2. Στο παρακάτω σχήμα τα δύο πηνία \[Π_1,\, Π_2\] έχουν κοινό άξονα και βρίσκονται σε μικρή μεταξύ τους απόσταση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
3. Στο παρακάτω σχήμα αφήνουμε τον ραβδόμορφο μαγνήτη να πέσει κατακόρυφα κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του που ισορροπεί πάνω απ’ το κέντρο του δακτυλίου που κρατείται ακίνητος. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Ραβδόμορφος μαγνήτης με τον άξονά του κατακόρυφο που διέρχεται απ’ το κέντρο του μεταλλικού δακτυλίου που κρατείται ακίνητος, αφήνεται να πέσει στο κενό. Ποια από τις παρακάτω προτάσεις είναι σωστή; Η μείωση της βαρυτικής δυναμικής ενέργειας του μαγνήτη μετατρέπεται:
6. Ένα ακλόνητο πηνίο και ένας ραβδόμορφος μαγνήτης του παρακάτω σχήματος έχουν κοινό άξονα. Αρχίζουμε να κινούμε το μαγνήτη στη διεύθυνσή του κοινού τους άξονα με σταθερή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Είτε ο μαγνήτης πλησιάζει, είτε απομακρύνεται απ’ το πηνίο:
7. Ο ευθύγραμμος αγωγός μεγάλου μήκους του παρακάτω σχήματος βρίσκεται στο ίδιο κατακόρυφο επίπεδο με τα επίπεδα των δύο κυκλικών αγωγών \[(1),\, (2)\]. Ο αγωγός διαρρέεται από ρεύμα έντασης \[I\] που έχει τη φορά του σχήματος. Μειώνουμε την ένταση \[I\] χωρίς ν’ αλλάξουμε τη φορά του ρεύματος του ευθύγραμμου αγωγού. Ποια από τις επόμενες προτάσεις είναι σωστή; Στη διάρκεια της μείωσης της \[I\]:
8. Αντιστάτης τροφοδοτείται με εναλλασσόμενη τάση της μορφής \[v=10\, ημωt\] (S.I.). Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ο αντιστάτης με το χρόνο.
Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Στα άκρα αντιστάτη αντίστασης \[R=10\, Ω\] εφαρμόζουμε εναλλασσόμενη τάση με εξίσωση \[v=20\sqrt{2}\, ημ100πt\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές; 11. Στη διάταξη του παρακάτω σχήματος οι οριζόντιοι λείοι αγωγοί \[Αx\] και \[Γy\] είναι παράλληλοι, έχουν αμελητέα αντίσταση και τα άκρα τους Α, Γ συνδέονται με αντιστάτη \[R_1=2R\]. Ο οριζόντιος αγωγός ΚΛ είναι κάθετος στους δύο αγωγούς, έχει αντίσταση \[R\], μήκος \[\ell\] και τα άκρα του βρίσκονται σε επαφή με αυτούς. Αρχικά ο αγωγός ΚΛ είναι ακίνητος. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνουμε στον αγωγό ΚΛ οριζόντια αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο αγωγούς ενώ ταυτόχρονα ασκούμε στο μέσο σταθερή δύναμη μέτρου \[F\] και κατεύθυνσης ομόρροπης της \[υ_0\].
A) Αν το μέτρο της \[υ_0\] είναι \[υ_0 > \frac{ 3FR }{ B^2 \ell^2 }\], τότε ο αγωγός ΚΛ μετά την \[t=0\]:
α) θα εκτελέσει ομαλά επιβραδυνόμενη κίνηση μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 < υ_0\].
β) θα εκτελέσει επιταχυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 > υ_0\].
γ) θα εκτελέσει επιβραδυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει ταχύτητα μέτρου \[ υ_1 < υ_0 \].
δ) θα εκτελέσει Ε.Ο.Κ. με ταχύτητα \[υ_0\].
B) Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\] που ο αγωγός ΚΛ έχει σταθερή ταχύτητα \[\vec{υ}_1\], το έργο της δύναμης \[F\]:
α) έχει γίνει αύξηση της κινητικής του αγωγού.
β) είναι ίση με τη συνολική θερμότητα που εκλύεται στους αντιστάτες μέχρι τη στιγμή \[t_1\].
γ) και η μείωση της κινητικής του ενέργειας του αγωγού ΚΛ μέχρι τη στιγμή \[t_1\] μας δίνουν μαζί την θερμότητα που εκλύεται συνολικά στους αντιστάτες μέχρι τη στιγμή \[t_1\].
12. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Ο ρυθμός εκτέλεσης έργου της δύναμης Laplace (η ισχύς της) είναι:
14. Μαγνήτης Μ αφήνεται απ’ τη θέση (Ι) να πέσει πάνω απ’ το μεταλλικό κυκλικό δακτύλιο που διατηρείται ακίνητος με το επίπεδό του οριζόντιο. Η ταχύτητα του μαγνήτη έχει τη διεύθυνση του άξονά του ο οποίος διέρχεται απ’ το κέντρο του δακτυλίου. Το βάρος του μαγνήτη έχει μέτρο \[w\] και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\].
A) Στη θέση II αμέσως πριν φτάσει στο επίπεδο του δακτυλίου η δύναμη που δέχεται ο αγωγός απ’ το μαγνήτη έχει μέτρο \[0,2\, w\]. Το μέτρο της επιτάχυνσης του μαγνήτη στη θέση ΙΙ είναι:
α) \[0,8\, g\], β) \[1,2\, g\], γ) \[g\].
