποθετηθεί όπως φαίνεται στο σχήμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Στη διάταξη του παρακάτω σχήματος οι οριζόντιοι λείοι αγωγοί \[Αx\] και \[Γy\] είναι παράλληλοι, έχουν αμελητέα αντίσταση και τα άκρα τους Α, Γ συνδέονται με αντιστάτη \[R_1=2R\]. Ο οριζόντιος αγωγός ΚΛ είναι κάθετος στους δύο αγωγούς, έχει αντίσταση \[R\], μήκος \[\ell\] και τα άκρα του βρίσκονται σε επαφή με αυτούς. Αρχικά ο αγωγός ΚΛ είναι ακίνητος. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνουμε στον αγωγό ΚΛ οριζόντια αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο αγωγούς ενώ ταυτόχρονα ασκούμε στο μέσο σταθερή δύναμη μέτρου \[F\] και κατεύθυνσης ομόρροπης της \[υ_0\].
A) Αν το μέτρο της \[υ_0\] είναι \[υ_0 > \frac{ 3FR }{ B^2 \ell^2 }\], τότε ο αγωγός ΚΛ μετά την \[t=0\]:

α) θα εκτελέσει ομαλά επιβραδυνόμενη κίνηση μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 < υ_0\].

β) θα εκτελέσει επιταχυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 > υ_0\].

γ) θα εκτελέσει επιβραδυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει ταχύτητα μέτρου \[ υ_1 < υ_0 \].

δ) θα εκτελέσει Ε.Ο.Κ. με ταχύτητα \[υ_0\].

B) Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\] που ο αγωγός ΚΛ  έχει σταθερή ταχύτητα \[\vec{υ}_1\], το έργο της δύναμης \[F\]:

α) έχει γίνει αύξηση της κινητικής του αγωγού.

β) είναι ίση με τη συνολική θερμότητα που εκλύεται στους αντιστάτες μέχρι τη στιγμή \[t_1\].

γ) και η μείωση της κινητικής του ενέργειας του αγωγού ΚΛ μέχρι τη στιγμή \[t_1\] μας δίνουν μαζί την θερμότητα που εκλύεται συνολικά στους αντιστάτες μέχρι τη στιγμή \[t_1\].

4. Κλειστό συρμάτινο πλαίσιο αντίστασης \[R\] βρίσκεται εντός ομογενούς μαγνητικού πεδίου με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Η μεταβολή της αλγεβρικής τιμής της έντασης \[B\] του μαγνητικού πεδίου φαίνεται στο παρακάτω διάγραμμα. Το πλαίσιο έχει σχήμα τετραγώνου πλευράς \[α\] και αποτελείται από \[N\] όμοιες σπείρες. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
5. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργεί ο αγωγός. Αφήνουμε τον αγωγό ΚΛ ελεύθερο να κινηθεί απ’ την ηρεμία. Αυτός αρχίζει να κατέρχεται χωρίς τα άκρα του να χάνουν την επαφή τους με τους αγωγούς \[Αy_1,\, Γy_2\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
6. Στο παρακάτω σχήμα ο ευθύγραμμος αγωγός ΚΛ μήκους \[\ell\] μπορεί να κινείται χωρίς τριβές με τα άκρα του Κ, Λ να βρίσκονται πάντα σε επαφή με τους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B\] που οι δυναμικές γραμμές του είναι συνεχώς κάθετες στον αγωγό. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] ασκώ στο μέσο του οριζόντια σταθερή δύναμη κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους οριζόντιους αγωγούς μέχρι που αποκτά σταθερή οριακή ταχύτητα \[υ_{ορ}\] τη χρονική στιγμή \[t_1\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
7. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] το ρεύμα στο κύκλωμα έχει ένταση ίση με:
8. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή και είναι κάθετος με τους λείους κατακόρυφους παράλληλους ευθύγραμμους \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των τριών αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που δημιουργούν οι τρεις αγωγοί. Την \[t=0\] δίνουμε μια αρχική ταχύτητα \[υ_0\] κατακόρυφη προς τα πάνω και ο αγωγός αρχίζει να ανέρχεται κατακόρυφα και τα άκρα του διατηρούνται σε επαφή με τους κατακόρυφους αγωγούς. Τη χρονική στιγμή \[t_1\] ο αγωγός ακινητοποιείται στιγμιαία και κατόπιν αρχίζει να κατέρχεται κατακόρυφα με τον ίδιο τρόπο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
9. Το τετράγωνο πλαίσιο του παρακάτω σχήματος έχει πλευρά μήκους \[α\], αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\] και βρίσκεται ακλόνητο πάνω σε οριζόντιο δάπεδο. Το πλαίσιο βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B_1\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Τα άκρα Κ, Λ του πλαισίου συνδέονται μέσω συρμάτων αμελητέας αντίστασης με ευθύγραμμο αγωγό ΑΓ. Ο αγωγός ΑΓ βρίσκεται ακλόνητος στο ίδιο οριζόντιο δάπεδο και έχει αντίσταση \[R\]. Η ένταση \[Β_1\] την \[t=0\] αρχίζει να μεταβάλλει το μέτρο της και η απόλυτη τιμή του ρυθμού μεταβολής \[ \left| \frac{ΔB_1}{Δt } \right| \] είναι σταθερή και ίση με \[λ\]. Στη διάρκεια της μεταβολής αυτής γύρω απ’ τον αγωγό ΑΓ δημιουργείται μαγνητικό πεδίο. Σε σημείο Δ που απέχει \[r\] απ’ τον ευθύγραμμο αγωγό η ένταση του μαγνητικού πεδίου είναι σταθερή, έχει μέτρο \[Β_Δ\] και η φορά της φαίνεται στο σχήμα. Η απόσταση \[r\] είναι πολύ μικρή σε σχέση με το μήκος του αγωγού. H μαγνητική διαπερατότητα του κενού είναι \[μ_0\].
A) Η ένταση του μαγνητικού πεδίου \[B_1\]:

α) αυξάνεται,                          

β) μειώνεται,

γ) δεν μπορούμε να προβλέψουμε αν αυξάνεται ή μειώνεται.

Β) Η απόλυτη τιμή του ρυθμού μεταβολής του μέτρου της έντασης \[B_1\]  είναι:

α) \[λ=\frac{2πΒ_Δ R}{μ_0 α^2 } r\],              
β) \[ λ =\frac{2πΒ_Δ (Ν+1)R}{Nμ_0 α^2} r\],             
γ) \[λ=\frac{4πΒ_Δ (Ν+1)R}{μ_0 α^2 } r\].

10. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Δημιουργούμε στο δακτύλιο εγκοπή μεταξύ των σημείων Κ, Λ και αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Ο αγωγός έχει αρχική ταχύτητα \[υ_0\] που είναι παράλληλη στους αγωγούς \[Αx_1,\, Γx_2\]. Την \[t=0\] ασκούμε στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ίδιας διεύθυνσης με τη \[υ_0\] και τέτοια ώστε ο αγωγός να αρχίσει να επιβραδύνεται ομαλά μέχρι να σταματήσει. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ένας αντιστάτης \[R\] όταν στα άκρα του εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=120\sqrt{2} ημωt\] (S.I.)

