MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του. Δημιουργούμε στον κυκλικό αγωγό εγκοπή μεταξύ των σημείων Κ, Λ και πλησιάζουμε το ραβδόμορφο μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός έκλυσης θερμότητας στον αντιστάτη \[R\] γίνεται μέγιστος, η τιμή της ενέργειας του μαγνητικού πεδίου που έχει αποθηκευτεί στο πηνίο είναι \[U\]. Τη χρονική στιγμή που η ενέργεια αυτή είχε τιμή \[U' = \frac{U}{4}\], ο ρυθμός αποθήκευσης της ενέργειας αυτής είναι:
3. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] το ρεύμα στο κύκλωμα έχει ένταση ίση με:
4. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με τους λείους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργεί ο αγωγός. Αφήνουμε τον αγωγό ΚΛ ελεύθερο να κινηθεί απ’ την ηρεμία. Αυτός αρχίζει να κατέρχεται χωρίς τα άκρα του να χάνουν την επαφή τους με τους αγωγούς \[Αy_1,\, Γy_2\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
5. Τα γειτονικά σωληνοειδή του παρακάτω σχήματος \[Σ_1,\, Σ_2\] έχουν αντιστάσεις \[R_{Σ_1 }, \, R_{Σ_2}\] και αρχικά ο διακόπτης δ είναι ανοικτός ενώ οι άξονες τους ταυτίζονται. Την \[t=0\] κλείνω το διακόπτη δ. Κατά το κλείσιμο του διακόπτη στο σωληνοειδές \[Σ_2\] δημιουργείται επαγωγικό ρεύμα που η φορά πάνω στον αντιστάτη \[R\]:
6. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Η αποθηκευμένη ενέργεια του μαγνητικού πεδίου του πηνίου αμέσως πριν την \[t_0=0\] είναι:
7. Μαγνήτης Μ αφήνεται απ’ τη θέση (Ι) να πέσει πάνω απ’ το μεταλλικό κυκλικό δακτύλιο που διατηρείται ακίνητος με το επίπεδό του οριζόντιο. Η ταχύτητα του μαγνήτη έχει τη διεύθυνση του άξονά του ο οποίος διέρχεται απ’ το κέντρο του δακτυλίου. Το βάρος του μαγνήτη έχει μέτρο \[w\] και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\].
A) Στη θέση II αμέσως πριν φτάσει στο επίπεδο του δακτυλίου η δύναμη που δέχεται ο αγωγός απ’ το μαγνήτη έχει μέτρο \[0,2\, w\]. Το μέτρο της επιτάχυνσης του μαγνήτη στη θέση ΙΙ είναι:

α) \[0,8\, g\],                       β) \[1,2\, g\],                       γ) \[g\].

Β) Στη θέση ΙΙΙ λίγο μετά το πέρασμα του μαγνήτη απ’ τον δακτύλιο ο αγωγός:

α) δε διαρρέεται από επαγωγικό ρεύμα.

β) διαρρέεται από επαγωγικό ρεύμα ομόρροπο με αυτό που διαρρέεται στη θέση ΙΙ.

γ) αντίρροπο απ’ αυτό που διαρρέεται στη θέση ΙΙ.

8. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου του πηνίου είναι \[U_1\]. Ο λόγος \[\frac{U}{U_1}\] είναι:
9. Το τετράγωνο πλαίσιο του παρακάτω σχήματος έχει πλευρά μήκους \[α\], αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\] και βρίσκεται ακλόνητο πάνω σε οριζόντιο δάπεδο. Το πλαίσιο βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B_1\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Τα άκρα Κ, Λ του πλαισίου συνδέονται μέσω συρμάτων αμελητέας αντίστασης με ευθύγραμμο αγωγό ΑΓ. Ο αγωγός ΑΓ βρίσκεται ακλόνητος στο ίδιο οριζόντιο δάπεδο και έχει αντίσταση \[R\]. Η ένταση \[Β_1\] την \[t=0\] αρχίζει να μεταβάλλει το μέτρο της και η απόλυτη τιμή του ρυθμού μεταβολής \[ \left| \frac{ΔB_1}{Δt } \right| \] είναι σταθερή και ίση με \[λ\]. Στη διάρκεια της μεταβολής αυτής γύρω απ’ τον αγωγό ΑΓ δημιουργείται μαγνητικό πεδίο. Σε σημείο Δ που απέχει \[r\] απ’ τον ευθύγραμμο αγωγό η ένταση του μαγνητικού πεδίου είναι σταθερή, έχει μέτρο \[Β_Δ\] και η φορά της φαίνεται στο σχήμα. Η απόσταση \[r\] είναι πολύ μικρή σε σχέση με το μήκος του αγωγού. H μαγνητική διαπερατότητα του κενού είναι \[μ_0\].
A) Η ένταση του μαγνητικού πεδίου \[B_1\]:

α) αυξάνεται,                          

β) μειώνεται,

γ) δεν μπορούμε να προβλέψουμε αν αυξάνεται ή μειώνεται.

Β) Η απόλυτη τιμή του ρυθμού μεταβολής του μέτρου της έντασης \[B_1\]  είναι:

α) \[λ=\frac{2πΒ_Δ R}{μ_0 α^2 } r\],              
β) \[ λ =\frac{2πΒ_Δ (Ν+1)R}{Nμ_0 α^2} r\],             
γ) \[λ=\frac{4πΒ_Δ (Ν+1)R}{μ_0 α^2 } r\].

10. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Δημιουργούμε στο δακτύλιο εγκοπή μεταξύ των σημείων Κ, Λ και αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο πηνίο είναι \[\left| \frac{di }{ dt} \right|= \frac{E }{2L} \]. Από τη χρονική στιγμή \[t=0\] ως τη στιγμή \[t_1\], η θερμότητα που έχει εκλυθεί από όλους τους αντιστάτες του κυκλώματος είναι:
12. Στη διάταξη του παρακάτω σχήματος οι οριζόντιοι λείοι αγωγοί \[Αx\] και \[Γy\] είναι παράλληλοι, έχουν αμελητέα αντίσταση και τα άκρα τους Α, Γ συνδέονται με αντιστάτη \[R_1=2R\]. Ο οριζόντιος αγωγός ΚΛ είναι κάθετος στους δύο αγωγούς, έχει αντίσταση \[R\], μήκος \[\ell\] και τα άκρα του βρίσκονται σε επαφή με αυτούς. Αρχικά ο αγωγός ΚΛ είναι ακίνητος. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Την \[t=0\] δίνουμε στον αγωγό ΚΛ οριζόντια αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο αγωγούς ενώ ταυτόχρονα ασκούμε στο μέσο σταθερή δύναμη μέτρου \[F\] και κατεύθυνσης ομόρροπης της \[υ_0\].
A) Αν το μέτρο της \[υ_0\] είναι \[υ_0 > \frac{ 3FR }{ B^2 \ell^2 }\], τότε ο αγωγός ΚΛ μετά την \[t=0\]:

α) θα εκτελέσει ομαλά επιβραδυνόμενη κίνηση μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 < υ_0\].

β) θα εκτελέσει επιταχυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει σταθερή ταχύτητα μέτρου \[υ_1 > υ_0\].

γ) θα εκτελέσει επιβραδυνόμενη κίνηση (μη ομαλά) μέχρι να αποκτήσει ταχύτητα μέτρου \[ υ_1 < υ_0 \].

δ) θα εκτελέσει Ε.Ο.Κ. με ταχύτητα \[υ_0\].

B) Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\] που ο αγωγός ΚΛ  έχει σταθερή ταχύτητα \[\vec{υ}_1\], το έργο της δύναμης \[F\]:

α) έχει γίνει αύξηση της κινητικής του αγωγού.

β) είναι ίση με τη συνολική θερμότητα που εκλύεται στους αντιστάτες μέχρι τη στιγμή \[t_1\].

γ) και η μείωση της κινητικής του ενέργειας του αγωγού ΚΛ μέχρι τη στιγμή \[t_1\] μας δίνουν μαζί την θερμότητα που εκλύεται συνολικά στους αντιστάτες μέχρι τη στιγμή \[t_1\].