Β) Στη θέση ΙΙΙ λίγο μετά το πέρασμα του μαγνήτη απ’ τον δακτύλιο ο αγωγός:
α) δε διαρρέεται από επαγωγικό ρεύμα.
β) διαρρέεται από επαγωγικό ρεύμα ομόρροπο με αυτό που διαρρέεται στη θέση ΙΙ.
γ) αντίρροπο απ’ αυτό που διαρρέεται στη θέση ΙΙ.
15. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].
Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:
α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],
β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],
γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],
δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].
B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\] του ελατηρίου είναι:
α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].
β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].
γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].
δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].
17. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με δύο παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Την \[t=0\] ο αγωγός έχει αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο άλλους αγωγούς. Τη στιγμή αυτή ασκώ στον αγωγό σταθερή δύναμη \[F\] ομόρροπη της ταχύτητας. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές είναι κάθετες στο επίπεδο των αγωγών. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
18. Ο κυκλικός αγωγός του παρακάτω σχήματος είναι μονωμένος εξωτερικά, στηρίζεται πάνω σε ευθύγραμμο οριζόντιο αγωγό μεγάλου μήκους έτσι ώστε μια διάμετρός του να ταυτίζεται με τη διεύθυνση του ευθύγραμμου αγωγού. Ο ευθύγραμμος αγωγός διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο παρακάτω σχήμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Όταν μεταβάλλεται η ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό χωρίς ν’ αλλάξουμε τη φορά του, τότε στη διάρκεια αυτή ο κυκλικός αγωγός:
21. Η ράβδος ΟΑ στο παρακάτω σχήμα έχει μήκος \[ \ell \], αντίσταση \[R\] και στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που περνά απ’ το κέντρο της Ο. Το άκρο της Ο ολισθαίνει σε κυκλικό οριζόντιο αγωγό κέντρου Ο ακτίνας \[\ell \] και αμελητέας αντίστασης. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B \]. Το άκρο Ο της ράβδου γεφυρώνεται με ένα σημείο Κ της περιφέρειας του κυκλικού αγωγού με αντιστάτη \[R_1\] αντίστασης \[R\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου, ασκούμε στο άκρο της Α οριζόντια δύναμη συνεχώς κάθετη σ’ αυτήν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Το συρμάτινο πλαίσιο ΚΛΜΝ σχήματος ορθογωνίου παραλληλογράμμου του παρακάτω σχήματος αρχικά βρίσκεται έξω απ’ το ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και αρχίζει να εισέρχεται σε αυτό με σταθερή ταχύτητα \[υ\] που έχει διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου και στην πλευρά ΛΜ όπως φαίνεται στο παρακάτω σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Στη διάρκεια εισόδου του πλαισίου στο μαγνητικό πεδίο:
23. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή και είναι κάθετος με τους λείους κατακόρυφους παράλληλους ευθύγραμμους \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των τριών αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που δημιουργούν οι τρεις αγωγοί. Την \[t=0\] δίνουμε μια αρχική ταχύτητα \[υ_0\] κατακόρυφη προς τα πάνω και ο αγωγός αρχίζει να ανέρχεται κατακόρυφα και τα άκρα του διατηρούνται σε επαφή με τους κατακόρυφους αγωγούς. Τη χρονική στιγμή \[t_1\] ο αγωγός ακινητοποιείται στιγμιαία και κατόπιν αρχίζει να κατέρχεται κατακόρυφα με τον ίδιο τρόπο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
24. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι αμελητέας αντίστασης και μεγάλου μήκους ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\]. Αρχικά ο διακόπτης δ είναι ανοικτός. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=R\] κινείται κατακόρυφα με σταθερή ταχύτητα \[ \vec{ υ }_1 \] με φορά προς τα πάνω χωρίς να δέχεται τριβές και παραμένει συνεχώς κάθετος στους αγωγούς \[Ay_1,\, Αy_2\] ενώ τα άκρα του παραμένουν συνεχώς σε επαφή με τους κατακόρυφους αγωγούς. Στο μέσο του αγωγού ασκείται κατακόρυφη σταθερή δύναμη \[F\] κάθετη στη διεύθυνσή του και φοράς προς τα πάνω. Οι αντιστάτες \[R_2,\, R_3\], έχουν αντιστάσεις \[ R _ 2 = R _ 3 = \frac { R } { 2 } \]. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] που οι δυναμικές γραμμές τους είναι κάθετες στο επίπεδό τους. Τη στιγμή \[t =0\] κλείνω το διακόπτη δ χωρίς να καταργήσω τη δύναμη \[F\].
Α) Αμέσως μετά τη χρονική στιγμή \[t=0\] ο αγωγός:
α) θ’ αρχίσει να επιταχύνεται.
β) θ’ αρχίσει να επιβραδύνεται.
γ) θα εκτελεί ομαλά μεταβαλλόμενη κίνηση.
Β) Κάποια στιγμή \[t_1\] μετά την \[t=0\] ο αγωγός αποκτά οριακή ταχύτητα μέτρου \[υ_2\] για τον οποίο ισχύει:
α) \[ υ_2= \frac{3}{4} υ_1\], β) \[υ_2=\frac{3υ_1}{2}\], γ) \[υ_2=\frac{2υ_1}{3}\].
26. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=2\, mH\] διαρρέεται από ρεύμα μεταβλητής έντασης όπως απεικονίζεται στο σχήμα. Το πηνίο αποτελείται από \[1000\] σπείρες. Ο ρυθμός μεταβολής της ροής που διέρχεται από την κάθε σπείρα του πηνίου είναι
29. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο: