MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο:
2. Ο αγωγός ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και αντίσταση \[R\], κινείται με ταχύτητα μέτρου \[υ_0\] διατηρώντας συνεχώς τα άκρα του σε επαφή με τους δύο παράλληλους αγωγούς \[Αx_1\] και \[Γx_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Την \[t=0\] ασκώ στον αγωγό ΚΛ σταθερή δύναμη μέτρου \[F\] ομόρροπη της \[υ_0\] και σε λίγο αυτός αποκτά οριακή ταχύτητα μέτρου \[υ_{ορ}\]. Αν για τα μέτρα των ταχυτήτων ισχύει \[υ_{ορ}<υ_0\], ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
3. Ένα ακλόνητο πηνίο και ένας ραβδόμορφος μαγνήτης του παρακάτω σχήματος έχουν κοινό άξονα. Αρχίζουμε να κινούμε το μαγνήτη στη διεύθυνσή του κοινού τους άξονα με σταθερή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Είτε ο μαγνήτης πλησιάζει, είτε απομακρύνεται απ’ το πηνίο:
4. Μαγνήτης Μ αφήνεται απ’ τη θέση (Ι) να πέσει πάνω απ’ το μεταλλικό κυκλικό δακτύλιο που διατηρείται ακίνητος με το επίπεδό του οριζόντιο. Η ταχύτητα του μαγνήτη έχει τη διεύθυνση του άξονά του ο οποίος διέρχεται απ’ το κέντρο του δακτυλίου. Το βάρος του μαγνήτη έχει μέτρο \[w\] και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\].
A) Στη θέση II αμέσως πριν φτάσει στο επίπεδο του δακτυλίου η δύναμη που δέχεται ο αγωγός απ’ το μαγνήτη έχει μέτρο \[0,2\, w\]. Το μέτρο της επιτάχυνσης του μαγνήτη στη θέση ΙΙ είναι:

α) \[0,8\, g\],                       β) \[1,2\, g\],                       γ) \[g\].

Β) Στη θέση ΙΙΙ λίγο μετά το πέρασμα του μαγνήτη απ’ τον δακτύλιο ο αγωγός:

α) δε διαρρέεται από επαγωγικό ρεύμα.

β) διαρρέεται από επαγωγικό ρεύμα ομόρροπο με αυτό που διαρρέεται στη θέση ΙΙ.

γ) αντίρροπο απ’ αυτό που διαρρέεται στη θέση ΙΙ.

5. Στη διάταξη του παρακάτω σχήματος οι οριζόντιοι λείοι αγωγοί \[Αx\] και \[Γy\] είναι παράλληλοι, έχουν αμελητέα αντίσταση και τα άκρα τους Α, Γ συνδέονται με αντιστάτη \[R_1=2R\]. Ο οριζόντιος αγωγός ΚΛ είναι κάθετος στους δύο αγωγούς, έχει αντίσταση \[R\], μήκος \[\ell\] και τα άκρα του βρίσκονται σε επαφή με αυτούς. Αρχικά ο αγωγός ΚΛ είναι ακίνητος. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνουμε στον αγωγό ΚΛ οριζόντια αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο αγωγούς ενώ ταυτόχρονα ασκούμε στο μέσο σταθερή δύναμη μέτρου \[F\] και κατεύθυνσης ομόρροπης της \[υ_0\].
A) Αν το μέτρο της \[υ_0\] είναι \[υ_0 > \frac{ 3FR }{ B^2 \ell^2 }\], τότε ο αγωγός ΚΛ μετά την \[t=0\]:

α) θα εκτελέσει ομαλά επιβραδυνόμενη κίνηση μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 < υ_0\].

β) θα εκτελέσει επιταχυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 > υ_0\].

γ) θα εκτελέσει επιβραδυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει ταχύτητα μέτρου \[ υ_1 < υ_0 \].

δ) θα εκτελέσει Ε.Ο.Κ. με ταχύτητα \[υ_0\].

B) Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\] που ο αγωγός ΚΛ  έχει σταθερή ταχύτητα \[\vec{υ}_1\], το έργο της δύναμης \[F\]:

α) έχει γίνει αύξηση της κινητικής του αγωγού.

β) είναι ίση με τη συνολική θερμότητα που εκλύεται στους αντιστάτες μέχρι τη στιγμή \[t_1\].

γ) και η μείωση της κινητικής του ενέργειας του αγωγού ΚΛ μέχρι τη στιγμή \[t_1\] μας δίνουν μαζί την θερμότητα που εκλύεται συνολικά στους αντιστάτες μέχρι τη στιγμή \[t_1\].

6. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Το μέγιστο μέτρο της έντασης του ρεύματος είναι:
7. Στο παρακάτω σχήμα οι λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο είναι ιδανικό. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Ραβδόμορφος μαγνήτης με τον άξονά του κατακόρυφο που διέρχεται απ’ το κέντρο του μεταλλικού δακτυλίου που κρατείται ακίνητος, αφήνεται να πέσει στο κενό. Ποια από τις παρακάτω προτάσεις είναι σωστή; Η μείωση της βαρυτικής δυναμικής ενέργειας του μαγνήτη μετατρέπεται:
9. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Η αποθηκευμένη ενέργεια του μαγνητικού πεδίου του πηνίου αμέσως πριν την \[t_0=0\] είναι:
10. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο ιδανικό. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Στο παρακάτω σχήμα αφήνουμε τον ραβδόμορφο μαγνήτη να πέσει κατακόρυφα κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του που ισορροπεί πάνω απ’ το κέντρο του δακτυλίου που κρατείται ακίνητος. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] το ρεύμα στο κύκλωμα έχει ένταση ίση με:
13. Η λεπτή μεταλλική ομογενής και ισοπαχής ράβδος ΟΑ μήκους \[\ell \] και αντίστασης \[R\] στρέφεται χωρίς τριβές με σταθερή γωνιακή ταχύτητα \[ω\] γύρω από άξονα που περνά απ’ το κέντρο της Ο και είναι κάθετος σ’ αυτήν. Η ράβδος βρίσκεται συνεχώς σε επαφή στο σημείο της Γ με \[ΟΓ = \frac{ \ell }{ 4 }\] με κυκλικό αγωγό ακτίνας l/4 αμελητέας αντίστασης που έχει κέντρο το άκρο Ο της ράβδου και το επίπεδό της ταυτίζεται με τον άξονα περιστροφής. Το σημείο Ο της ράβδου γεφυρώνεται με το σημείο Κ της περιφέρειάς του κυκλικού αγωγού με αντιστάτη αντίσταση \[R_1 = \frac{11R }{ 4 }\]. Η ράβδος βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου Β που οι δυναμικές γραμμές της είναι κάθετες στο επίπεδο περιστροφής της. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Ο ευθύγραμμος αγωγός ΚΛ είναι αρχικά ακίνητος έχοντας τα άκρα του σε επαφή με τους παράλληλους οριζόντιους λείους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνω στον αγωγό αρχική ταχύτητα μέτρου \[υ_0\] και αυτός κινείται παράλληλα στους αγωγούς \[Αx_1\] και \[Γx_2\] έχοντας τα άκρα του συνεχώς σε επαφή με αυτούς. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
15. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=0,6\, mH\] αποτελείται από \[300\] σπείρες. Το πηνίο διαρρέεται από ρεύμα σταθερής έντασης με τιμή ίση με \[2\, Α\]. Η μαγνητική ροή που διέρχεται από την κάθε σπείρα του πηνίου είναι
16. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=2\, mH\] διαρρέεται από ρεύμα μεταβλητής έντασης όπως απεικονίζεται στο σχήμα. Το πηνίο αποτελείται από \[1000\] σπείρες. Ο ρυθμός μεταβολής της ροής που διέρχεται από την κάθε σπείρα του πηνίου είναι
17. Ο ευθύγραμμος αγωγός του παρακάτω σχήματος έχει μήκος \[\ell \] και αντίσταση \[R\] και μπορεί να κινείται χωρίς τριβές έχοντας στα άκρα του συνεχώς σε επαφή με τους λείους ευθύγραμμους παράλληλους λείους αγωγούς \[Αx\] και \[Γy\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το επίπεδο των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Αρχικά ο αγωγός είναι ακίνητος. Ασκούμε στο κέντρο του οριζόντια σταθερή δύναμη μέτρου \[F\] κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους αγωγούς \[Αx\] και \[Γy\] με τα άκρα του να μένουν πάντα σ’ επαφή με αυτόν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο είναι ιδανικό. Ο διακόπτης \[δ\] είναι κλειστός και οι φωτεινότητες των δύο λαμπτήρων είναι σταθεροποιημένες. Την \[t=0\] ανοίγουμε το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Ο μαγνήτης Μ και το σωληνοειδές Σ έχουν κοινό άξονα. Το επαγωγικό ρεύμα που διαρρέει τον αντιστάτη \[R\] έχει τη φορά του σχήματος. Απ’ τη φορά του ρεύματος αυτού συμπεραίνουμε ότι μπορεί:
20. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Την \[t=0\] η ΗΕΔ από αυτεπαγωγή είναι:
21. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Ο λόγος \[\frac{U }{ U_1}\] είναι:
22. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Ο ρυθμός εκτέλεσης έργου της δύναμης Laplace (η ισχύς της) είναι:
23. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι φωτεινότητες των δύο λαμπτήρων είναι σταθερές. Την \[t=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Το ορθογώνιο μεταλλικό πλαίσιο ΚΛΜΝ και ο ευθύγραμμος αγωγός μεγάλου μήκους βρίσκονται πάνω στο ίδιο οριζόντιο λείο και μονωτικό δάπεδο. Ο ευθύγραμμος αγωγός είναι ακλόνητος και διαρρέεται από ρεύμα έντασης \[Ι\] και φοράς όπως φαίνεται στο σχήμα. Το πλαίσιο αρχικά είναι ακίνητο. Αρχίζω να μετακινώ το πλαίσιο με οριζόντια ταχύτητα \[υ\] που είναι παράλληλη στην πλευρά του ΚΛ και έχει φορά προς τα δεξιά.

Α) Καθώς το πλαίσιο απομακρύνεται απ’ τον ευθύγραμμο αγωγό δημιουργείται στο πλαίσιο:

α) επαγωγικό ρεύμα που έχει την ωρολογιακή φορά.

β) επαγωγικό ρεύμα που έχει την αντιωρολογιακή φορά.

γ) επαγωγική ΗΕΔ αλλά όχι επαγωγικό ρεύμα.

Β) Αν το πλαίσιο είναι ακίνητο στην αρχική  του θέση και αρχίζω να αυξάνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε:

α) το πλαίσιο διαρρέεται από ρεύμα που έχει την ωρολογιακή φορά.

β) το πλαίσιο διαρρέεται από ρεύμα που έχει την αντιωρολογιακή φορά.

γ) το πλαίσιο δεν διαρρέεται από επαγωγικό ρεύμα.

Γ) Αν το πλαίσιο είναι ακίνητο στην αρχική του θέση και αρχίζω να μειώνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε το πλαίσιο:

α) θα έλκεται απ’ τον ευθύγραμμο αγωγό.

β) θα απωθείται απ’ τον ευθύγραμμο αγωγό.

γ) δεν θα δέχεται δύναμη απ’ τον ευθύγραμμο αγωγό.

26. Η ένταση του ρεύματος που διαρρέει ένα πηνίο αυξάνεται με σταθερό ρυθμό. Κάποια στιγμή που η ένταση του ρεύματος που το διαρρέει είναι \[i_1\] ο ρυθμός αποθήκευσης ενέργειας στο μαγνητικό πεδίο του πηνίου είναι \[λ_1\]. Την στιγμή που η ένταση του ρεύματος που διαρρέει το πηνίο γίνεται \[2i_1\] ο ρυθμός αποθήκευσης ενέργειας μαγνητικού πεδίου στο πηνίο είναι:
27. Το σωληνοειδές Σ του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], εμβαδόν σπείρας \[S\], αριθμό σπειρών \[N\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που οι δυναμικές γραμμές είναι παράλληλες με τον άξονα του σωληνοειδούς. Τα άκρα του σωληνοειδούς συνδέονται μέσω κατακόρυφων συρμάτων αμελητέας αντίστασης με μεταλλικό ευθύγραμμο οριζόντιο αγωγό ΖΛ που έχει μήκος \[\ell\], αντίσταση \[R\] και βάρος μέτρου \[w\]. Ο αγωγός ΖΛ είναι προσδεμένος στο κέντρο του με ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\]. Ο αγωγός ΖΛ βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που οι δυναμικές του γραμμές είναι κάθετες στον αγωγό αυτό. Αν το μέτρο της έντασης του \[B_1\] μεταβάλλεται σύμφωνα με τη σχέση \[Β_1=3+2t\] (S.I.) χωρίς να μεταβάλλεται η φορά της, τότε ο αγωγός ΖΛ ισορροπεί οριζόντιος και το ελατήριο έχει το φυσικό του μήκος.


