MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Το συρμάτινο πλαίσιο ΚΛΜΝ σχήματος ορθογωνίου παραλληλογράμμου του παρακάτω σχήματος αρχικά βρίσκεται έξω απ’ το ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και αρχίζει να εισέρχεται σε αυτό με σταθερή ταχύτητα \[υ\] που έχει διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου και στην πλευρά ΛΜ όπως φαίνεται στο παρακάτω σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Στη διάρκεια εισόδου του πλαισίου στο μαγνητικό πεδίο:
2. Στο παρακάτω σχήμα αφήνουμε τον ραβδόμορφο μαγνήτη να πέσει κατακόρυφα κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του που ισορροπεί πάνω απ’ το κέντρο του δακτυλίου που κρατείται ακίνητος. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του. Δημιουργούμε στον κυκλικό αγωγό εγκοπή μεταξύ των σημείων Κ, Λ και πλησιάζουμε το ραβδόμορφο μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Μαγνήτης Μ αφήνεται απ’ τη θέση (Ι) να πέσει πάνω απ’ το μεταλλικό κυκλικό δακτύλιο που διατηρείται ακίνητος με το επίπεδό του οριζόντιο. Η ταχύτητα του μαγνήτη έχει τη διεύθυνση του άξονά του ο οποίος διέρχεται απ’ το κέντρο του δακτυλίου. Το βάρος του μαγνήτη έχει μέτρο \[w\] και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\].
A) Στη θέση II αμέσως πριν φτάσει στο επίπεδο του δακτυλίου η δύναμη που δέχεται ο αγωγός απ’ το μαγνήτη έχει μέτρο \[0,2\, w\]. Το μέτρο της επιτάχυνσης του μαγνήτη στη θέση ΙΙ είναι:

α) \[0,8\, g\],                       β) \[1,2\, g\],                       γ) \[g\].

Β) Στη θέση ΙΙΙ λίγο μετά το πέρασμα του μαγνήτη απ’ τον δακτύλιο ο αγωγός:

α) δε διαρρέεται από επαγωγικό ρεύμα.

β) διαρρέεται από επαγωγικό ρεύμα ομόρροπο με αυτό που διαρρέεται στη θέση ΙΙ.

γ) αντίρροπο απ’ αυτό που διαρρέεται στη θέση ΙΙ.

5. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο:
6. Ένα σωληνοειδές Σ έχει \[n\] αριθμό σπειρών ανά μονάδα μήκους και κάθε σπείρα έχει ακτίνα \[α_1\]. Κυκλικό πλαίσιο Π αποτελείται από \[Ν\] σπείρες ακτίνας \[α_2\] που η καθεμιά έχει αντίσταση \[R\] και περιβάλλει το σωληνοειδές ακριβώς στο κέντρο του με τις σπείρες του να έχουν κοινό κέντρο Κ και κοινό κατακόρυφο επίπεδο με την κεντρική σπείρα του σωληνοειδούς. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Μεταβάλλοντας κατάλληλα την αντίσταση \[R_1\] του κυκλώματος του σωληνοειδούς Σ, η ένταση που το διαρρέει μεταβάλλεται με σταθερό ρυθμό \[ \frac{ΔΙ}{Δt} = λ > 0\]. Το ρεύμα που διαρρέει το πλαίσιο Π έχει:
7. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι παράλληλα και έχουν αντιστάσεις \[R_1,\, R_2=2R_1\] αντίστοιχα. Στα κοινά άκρα τους εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Αν \[\bar{P}_1, \bar{ P}_2\] είναι η μέση ισχύς που καταναλώνει ο κάθε αντιστάτης αντίστοιχα, τότε ποια απ’ τις παρακάτω προτάσεις είναι η σωστή;
8. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με δύο παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Την \[t=0\] ο αγωγός έχει αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο άλλους αγωγούς. Τη στιγμή αυτή ασκώ στον αγωγό σταθερή δύναμη \[F\] ομόρροπη της ταχύτητας. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές είναι κάθετες στο επίπεδο των αγωγών. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
9. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Το μέτρο της δύναμης \[\vec{F}\] είναι:
10. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Την \[t=0\] η ΗΕΔ από αυτεπαγωγή είναι:
11. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].


Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:

α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],

β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],

γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],

δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].

B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\]  του ελατηρίου είναι:

α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].

β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].

γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].

δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].

12. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και οι λαμπτήρες είναι όμοιοι. Ο διακόπτης \[δ\] είναι κλειστός και η ενέργεια του μαγνητικού πεδίου του πηνίου έχει σταθερή τιμή. Την \[t=0\] ανοίγουμε τον \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
13. Στο παρακάτω σχήμα η αγώγιμη ράβδος ΟΓ έχει μήκος \[\ell \], αντίσταση \[R\] και στρέφεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] γύρω από άξονα κάθετο στο επίπεδο περιστροφής και παράλληλο στις δυναμικές γραμμές του πεδίου. Κατά την περιστροφή της ράβδου η γωνιακή ταχύτητά της είναι σταθερή και έχει μέτρο \[ω\] ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\] . Το άκρο Γ της ράβδου έχει γραμμική ταχύτητα μέτρου \[υ\], είναι συνεχώς σε επαφή με κυκλικό αγωγό αμελητέας αντίστασης που έχει κέντρο το Ο και ακτίνα \[\ell\]. Στη διάρκεια της περιστροφής της ράβδου παρατηρείται στο άκρο της Ο αρνητικός πόλος. Ο ρυθμός παραγωγής θερμότητας στη ράβδο είναι:
14. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή και είναι κάθετος με τους λείους κατακόρυφους παράλληλους ευθύγραμμους \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των τριών αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που δημιουργούν οι τρεις αγωγοί. Την \[t=0\] δίνουμε μια αρχική ταχύτητα \[υ_0\] κατακόρυφη προς τα πάνω και ο αγωγός αρχίζει να ανέρχεται κατακόρυφα και τα άκρα του διατηρούνται σε επαφή με τους κατακόρυφους αγωγούς. Τη χρονική στιγμή \[t_1\] ο αγωγός ακινητοποιείται στιγμιαία και κατόπιν αρχίζει να κατέρχεται κατακόρυφα με τον ίδιο τρόπο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
15. Στο παρακάτω σχήμα ο ευθύγραμμος αγωγός ΚΛ μήκους \[\ell\] μπορεί να κινείται χωρίς τριβές με τα άκρα του Κ, Λ να βρίσκονται πάντα σε επαφή με τους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B\] που οι δυναμικές γραμμές του είναι συνεχώς κάθετες στον αγωγό. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] ασκώ στο μέσο του οριζόντια σταθερή δύναμη κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους οριζόντιους αγωγούς μέχρι που αποκτά σταθερή οριακή ταχύτητα \[υ_{ορ}\] τη χρονική στιγμή \[t_1\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
16. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ένας αντιστάτης \[R\] όταν στα άκρα του εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=120\sqrt{2} ημωt\] (S.I.)

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

17. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
18. Ο ευθύγραμμος αγωγός ΚΛ είναι αρχικά ακίνητος έχοντας τα άκρα του σε επαφή με τους παράλληλους οριζόντιους λείους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνω στον αγωγό αρχική ταχύτητα μέτρου \[υ_0\] και αυτός κινείται παράλληλα στους αγωγούς \[Αx_1\] και \[Γx_2\] έχοντας τα άκρα του συνεχώς σε επαφή με αυτούς. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
19. Στα άκρα αντιστάτη αντίστασης \[R=10\, Ω\] εφαρμόζουμε εναλλασσόμενη τάση με εξίσωση \[v=20\sqrt{2}\, ημ100πt\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Αντιστάτης τροφοδοτείται με εναλλασσόμενη τάση της μορφής \[v=10\, ημωt\] (S.I.). Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ο αντιστάτης με το χρόνο.

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

22. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι αμελητέας αντίστασης και μεγάλου μήκους ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\]. Αρχικά ο διακόπτης δ είναι ανοικτός. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=R\] κινείται κατακόρυφα με σταθερή ταχύτητα \[ \vec{ υ }_1 \] με φορά προς τα πάνω χωρίς να δέχεται τριβές και παραμένει συνεχώς κάθετος στους αγωγούς \[Ay_1,\, Αy_2\] ενώ τα άκρα του παραμένουν συνεχώς σε επαφή με τους κατακόρυφους αγωγούς. Στο μέσο του αγωγού ασκείται κατακόρυφη σταθερή δύναμη \[F\] κάθετη στη διεύθυνσή του και φοράς προς τα πάνω. Οι αντιστάτες \[R_2,\, R_3\], έχουν αντιστάσεις \[ R _ 2 = R _ 3 = \frac { R } { 2 } \]. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] που οι δυναμικές γραμμές τους είναι κάθετες στο επίπεδό τους. Τη στιγμή \[t =0\] κλείνω το διακόπτη δ χωρίς να καταργήσω τη δύναμη \[F\].

Α) Αμέσως μετά τη χρονική στιγμή \[t=0\] ο αγωγός:

α) θ’ αρχίσει να επιταχύνεται.

β) θ’ αρχίσει να επιβραδύνεται.

γ) θα εκτελεί ομαλά μεταβαλλόμενη κίνηση.

Β) Κάποια στιγμή \[t_1\]  μετά την \[t=0\] ο αγωγός αποκτά οριακή ταχύτητα μέτρου \[υ_2\]  για τον οποίο ισχύει:

α) \[ υ_2= \frac{3}{4} υ_1\],                 β) \[υ_2=\frac{3υ_1}{2}\],                    γ) \[υ_2=\frac{2υ_1}{3}\].

23. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
24. Η ένταση του ρεύματος που διαρρέει ένα πηνίο αυξάνεται με σταθερό ρυθμό. Κάποια στιγμή που η ένταση του ρεύματος που το διαρρέει είναι \[i_1\] ο ρυθμός αποθήκευσης ενέργειας στο μαγνητικό πεδίο του πηνίου είναι \[λ_1\]. Την στιγμή που η ένταση του ρεύματος που διαρρέει το πηνίο γίνεται \[2i_1\] ο ρυθμός αποθήκευσης ενέργειας μαγνητικού πεδίου στο πηνίο είναι:
25. Η ράβδος ΟΑ στο παρακάτω σχήμα έχει μήκος \[ \ell \], αντίσταση \[R\] και στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που περνά απ’ το κέντρο της Ο. Το άκρο της Ο ολισθαίνει σε κυκλικό οριζόντιο αγωγό κέντρου Ο ακτίνας \[\ell \] και αμελητέας αντίστασης. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B \]. Το άκρο Ο της ράβδου γεφυρώνεται με ένα σημείο Κ της περιφέρειας του κυκλικού αγωγού με αντιστάτη \[R_1\] αντίστασης \[R\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου, ασκούμε στο άκρο της Α οριζόντια δύναμη συνεχώς κάθετη σ’ αυτήν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι μεγάλου μήκους και έχουν αμελητέα αντίσταση ενώ για τις αντιστάσεις ισχύει \[R_1=R_2=R\]. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=1,5 R_1\] μάζας \[m\], μήκος \[\ell\] και μπορεί να κινείται χωρίς τριβές κατά μήκος των κατακόρυφων αγωγών. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] δίνουμε σ’ αυτόν μια κατακόρυφη ταχύτητα μέτρου \[υ_0\] με φορά προς τα πάνω. Η επιτάχυνση της βαρύτητας είναι \[g\].
A) Μετά τη στιγμή \[t_0=0\]:

α) ο αγωγός επιβραδύνεται ομαλά μέχρι να σταματήσει στιγμιαία και μετά εκτελεί ελεύθερη πτώση.

β) επιβραδύνεται μη ομαλά μέχρι να σταματήσει στιγμιαία και κατόπιν επιταχύνεται μη ομαλά μέχρι να αποκτήσει σταθερή ταχύτητα.

γ) ο αγωγός επιβραδύνεται μη ομαλά μέχρι που σταματά και εκεί ακινητοποιείται μόνιμα.

Β) Κάποια στιγμή \[t_1\]  ο αγωγός αποκτά οριακή ταχύτητα \[υ_1\]  που έχει:

α) μέτρο \[υ_1= \frac{ m g R }{ B^2  \ell^2 }\]  και φορά προς τα πάνω.

β) μέτρο \[ υ_1=\frac{mg2R}{B^2 \ell^2 }\]  και φορά προς τα κάτω.

γ) μέτρο \[υ_1=\frac{ mg5R}{ B^2 \ell^2 }\]  και φορά προς τα κάτω.

27. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=2\, mH\] διαρρέεται από ρεύμα μεταβλητής έντασης όπως απεικονίζεται στο σχήμα. Το πηνίο αποτελείται από \[1000\] σπείρες. Ο ρυθμός μεταβολής της ροής που διέρχεται από την κάθε σπείρα του πηνίου είναι
28. Η ράβδος ΟΑ του παρακάτω σχήματος έχει μήκος \[\ell\] και αντίσταση \[R\] και στρέφεται με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το σημείο Γ της ράβδου που απέχει απ’ το Ο απόσταση \[ΟΓ=\frac{\ell}{4}\] βρίσκεται συνεχώς σε επαφή με την περιφέρεια κυκλικού οριζόντιου αγωγού κέντρου Ο ακτίνας \[\frac{\ell}{4}\] και αμελητέας αντίστασης που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Η ράβδος δεν δέχεται καμία τριβή κατά την κίνησή της. Το άκρο Ο γεφυρώνεται με το σημείο Κ της περιφέρειας του κυκλικού αγωγού με αντιστάτη αντίστασης \[R_1=R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου ασκούμε στο άκρο Α της ράβδου οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η ράβδος κατά την κίνησή της δέχεται δύναμη Laplace απ’ το μαγνητικό πεδίο μέτρου \[F_L\]. Αν η ράβδος δέχονταν τριβή απ’ τον κυκλικό αγωγό μέτρου \[Τ=F_L\], τότε ο λόγος \[\frac{F}{F_L}\] θα ήταν:
29. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει αντίσταση \[R\], μήκος \[\ell\] και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα. Ο αγωγός κινείται με σταθερή ταχύτητα πάνω στους λείους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και αμελητέας αντίστασης που τα άκρα τους Α, Γ είναι συνδεμένα με αντιστάτη αντίστασης \[R_1=R\]. Ο αγωγός ΚΛ ακουμπά στους αγωγούς μεγάλου μήκους στα σημεία Ν, Ζ που έχουν απόσταση \[ΝΖ=\frac{ \ell } { 2 }\] ενώ τα τμήματα του αγωγού που προεξέχουν απ’ τους αγωγούς \[Αx_1\] και \[Γx_2\] έχουν ίδιο μήκος. Το σύστημα όλων των αγωγών βρίσκεται σε ομογενές κατακόρυφο μαγνητικό πεδίο έντασης μέτρου \[\vec{B}\] που περιορίζεται στο χώρο μεταξύ των αγωγών \[Ax_1\] και \[Γx_2\] και οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Το μέτρο της οριζόντιας εξωτερικής δύναμης \[F\] που πρέπει να ασκούμε στο μέσο Μ του αγωγού ΚΛ και κάθετα στη διεύθυνσή του ώστε αυτός να διατηρεί σταθερή την ταχύτητά του είναι:
30. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο είναι ιδανικό. Ο διακόπτης \[δ\] είναι κλειστός και οι φωτεινότητες των δύο λαμπτήρων είναι σταθεροποιημένες. Την \[t=0\] ανοίγουμε το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US