MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ομογενές και ισοπαχές σύρμα διαρρέεται από συνεχές ρεύμα \[Ι_Σ\] και σε χρόνο \[Δt\] εκλύει θερμότητα \[Q_1\]. Δεύτερο ομογενές και ισοπαχές σύρμα είναι φτιαγμένο απ’ το ίδιο υλικό με το πρώτο αλλά έχει διπλάσιο μήκος και υποδιπλάσιο εμβαδόν διατομής απ’ αυτό. Το δεύτερο σύρμα διαρρέεται από εναλλασσόμενο ρεύμα της μορφής \[i=I\, ημωt\] και στον ίδιο χρόνο εκλύει θερμότητα \[Q_2=2Q_1\]. Για την ενεργό τιμή \[Ι_{εν}\] του εναλλασσόμενου ρεύματος ισχύει
2. Στο παρακάτω σχήμα αφήνουμε τον ραβδόμορφο μαγνήτη να πέσει κατακόρυφα κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του που ισορροπεί πάνω απ’ το κέντρο του δακτυλίου που κρατείται ακίνητος. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=2\, mH\] διαρρέεται από ρεύμα μεταβλητής έντασης όπως απεικονίζεται στο σχήμα. Το πηνίο αποτελείται από \[1000\] σπείρες. Ο ρυθμός μεταβολής της ροής που διέρχεται από την κάθε σπείρα του πηνίου είναι
4. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή και είναι κάθετος με τους λείους κατακόρυφους παράλληλους ευθύγραμμους \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των τριών αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που δημιουργούν οι τρεις αγωγοί. Την \[t=0\] δίνουμε μια αρχική ταχύτητα \[υ_0\] κατακόρυφη προς τα πάνω και ο αγωγός αρχίζει να ανέρχεται κατακόρυφα και τα άκρα του διατηρούνται σε επαφή με τους κατακόρυφους αγωγούς. Τη χρονική στιγμή \[t_1\] ο αγωγός ακινητοποιείται στιγμιαία και κατόπιν αρχίζει να κατέρχεται κατακόρυφα με τον ίδιο τρόπο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
5. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Την \[t=0\] η ΗΕΔ από αυτεπαγωγή είναι:
6. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Ο λόγος \[\frac{U }{ U_1}\] είναι:
7. Στα άκρα αντιστάτη αντίστασης \[R=10\, Ω\] εφαρμόζουμε εναλλασσόμενη τάση με εξίσωση \[v=20\sqrt{2}\, ημ100πt\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Ο ευθύγραμμος αγωγός του παρακάτω σχήματος έχει μήκος \[\ell \] και αντίσταση \[R\] και μπορεί να κινείται χωρίς τριβές έχοντας στα άκρα του συνεχώς σε επαφή με τους λείους ευθύγραμμους παράλληλους λείους αγωγούς \[Αx\] και \[Γy\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το επίπεδο των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Αρχικά ο αγωγός είναι ακίνητος. Ασκούμε στο κέντρο του οριζόντια σταθερή δύναμη μέτρου \[F\] κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους αγωγούς \[Αx\] και \[Γy\] με τα άκρα του να μένουν πάντα σ’ επαφή με αυτόν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει αντίσταση \[R\], μήκος \[\ell\] και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα. Ο αγωγός κινείται με σταθερή ταχύτητα πάνω στους λείους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και αμελητέας αντίστασης που τα άκρα τους Α, Γ είναι συνδεμένα με αντιστάτη αντίστασης \[R_1=R\]. Ο αγωγός ΚΛ ακουμπά στους αγωγούς μεγάλου μήκους στα σημεία Ν, Ζ που έχουν απόσταση \[ΝΖ=\frac{ \ell } { 2 }\] ενώ τα τμήματα του αγωγού που προεξέχουν απ’ τους αγωγούς \[Αx_1\] και \[Γx_2\] έχουν ίδιο μήκος. Το σύστημα όλων των αγωγών βρίσκεται σε ομογενές κατακόρυφο μαγνητικό πεδίο έντασης μέτρου \[\vec{B}\] που περιορίζεται στο χώρο μεταξύ των αγωγών \[Ax_1\] και \[Γx_2\] και οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Το μέτρο της οριζόντιας εξωτερικής δύναμης \[F\] που πρέπει να ασκούμε στο μέσο Μ του αγωγού ΚΛ και κάθετα στη διεύθυνσή του ώστε αυτός να διατηρεί σταθερή την ταχύτητά του είναι:
10. Στο παρακάτω σχήμα τα δύο πηνία \[Π_1,\, Π_2\] έχουν κοινό άξονα και βρίσκονται σε μικρή μεταξύ τους απόσταση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
11. Το ορθογώνιο μεταλλικό πλαίσιο ΚΛΜΝ και ο ευθύγραμμος αγωγός μεγάλου μήκους βρίσκονται πάνω στο ίδιο οριζόντιο λείο και μονωτικό δάπεδο. Ο ευθύγραμμος αγωγός είναι ακλόνητος και διαρρέεται από ρεύμα έντασης \[Ι\] και φοράς όπως φαίνεται στο σχήμα. Το πλαίσιο αρχικά είναι ακίνητο. Αρχίζω να μετακινώ το πλαίσιο με οριζόντια ταχύτητα \[υ\] που είναι παράλληλη στην πλευρά του ΚΛ και έχει φορά προς τα δεξιά.