Α) Οι δυναμικές γραμμές του μαγνητικού πεδίου  έντασης \[B_2\]  έχουν φορά:

α) απ’ τον αναγνώστη προς τη σελίδα.

β) απ’ τη σελίδα προς τον αναγνώστη.

γ) μη προσδιορίσιμη με τα δεδομένα της άσκησης.

Β) Το μέτρο της έντασης \[Β_2\]  με όλα τα μεγέθη μετρημένα στο S.I. είναι:

α) \[Β_2=\frac{ w (R_Σ+R) }{ 2 N S  \ell }\],                  
β) \[Β_2=\frac{w (R_Σ+R) }{ 3NS \ell }\],    
γ) \[Β_2=\frac{ w (R_Σ+R) }{ N S \ell } \].

28. Το εναλλασσόμενο ρεύμα που παριστάνεται στο παρακάτω διάγραμμα έχει την ίδια ενεργό τιμή με ένα ημιτονοειδές ρεύμα της μορφής:
29. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης έχει αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Αν \[i\] η στιγμιαία ένταση του ρεύματος που διαρρέει το κύκλωμα για μια χρονική στιγμή \[t≥0\], το μέτρο του ρυθμού μεταβολής της έντασης του ρεύματος στο κύκλωμα την ίδια χρονική στιγμή \[t\] δίνεται απ’ τη σχέση.
30. Το τετράγωνο πλαίσιο του παρακάτω σχήματος έχει πλευρά μήκους \[α\], αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\] και βρίσκεται ακλόνητο πάνω σε οριζόντιο δάπεδο. Το πλαίσιο βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B_1\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Τα άκρα Κ, Λ του πλαισίου συνδέονται μέσω συρμάτων αμελητέας αντίστασης με ευθύγραμμο αγωγό ΑΓ. Ο αγωγός ΑΓ βρίσκεται ακλόνητος στο ίδιο οριζόντιο δάπεδο και έχει αντίσταση \[R\]. Η ένταση \[Β_1\] την \[t=0\] αρχίζει να μεταβάλλει το μέτρο της και η απόλυτη τιμή του ρυθμού μεταβολής \[ \left| \frac{ΔB_1}{Δt } \right| \] είναι σταθερή και ίση με \[λ\]. Στη διάρκεια της μεταβολής αυτής γύρω απ’ τον αγωγό ΑΓ δημιουργείται μαγνητικό πεδίο. Σε σημείο Δ που απέχει \[r\] απ’ τον ευθύγραμμο αγωγό η ένταση του μαγνητικού πεδίου είναι σταθερή, έχει μέτρο \[Β_Δ\] και η φορά της φαίνεται στο σχήμα. Η απόσταση \[r\] είναι πολύ μικρή σε σχέση με το μήκος του αγωγού. H μαγνητική διαπερατότητα του κενού είναι \[μ_0\].
A) Η ένταση του μαγνητικού πεδίου \[B_1\]:

α) αυξάνεται,                          

β) μειώνεται,

γ) δεν μπορούμε να προβλέψουμε αν αυξάνεται ή μειώνεται.

Β) Η απόλυτη τιμή του ρυθμού μεταβολής του μέτρου της έντασης \[B_1\]  είναι:

α) \[λ=\frac{2πΒ_Δ R}{μ_0 α^2 } r\],              
β) \[ λ =\frac{2πΒ_Δ (Ν+1)R}{Nμ_0 α^2} r\],             
γ) \[λ=\frac{4πΒ_Δ (Ν+1)R}{μ_0 α^2 } r\].


    +30

    CONTACT US
    CALL US