MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Ο λόγος \[\frac{U }{ U_1}\] είναι:
2. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός έκλυσης θερμότητας στον αντιστάτη \[R\] γίνεται μέγιστος, η τιμή της ενέργειας του μαγνητικού πεδίου που έχει αποθηκευτεί στο πηνίο είναι \[U\]. Τη χρονική στιγμή που η ενέργεια αυτή είχε τιμή \[U' = \frac{U}{4}\], ο ρυθμός αποθήκευσης της ενέργειας αυτής είναι:
3. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Ο αγωγός έχει αρχική ταχύτητα \[υ_0\] που είναι παράλληλη στους αγωγούς \[Αx_1,\, Γx_2\]. Την \[t=0\] ασκούμε στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ίδιας διεύθυνσης με τη \[υ_0\] και τέτοια ώστε ο αγωγός να αρχίσει να επιβραδύνεται ομαλά μέχρι να σταματήσει. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Ένα σωληνοειδές Σ έχει \[n\] αριθμό σπειρών ανά μονάδα μήκους και κάθε σπείρα έχει ακτίνα \[α_1\]. Κυκλικό πλαίσιο Π αποτελείται από \[Ν\] σπείρες ακτίνας \[α_2\] που η καθεμιά έχει αντίσταση \[R\] και περιβάλλει το σωληνοειδές ακριβώς στο κέντρο του με τις σπείρες του να έχουν κοινό κέντρο Κ και κοινό κατακόρυφο επίπεδο με την κεντρική σπείρα του σωληνοειδούς. Η μαγνητική διαπερατότητα του κενού είναι \[μ_0\]. Μεταβάλλοντας κατάλληλα την αντίσταση \[R_1\] του κυκλώματος του σωληνοειδούς Σ, η ένταση που το διαρρέει μεταβάλλεται με σταθερό ρυθμό \[ \frac{ΔΙ}{Δt} = λ > 0\]. Το ρεύμα που διαρρέει το πλαίσιο Π έχει:
5. Ο μαγνήτης Μ και το σωληνοειδές Σ έχουν κοινό άξονα. Το επαγωγικό ρεύμα που διαρρέει τον αντιστάτη \[R\] έχει τη φορά του σχήματος. Απ’ τη φορά του ρεύματος αυτού συμπεραίνουμε ότι μπορεί:
6. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι αμελητέας αντίστασης και μεγάλου μήκους ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\]. Αρχικά ο διακόπτης δ είναι ανοικτός. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=R\] κινείται κατακόρυφα με σταθερή ταχύτητα \[ \vec{ υ }_1 \] με φορά προς τα πάνω χωρίς να δέχεται τριβές και παραμένει συνεχώς κάθετος στους αγωγούς \[Ay_1,\, Αy_2\] ενώ τα άκρα του παραμένουν συνεχώς σε επαφή με τους κατακόρυφους αγωγούς. Στο μέσο του αγωγού ασκείται κατακόρυφη σταθερή δύναμη \[F\] κάθετη στη διεύθυνσή του και φοράς προς τα πάνω. Οι αντιστάτες \[R_2,\, R_3\], έχουν αντιστάσεις \[ R _ 2 = R _ 3 = \frac { R } { 2 } \]. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] που οι δυναμικές γραμμές τους είναι κάθετες στο επίπεδό τους. Τη στιγμή \[t =0\] κλείνω το διακόπτη δ χωρίς να καταργήσω τη δύναμη \[F\].

Α) Αμέσως μετά τη χρονική στιγμή \[t=0\] ο αγωγός:

α) θ’ αρχίσει να επιταχύνεται.

β) θ’ αρχίσει να επιβραδύνεται.

γ) θα εκτελεί ομαλά μεταβαλλόμενη κίνηση.

Β) Κάποια στιγμή \[t_1\]  μετά την \[t=0\] ο αγωγός αποκτά οριακή ταχύτητα μέτρου \[υ_2\]  για τον οποίο ισχύει:

α) \[ υ_2= \frac{3}{4} υ_1\],                 β) \[υ_2=\frac{3υ_1}{2}\],                    γ) \[υ_2=\frac{2υ_1}{3}\].

7. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ένας αντιστάτης \[R\] όταν στα άκρα του εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=120\sqrt{2} ημωt\] (S.I.)

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

8. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] το ρεύμα στο κύκλωμα έχει ένταση ίση με:
9. Στο παρακάτω σχήμα το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=2R\]. Ο αντιστάτης \[R\] έχει αντίσταση \[R\], η πηγή έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Το ρεύμα σταθεροποιείται σε μέγιστη τιμή έντασης \[Ι\]. Τη χρονική στιγμή \[t_1\] η ένταση που διαρρέει το πηνίο είναι \[I_1 = \frac{I}{4}\]. Απ’ τη στιγμή που η ένταση στο κύκλωμα σταθεροποιείται, ο ρυθμός κατανάλωσης της ηλεκτρικής ενέργειας στο πηνίο είναι:
10. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
11. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=2\, mH\] διαρρέεται από ρεύμα μεταβλητής έντασης όπως απεικονίζεται στο σχήμα. Το πηνίο αποτελείται από \[1000\] σπείρες. Ο ρυθμός μεταβολής της ροής που διέρχεται από την κάθε σπείρα του πηνίου είναι
12. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι μεγάλου μήκους και έχουν αμελητέα αντίσταση ενώ για τις αντιστάσεις ισχύει \[R_1=R_2=R\]. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=1,5 R_1\] μάζας \[m\], μήκος \[\ell\] και μπορεί να κινείται χωρίς τριβές κατά μήκος των κατακόρυφων αγωγών. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] δίνουμε σ’ αυτόν μια κατακόρυφη ταχύτητα μέτρου \[υ_0\] με φορά προς τα πάνω. Η επιτάχυνση της βαρύτητας είναι \[g\].
A) Μετά τη στιγμή \[t_0=0\]:

α) ο αγωγός επιβραδύνεται ομαλά μέχρι να σταματήσει στιγμιαία και μετά εκτελεί ελεύθερη πτώση.

β) επιβραδύνεται μη ομαλά μέχρι να σταματήσει στιγμιαία και κατόπιν επιταχύνεται μη ομαλά μέχρι να αποκτήσει σταθερή ταχύτητα.

γ) ο αγωγός επιβραδύνεται μη ομαλά μέχρι που σταματά και εκεί ακινητοποιείται μόνιμα.

Β) Κάποια στιγμή \[t_1\]  ο αγωγός αποκτά οριακή ταχύτητα \[υ_1\]  που έχει:

α) μέτρο \[υ_1= \frac{ m g R }{ B^2  \ell^2 }\]  και φορά προς τα πάνω.

β) μέτρο \[ υ_1=\frac{mg2R}{B^2 \ell^2 }\]  και φορά προς τα κάτω.

γ) μέτρο \[υ_1=\frac{ mg5R}{ B^2 \ell^2 }\]  και φορά προς τα κάτω.

13. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
14. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της αποθηκευμένης ενέργειας στο πηνίο είναι:
15. Το εναλλασσόμενο ρεύμα που παριστάνεται στο παρακάτω διάγραμμα έχει την ίδια ενεργό τιμή με ένα ημιτονοειδές ρεύμα της μορφής:
16. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου του πηνίου είναι \[U_1\]. Ο λόγος \[\frac{U}{U_1}\] είναι:
17. Ομογενές και ισοπαχές σύρμα διαρρέεται από συνεχές ρεύμα \[Ι_Σ\] και σε χρόνο \[Δt\] εκλύει θερμότητα \[Q_1\]. Δεύτερο ομογενές και ισοπαχές σύρμα είναι φτιαγμένο απ’ το ίδιο υλικό με το πρώτο αλλά έχει διπλάσιο μήκος και υποδιπλάσιο εμβαδόν διατομής απ’ αυτό. Το δεύτερο σύρμα διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\] και στον ίδιο χρόνο εκλύει θερμότητα \[Q_2=2Q_1\]. Για την ενεργό τιμή \[Ι_{εν}\] του εναλλασσόμενου ρεύματος ισχύει
18. Στο παρακάτω σχήμα ο ευθύγραμμος αγωγός ΚΛ μήκους \[\ell\] μπορεί να κινείται χωρίς τριβές με τα άκρα του Κ, Λ να βρίσκονται πάντα σε επαφή με τους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B\] που οι δυναμικές γραμμές του είναι συνεχώς κάθετες στον αγωγό. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] ασκώ στο μέσο του οριζόντια σταθερή δύναμη κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους οριζόντιους αγωγούς μέχρι που αποκτά σταθερή οριακή ταχύτητα \[υ_{ορ}\] τη χρονική στιγμή \[t_1\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
19. Αντιστάτης τροφοδοτείται με εναλλασσόμενη τάση της μορφής \[v=10\, ημωt\] (S.I.). Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της στιγμιαίας ισχύος που καταναλώνει ο αντιστάτης με το χρόνο.

Ποιες από τις παρακάτω προτάσεις είναι σωστές;

20. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Το μέτρο της δύναμης Laplace που δέχεται ο αγωγός ΟΓ απ’ το μαγνητικό πεδίο έχει μέτρο:
22. Το κυκλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ακλόνητο με το επίπεδό του κατακόρυφο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το πλαίσιο αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\]. Το πλαίσιο συνδέεται μέσω αβαρών συρμάτων αμελητέας αντίστασης με δύο κατακόρυφους αγωγούς \[y_1 y_1'\] και \[y_2 y_2'\] που και αυτοί έχουν αμελητέα αντίσταση. Ευθύγραμμος αγωγός ΑΓ είναι κάθετος στους κατακόρυφους αγωγούς και τα άκρα του Α, Γ είναι σε επαφή με αυτούς. Οι τριβές μεταξύ του αγωγού ΑΓ και των κατακόρυφων αγωγών θεωρούνται αμελητέες. Ο αγωγός ΑΓ βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η φορά της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει στερεωθεί απ’ το κέντρο του στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Όταν η ένταση του μαγνητικού πεδίου \[\vec{Β}_1\] αρχίζει να μεταβάλλει το μέτρο της με σταθερό ρυθμό \[\left| \frac{ΔΒ_1}{Δt} \right|=λ\] χωρίς να μεταβάλλεται η φορά της, ο αγωγός ΑΓ ισορροπεί και το ελατήριο είναι συσπειρωμένο κατά \[Δ\ell\]. Ο αγωγός ΑΓ έχει αντίσταση \[R_1=NR\], μήκος \[\ell=2α\] και μάζα \[m\] ενώ το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].
A) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[B_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε να γνωρίζουμε αν αυξάνεται ή μειώνεται.

Β) Το μέτρο \[λ\] του ρυθμού μεταβολής της έντασης \[B_1\]  είναι:

α) \[λ=\frac{mgR}{α^3 πΒ_2 }\],                      
β) \[λ=\frac{  (mg+kΔ\ell) R }{Nα^3 πB_2 }\],                    
γ) \[λ=\frac{(mg+kΔ\ell)R}{α^3 πB_2 }\].

23. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο:
24. Στο παρακάτω σχήμα στο εσωτερικό του σωληνοειδούς Σ υπάρχει σιδηρομαγνητικό υλικό που σ’ ένα σημείο έχουμε τοποθετήσει ελαφρύ αγώγιμο δακτύλιο Δ. Όταν κλείσουμε το διακόπτη δ, τότε ο δακτύλιος:
25. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης έχει αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Αν \[i\] η στιγμιαία ένταση του ρεύματος που διαρρέει το κύκλωμα για μια χρονική στιγμή \[t≥0\], το μέτρο του ρυθμού μεταβολής της έντασης του ρεύματος στο κύκλωμα την ίδια χρονική στιγμή \[t\] δίνεται απ’ τη σχέση.
26. Η λεπτή μεταλλική ομογενής και ισοπαχής ράβδος ΟΑ μήκους \[\ell \] και αντίστασης \[R\] στρέφεται χωρίς τριβές με σταθερή γωνιακή ταχύτητα \[ω\] γύρω από άξονα που περνά απ’ το κέντρο της Ο και είναι κάθετος σ’ αυτήν. Η ράβδος βρίσκεται συνεχώς σε επαφή στο σημείο της Γ με \[ΟΓ = \frac{ \ell }{ 4 }\] με κυκλικό αγωγό ακτίνας l/4 αμελητέας αντίστασης που έχει κέντρο το άκρο Ο της ράβδου και το επίπεδό της ταυτίζεται με τον άξονα περιστροφής. Το σημείο Ο της ράβδου γεφυρώνεται με το σημείο Κ της περιφέρειάς του κυκλικού αγωγού με αντιστάτη αντίσταση \[R_1 = \frac{11R }{ 4 }\]. Η ράβδος βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου Β που οι δυναμικές γραμμές της είναι κάθετες στο επίπεδο περιστροφής της. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Ο αγωγός ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και αντίσταση \[R\], κινείται με ταχύτητα μέτρου \[υ_0\] διατηρώντας συνεχώς τα άκρα του σε επαφή με τους δύο παράλληλους αγωγούς \[Αx_1\] και \[Γx_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Την \[t=0\] ασκώ στον αγωγό ΚΛ σταθερή δύναμη μέτρου \[F\] ομόρροπη της \[υ_0\] και σε λίγο αυτός αποκτά οριακή ταχύτητα μέτρου \[υ_{ορ}\]. Αν για τα μέτρα των ταχυτήτων ισχύει \[υ_{ορ}<υ_0\], ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
28. Δύο όμοιοι αντιστάτες συνδέονται παράλληλα και στα άκρα τους εφαρμόζεται συνεχώς σταθερή τάση \[V_Σ\]. Συνδέουμε τους δύο αντιστάτες σε σειρά και στα άκρα του συστήματός τους εφαρμόζουμε εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Η συνολική θερμότητα και στις δύο περιπτώσεις είναι ίδια. Για την ενεργό τιμή της εναλλασσόμενης τάσης ισχύει:
29. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Ο ρυθμός εκτέλεσης έργου της δύναμης Laplace (η ισχύς της) είναι:
30. Ραβδόμορφος μαγνήτης με τον άξονά του κατακόρυφο που διέρχεται απ’ το κέντρο του μεταλλικού δακτυλίου που κρατείται ακίνητος, αφήνεται να πέσει στο κενό. Ποια από τις παρακάτω προτάσεις είναι σωστή; Η μείωση της βαρυτικής δυναμικής ενέργειας του μαγνήτη μετατρέπεται:

    +30

    CONTACT US
    CALL US