Α) Καθώς το πλαίσιο απομακρύνεται απ’ τον ευθύγραμμο αγωγό δημιουργείται στο πλαίσιο:

α) επαγωγικό ρεύμα που έχει την ωρολογιακή φορά.

β) επαγωγικό ρεύμα που έχει την αντιωρολογιακή φορά.

γ) επαγωγική ΗΕΔ αλλά όχι επαγωγικό ρεύμα.

Β) Αν το πλαίσιο είναι ακίνητο στην αρχική  του θέση και αρχίζω να αυξάνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε:

α) το πλαίσιο διαρρέεται από ρεύμα που έχει την ωρολογιακή φορά.

β) το πλαίσιο διαρρέεται από ρεύμα που έχει την αντιωρολογιακή φορά.

γ) το πλαίσιο δεν διαρρέεται από επαγωγικό ρεύμα.

Γ) Αν το πλαίσιο είναι ακίνητο στην αρχική του θέση και αρχίζω να μειώνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε το πλαίσιο:

α) θα έλκεται απ’ τον ευθύγραμμο αγωγό.

β) θα απωθείται απ’ τον ευθύγραμμο αγωγό.

γ) δεν θα δέχεται δύναμη απ’ τον ευθύγραμμο αγωγό.

12. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι αμελητέας αντίστασης και μεγάλου μήκους ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\]. Αρχικά ο διακόπτης δ είναι ανοικτός. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=R\] κινείται κατακόρυφα με σταθερή ταχύτητα \[ \vec{ υ }_1 \] με φορά προς τα πάνω χωρίς να δέχεται τριβές και παραμένει συνεχώς κάθετος στους αγωγούς \[Ay_1,\, Αy_2\] ενώ τα άκρα του παραμένουν συνεχώς σε επαφή με τους κατακόρυφους αγωγούς. Στο μέσο του αγωγού ασκείται κατακόρυφη σταθερή δύναμη \[F\] κάθετη στη διεύθυνσή του και φοράς προς τα πάνω. Οι αντιστάτες \[R_2,\, R_3\], έχουν αντιστάσεις \[ R _ 2 = R _ 3 = \frac { R } { 2 } \]. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] που οι δυναμικές γραμμές τους είναι κάθετες στο επίπεδό τους. Τη στιγμή \[t =0\] κλείνω το διακόπτη δ χωρίς να καταργήσω τη δύναμη \[F\].

Α) Αμέσως μετά τη χρονική στιγμή \[t=0\] ο αγωγός:

α) θ’ αρχίσει να επιταχύνεται.

β) θ’ αρχίσει να επιβραδύνεται.

γ) θα εκτελεί ομαλά μεταβαλλόμενη κίνηση.

Β) Κάποια στιγμή \[t_1\]  μετά την \[t=0\] ο αγωγός αποκτά οριακή ταχύτητα μέτρου \[υ_2\]  για τον οποίο ισχύει:

α) \[ υ_2= \frac{3}{4} υ_1\],                 β) \[υ_2=\frac{3υ_1}{2}\],                    γ) \[υ_2=\frac{2υ_1}{3}\].

13. Ο ραβδόμορφος μαγνήτης Μ μάζας \[m\] του παρακάτω σχήματος αφήνεται να πέσει κατακόρυφα από ύψος \[h\] απ’ το οριζόντιο έδαφος κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του ακλόνητου κυκλικού δακτυλίου Δ. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\]. Όταν ο μαγνήτης φτάνει στο ύψος \[h'=\frac{h}{3}\] απ’ το έδαφος, η θερμότητα που έχει εκλυθεί απ’ τον αντιστάτη του Δ λόγω φαινομένου Joule είναι \[Q=\frac{mgh}{6}\]. Στο ύψος \[h'\] ο μαγνήτης έχει ταχύτητα:
14. Στο παρακάτω σχήμα α το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L_1\] ενώ στο σχήμα β το πηνίο έχει συντελεστή αυτεπαγωγής \[L_2=L_1\] και αντίσταση \[R_π=2R\]. Και στα δύο σχήματα οι πηγές έχουν την ίδια ΗΕΔ \[\mathcal{E}\] και την αντίσταση \[r=R\]. Κάποια στιγμή κλείνουμε τους διακόπτες \[δ_1\, , \, δ_2\].

Όταν τα ρεύματα στα δύο κυκλώματα αποκτήσουν σταθερές εντάσεις, οι αποθηκευμένες ενέργειες των μαγνητικών πεδίων των δύο πηνίων είναι \[U_1,U_2\]  αντίστοιχα. Ο λόγος \[\frac{U_1}{U_2}\] είναι:

15. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι παράλληλα και έχουν αντιστάσεις \[R_1,\, R_2=2R_1\] αντίστοιχα. Στα κοινά άκρα τους εφαρμόζεται εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Αν \[\bar{P}_1, \bar{ P}_2\] είναι η μέση ισχύς που καταναλώνει ο κάθε αντιστάτης αντίστοιχα, τότε ποια απ’ τις παρακάτω προτάσεις είναι η σωστή;
16. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργεί ο αγωγός. Αφήνουμε τον αγωγό ΚΛ ελεύθερο να κινηθεί απ’ την ηρεμία. Αυτός αρχίζει να κατέρχεται χωρίς τα άκρα του να χάνουν την επαφή τους με τους αγωγούς \[Αy_1,\, Γy_2\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
17. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο:
18. Κλειστό συρμάτινο πλαίσιο αντίστασης \[R\] βρίσκεται εντός ομογενούς μαγνητικού πεδίου με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Η μεταβολή της αλγεβρικής τιμής της έντασης \[B\] του μαγνητικού πεδίου φαίνεται στο παρακάτω διάγραμμα. Το πλαίσιο έχει σχήμα τετραγώνου πλευράς \[α\] και αποτελείται από \[N\] όμοιες σπείρες. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
19. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].


Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:

α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],

β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],

γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],

δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].

B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\]  του ελατηρίου είναι:

α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].

β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].

γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].

δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].