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

13. Ένα σωληνοειδές Σ έχει \[n\] αριθμό σπειρών ανά μονάδα μήκους και κάθε σπείρα έχει ακτίνα \[α_1\]. Κυκλικό πλαίσιο Π αποτελείται από \[Ν\] σπείρες ακτίνας \[α_2\] που η καθεμιά έχει αντίσταση \[R\] και περιβάλλει το σωληνοειδές ακριβώς στο κέντρο του με τις σπείρες του να έχουν κοινό κέντρο Κ και κοινό κατακόρυφο επίπεδο με την κεντρική σπείρα του σωληνοειδούς. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Μεταβάλλοντας κατάλληλα την αντίσταση \[R_1\] του κυκλώματος του σωληνοειδούς Σ, η ένταση που το διαρρέει μεταβάλλεται με σταθερό ρυθμό \[ \frac{ΔΙ}{Δt} = λ > 0\]. Το ρεύμα που διαρρέει το πλαίσιο Π έχει:
14. Το κυκλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ακλόνητο με το επίπεδό του κατακόρυφο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το πλαίσιο αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\]. Το πλαίσιο συνδέεται μέσω αβαρών συρμάτων αμελητέας αντίστασης με δύο κατακόρυφους αγωγούς \[y_1 y_1'\] και \[y_2 y_2'\] που και αυτοί έχουν αμελητέα αντίσταση. Ευθύγραμμος αγωγός ΑΓ είναι κάθετος στους κατακόρυφους αγωγούς και τα άκρα του Α, Γ είναι σε επαφή με αυτούς. Οι τριβές μεταξύ του αγωγού ΑΓ και των κατακόρυφων αγωγών θεωρούνται αμελητέες. Ο αγωγός ΑΓ βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η φορά της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει στερεωθεί απ’ το κέντρο του στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Όταν η ένταση του μαγνητικού πεδίου \[\vec{Β}_1\] αρχίζει να μεταβάλλει το μέτρο της με σταθερό ρυθμό \[\left| \frac{ΔΒ_1}{Δt} \right|=λ\] χωρίς να μεταβάλλεται η φορά της, ο αγωγός ΑΓ ισορροπεί και το ελατήριο είναι συσπειρωμένο κατά \[Δ\ell\]. Ο αγωγός ΑΓ έχει αντίσταση \[R_1=NR\], μήκος \[\ell=2α\] και μάζα \[m\] ενώ το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].
A) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[B_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε να γνωρίζουμε αν αυξάνεται ή μειώνεται.

Β) Το μέτρο \[λ\] του ρυθμού μεταβολής της έντασης \[B_1\]  είναι:

α) \[λ=\frac{mgR}{α^3 πΒ_2 }\],                      
β) \[λ=\frac{  (mg+kΔ\ell) R }{Nα^3 πB_2 }\],                    
γ) \[λ=\frac{(mg+kΔ\ell)R}{α^3 πB_2 }\].

15. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Ο ρυθμός εκτέλεσης έργου της δύναμης Laplace (η ισχύς της) είναι:
16. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι σε σειρά και έχουν αντιστάσεις \[R_1\] και \[R_2=4R_1\] αντίστοιχα. Στο σύστημα των δύο αντιστατών έχουμε εφαρμόσει εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Οι μέγιστες τιμές των ισχύων που καταναλώνουν οι δύο αντιστάτες είναι \[P_{1_{max} },\, P_{2_{max} } \] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι η σωστή;
17. Πλαίσιο εισέρχεται μέσα σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που είναι κάθετη στις δυναμικές γραμμές του πεδίου έτσι ώστε το επίπεδο του πλαισίου να μένει συνεχώς κάθετο στις δυναμικές γραμμές. Το μέτρο της ταχύτητάς του αυξάνεται συνεχώς. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Στη διάρκεια της εισόδου στο πεδίο:
18. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\]. Ο αγωγός βρίσκεται πάνω σε οριζόντιους παράλληλους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και μηδενικής αντίστασης με διεύθυνση κάθετη σ’ αυτούς. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργούν οι αγωγοί. Οι αγωγοί \[Αx_1\] και \[Γx_2\] συνδέονται με άλλους παράλληλους ρευματοφόρους αγωγούς αμελητέας αντίστασης που η μεταξύ τους απόσταση είναι \[ΝΖ=\frac{\ell}{3}\]. Ο αγωγός ΚΛ έχει αντίσταση \[R\] και αποτελείται από ομογενές και ισοπαχές σύρμα ενώ τα άκρα Α και Γ παράλληλων αγωγών συνδέονται με αντιστάτη αντίστασης \[R\]. Ο αγωγός κινείται με σταθερή ταχύτητα μέτρου \[υ\] παραμένοντας συνεχώς κάθετος σ’ όλους τους παράλληλους αγωγούς. Ο λόγος των επαγωγικών τάσεων \[V_{ΚΛ}\] στη θέση (1) (Θ1) και \[V_{NZ}\] στη θέση (2) (Θ2) είναι \[ \frac{ V_{ΚΛ} }{ V_{NZ} }\] :
19. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του όπως φαίνεται στο παρακάτω σχήμα. Πλησιάζουμε τον μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
20. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Η αποθηκευμένη ενέργεια του μαγνητικού πεδίου του πηνίου αμέσως πριν την \[t_0=0\] είναι:
21. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Ο λόγος \[\frac{U }{ U_1}\] είναι:
22. Ο μαγνήτης Μ και το σωληνοειδές Σ έχουν κοινό άξονα. Το επαγωγικό ρεύμα που διαρρέει τον αντιστάτη \[R\] έχει τη φορά του σχήματος. Απ’ τη φορά του ρεύματος αυτού συμπεραίνουμε ότι μπορεί:
23. Μαγνήτης Μ αφήνεται απ’ τη θέση (Ι) να πέσει πάνω απ’ το μεταλλικό κυκλικό δακτύλιο που διατηρείται ακίνητος με το επίπεδό του οριζόντιο. Η ταχύτητα του μαγνήτη έχει τη διεύθυνση του άξονά του ο οποίος διέρχεται απ’ το κέντρο του δακτυλίου. Το βάρος του μαγνήτη έχει μέτρο \[w\] και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\].
A) Στη θέση II αμέσως πριν φτάσει στο επίπεδο του δακτυλίου η δύναμη που δέχεται ο αγωγός απ’ το μαγνήτη έχει μέτρο \[0,2\, w\]. Το μέτρο της επιτάχυνσης του μαγνήτη στη θέση ΙΙ είναι:

α) \[0,8\, g\],                       β) \[1,2\, g\],                       γ) \[g\].

Β) Στη θέση ΙΙΙ λίγο μετά το πέρασμα του μαγνήτη απ’ τον δακτύλιο ο αγωγός:

α) δε διαρρέεται από επαγωγικό ρεύμα.

β) διαρρέεται από επαγωγικό ρεύμα ομόρροπο με αυτό που διαρρέεται στη θέση ΙΙ.

γ) αντίρροπο απ’ αυτό που διαρρέεται στη θέση ΙΙ.

24. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι φωτεινότητες των δύο λαμπτήρων είναι σταθερές. Την \[t=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Το εναλλασσόμενο ρεύμα που παριστάνεται στο παρακάτω διάγραμμα έχει την ίδια ενεργό τιμή με ένα ημιτονοειδές ρεύμα της μορφής:
26. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης έχει αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Αν \[i\] η στιγμιαία ένταση του ρεύματος που διαρρέει το κύκλωμα για μια χρονική στιγμή \[t≥0\], το μέτρο του ρυθμού μεταβολής της έντασης του ρεύματος στο κύκλωμα την ίδια χρονική στιγμή \[t\] δίνεται απ’ τη σχέση.
27. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].


Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:

α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],

β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],

γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],

δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].

B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\]  του ελατηρίου είναι:

α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].

β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].

γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].

δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].

28. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Το μέτρο της δύναμης \[\vec{F}\] είναι:
29. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με δύο παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Την \[t=0\] ο αγωγός έχει αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο άλλους αγωγούς. Τη στιγμή αυτή ασκώ στον αγωγό σταθερή δύναμη \[F\] ομόρροπη της ταχύτητας. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές είναι κάθετες στο επίπεδο των αγωγών. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
30. Τα παρακάτω πλαίσια \[(1),\, (2)\] του παρακάτω σχήματος εισέρχονται με ταχύτητες μέτρων \[υ_1,\, υ_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο για τα οποία ισχύει \[υ_1=2υ_2\]. Τα πλαίσια έχουν πλευρές \[α_1=α\] και \[α_2=2 α\] και οι ταχύτητές τους είναι κάθετες στις δυναμικές γραμμές του πεδίου και τις πλευρές των πλαισίων που πρώτα αυτές εισέρχονται στο πεδίο. Τα πλαίσια αποτελούνται από μια σπείρα και είναι ομογενή απ’ το ίδιο ομογενές και ισοπαχές σύρμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;

    +30

    CONTACT US
    CALL US