20. Η μεταλλική οριζόντια ράβδος ΟΓ του παρακάτω σχήματος έχει μήκος \[\ell\] και στρέφεται σε οριζόντιο επίπεδο ως προς κατακόρυφο άξονα που διέρχεται απ’ το άκρο του Ο με σταθερή γωνιακή ταχύτητα μέτρου \[ω\]. Το σημείο Μ είναι το μέσο της ράβδου. Το τμήμα ΟΜ βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β_1=Β\] ενώ το τμήμα της ΜΛ βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B_2=2B\] που είναι ομόρροπη με την \[\vec{B}_1\] όπως φαίνεται στο σχήμα. Αν αντιστρέψω τη φορά της \[B_1\] τότε ο λόγος των μέτρων των εντάσεων των μαγνητικών πεδίων \[\frac{B_1}{B_2}\] ώστε αν συνδέσω έναν αντιστάτη στα άκρα Ο, Γ της ράβδου αυτός να μην διαρρέεται από ρεύμα είναι:
21. Στο παρακάτω σχήμα οι λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο είναι ιδανικό. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Δύο όμοιοι αντιστάτες συνδέονται παράλληλα και στα άκρα τους εφαρμόζεται συνεχώς σταθερή τάση \[V_Σ\]. Συνδέουμε τους δύο αντιστάτες σε σειρά και στα άκρα του συστήματός τους εφαρμόζουμε εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Η συνολική θερμότητα και στις δύο περιπτώσεις είναι ίδια. Για την ενεργό τιμή της εναλλασσόμενης τάσης ισχύει:
23. Το τετράγωνο πλαίσιο του παρακάτω σχήματος έχει πλευρά μήκους \[α\], αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\] και βρίσκεται ακλόνητο πάνω σε οριζόντιο δάπεδο. Το πλαίσιο βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B_1\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Τα άκρα Κ, Λ του πλαισίου συνδέονται μέσω συρμάτων αμελητέας αντίστασης με ευθύγραμμο αγωγό ΑΓ. Ο αγωγός ΑΓ βρίσκεται ακλόνητος στο ίδιο οριζόντιο δάπεδο και έχει αντίσταση \[R\]. Η ένταση \[Β_1\] την \[t=0\] αρχίζει να μεταβάλλει το μέτρο της και η απόλυτη τιμή του ρυθμού μεταβολής \[ \left| \frac{ΔB_1}{Δt } \right| \] είναι σταθερή και ίση με \[λ\]. Στη διάρκεια της μεταβολής αυτής γύρω απ’ τον αγωγό ΑΓ δημιουργείται μαγνητικό πεδίο. Σε σημείο Δ που απέχει \[r\] απ’ τον ευθύγραμμο αγωγό η ένταση του μαγνητικού πεδίου είναι σταθερή, έχει μέτρο \[Β_Δ\] και η φορά της φαίνεται στο σχήμα. Η απόσταση \[r\] είναι πολύ μικρή σε σχέση με το μήκος του αγωγού. H μαγνητική διαπερατότητα του κενού είναι \[μ_0\].
A) Η ένταση του μαγνητικού πεδίου \[B_1\]:

α) αυξάνεται,                          

β) μειώνεται,

γ) δεν μπορούμε να προβλέψουμε αν αυξάνεται ή μειώνεται.

Β) Η απόλυτη τιμή του ρυθμού μεταβολής του μέτρου της έντασης \[B_1\]  είναι:

α) \[λ=\frac{2πΒ_Δ R}{μ_0 α^2 } r\],              
β) \[ λ =\frac{2πΒ_Δ (Ν+1)R}{Nμ_0 α^2} r\],             
γ) \[λ=\frac{4πΒ_Δ (Ν+1)R}{μ_0 α^2 } r\].

24. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο πηνίο είναι \[\left| \frac{di }{ dt} \right|= \frac{E }{2L} \]. Από τη χρονική στιγμή \[t=0\] ως τη στιγμή \[t_1\], η θερμότητα που έχει εκλυθεί από όλους τους αντιστάτες του κυκλώματος είναι:
25. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
26. Στο παρακάτω σχήμα στο εσωτερικό του σωληνοειδούς Σ υπάρχει σιδηρομαγνητικό υλικό που σ’ ένα σημείο έχουμε τοποθετήσει ελαφρύ αγώγιμο δακτύλιο Δ. Όταν κλείσουμε το διακόπτη δ, τότε ο δακτύλιος:
27. Τα παρακάτω πλαίσια \[(1),\, (2)\] του παρακάτω σχήματος εισέρχονται με ταχύτητες μέτρων \[υ_1,\, υ_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο για τα οποία ισχύει \[υ_1=2υ_2\]. Τα πλαίσια έχουν πλευρές \[α_1=α\] και \[α_2=2 α\] και οι ταχύτητές τους είναι κάθετες στις δυναμικές γραμμές του πεδίου και τις πλευρές των πλαισίων που πρώτα αυτές εισέρχονται στο πεδίο. Τα πλαίσια αποτελούνται από μια σπείρα και είναι ομογενή απ’ το ίδιο ομογενές και ισοπαχές σύρμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
28. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα που η έντασή του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα.

Η ενεργός τιμή του εναλλασσόμενου αυτού ρεύματος είναι:

29. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι μεγάλου μήκους και έχουν αμελητέα αντίσταση ενώ για τις αντιστάσεις ισχύει \[R_1=R_2=R\]. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=1,5 R_1\] μάζας \[m\], μήκος \[\ell\] και μπορεί να κινείται χωρίς τριβές κατά μήκος των κατακόρυφων αγωγών. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] δίνουμε σ’ αυτόν μια κατακόρυφη ταχύτητα μέτρου \[υ_0\] με φορά προς τα πάνω. Η επιτάχυνση της βαρύτητας είναι \[g\].
A) Μετά τη στιγμή \[t_0=0\]:

α) ο αγωγός επιβραδύνεται ομαλά μέχρι να σταματήσει στιγμιαία και μετά εκτελεί ελεύθερη πτώση.

β) επιβραδύνεται μη ομαλά μέχρι να σταματήσει στιγμιαία και κατόπιν επιταχύνεται μη ομαλά μέχρι να αποκτήσει σταθερή ταχύτητα.

γ) ο αγωγός επιβραδύνεται μη ομαλά μέχρι που σταματά και εκεί ακινητοποιείται μόνιμα.

Β) Κάποια στιγμή \[t_1\]  ο αγωγός αποκτά οριακή ταχύτητα \[υ_1\]  που έχει:

α) μέτρο \[υ_1= \frac{ m g R }{ B^2  \ell^2 }\]  και φορά προς τα πάνω.

β) μέτρο \[ υ_1=\frac{mg2R}{B^2 \ell^2 }\]  και φορά προς τα κάτω.

γ) μέτρο \[υ_1=\frac{ mg5R}{ B^2 \ell^2 }\]  και φορά προς τα κάτω.

30. Στο παρακάτω σχήμα η αγώγιμη ράβδος ΟΓ έχει μήκος \[\ell \], αντίσταση \[R\] και στρέφεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] γύρω από άξονα κάθετο στο επίπεδο περιστροφής και παράλληλο στις δυναμικές γραμμές του πεδίου. Κατά την περιστροφή της ράβδου η γωνιακή ταχύτητά της είναι σταθερή και έχει μέτρο \[ω\] ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\] . Το άκρο Γ της ράβδου έχει γραμμική ταχύτητα μέτρου \[υ\], είναι συνεχώς σε επαφή με κυκλικό αγωγό αμελητέας αντίστασης που έχει κέντρο το Ο και ακτίνα \[\ell\]. Στη διάρκεια της περιστροφής της ράβδου παρατηρείται στο άκρο της Ο αρνητικός πόλος. Ο ρυθμός παραγωγής θερμότητας στη ράβδο είναι:

    +30

    CONTACT US
    CALL US