13. Στο παρακάτω σχήμα αφήνουμε τον ραβδόμορφο μαγνήτη να πέσει κατακόρυφα κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του που ισορροπεί πάνω απ’ το κέντρο του δακτυλίου που κρατείται ακίνητος. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
15. Το συρμάτινο πλαίσιο ΚΛΜΝ σχήματος ορθογωνίου παραλληλογράμμου του παρακάτω σχήματος αρχικά βρίσκεται έξω απ’ το ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και αρχίζει να εισέρχεται σε αυτό με σταθερή ταχύτητα \[υ\] που έχει διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου και στην πλευρά ΛΜ όπως φαίνεται στο παρακάτω σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Στη διάρκεια εισόδου του πλαισίου στο μαγνητικό πεδίο:
16. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει αντίσταση \[R\], μήκος \[\ell\] και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα. Ο αγωγός κινείται με σταθερή ταχύτητα πάνω στους λείους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και αμελητέας αντίστασης που τα άκρα τους Α, Γ είναι συνδεμένα με αντιστάτη αντίστασης \[R_1=R\]. Ο αγωγός ΚΛ ακουμπά στους αγωγούς μεγάλου μήκους στα σημεία Ν, Ζ που έχουν απόσταση \[ΝΖ=\frac{ \ell } { 2 }\] ενώ τα τμήματα του αγωγού που προεξέχουν απ’ τους αγωγούς \[Αx_1\] και \[Γx_2\] έχουν ίδιο μήκος. Το σύστημα όλων των αγωγών βρίσκεται σε ομογενές κατακόρυφο μαγνητικό πεδίο έντασης μέτρου \[\vec{B}\] που περιορίζεται στο χώρο μεταξύ των αγωγών \[Ax_1\] και \[Γx_2\] και οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Το μέτρο της οριζόντιας εξωτερικής δύναμης \[F\] που πρέπει να ασκούμε στο μέσο Μ του αγωγού ΚΛ και κάθετα στη διεύθυνσή του ώστε αυτός να διατηρεί σταθερή την ταχύτητά του είναι:
17. Ο ευθύγραμμος αγωγός του παρακάτω σχήματος έχει μήκος \[\ell \] και αντίσταση \[R\] και μπορεί να κινείται χωρίς τριβές έχοντας στα άκρα του συνεχώς σε επαφή με τους λείους ευθύγραμμους παράλληλους λείους αγωγούς \[Αx\] και \[Γy\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το επίπεδο των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Αρχικά ο αγωγός είναι ακίνητος. Ασκούμε στο κέντρο του οριζόντια σταθερή δύναμη μέτρου \[F\] κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους αγωγούς \[Αx\] και \[Γy\] με τα άκρα του να μένουν πάντα σ’ επαφή με αυτόν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Ο αγωγός ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και κατέρχεται με σταθερή ταχύτητα μέτρου \[υ\] έχοντας τα άκρα του Κ, Λ σε επαφή με τους λείους ευθύγραμμους κατακόρυφους αγωγούς \[Αy_1\] και \[Γy_2\] παραμένοντας συνεχώς κάθετος σ’ αυτούς. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο μαγνητικό πεδίο έντασης \[\vec{B}\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\]. Ο αγωγός βρίσκεται πάνω σε οριζόντιους παράλληλους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και μηδενικής αντίστασης με διεύθυνση κάθετη σ’ αυτούς. Το σύστημα των αγωγών βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο που δημιουργούν οι αγωγοί. Οι αγωγοί \[Αx_1\] και \[Γx_2\] συνδέονται με άλλους παράλληλους ρευματοφόρους αγωγούς αμελητέας αντίστασης που η μεταξύ τους απόσταση είναι \[ΝΖ=\frac{\ell}{3}\]. Ο αγωγός ΚΛ έχει αντίσταση \[R\] και αποτελείται από ομογενές και ισοπαχές σύρμα ενώ τα άκρα Α και Γ παράλληλων αγωγών συνδέονται με αντιστάτη αντίστασης \[R\]. Ο αγωγός κινείται με σταθερή ταχύτητα μέτρου \[υ\] παραμένοντας συνεχώς κάθετος σ’ όλους τους παράλληλους αγωγούς. Ο λόγος των επαγωγικών τάσεων \[V_{ΚΛ}\] στη θέση (1) (Θ1) και \[V_{NZ}\] στη θέση (2) (Θ2) είναι \[ \frac{ V_{ΚΛ} }{ V_{NZ} }\] :
20. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Την \[t=0\] η ΗΕΔ από αυτεπαγωγή είναι:
21. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο:
22. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα που η έντασή του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα.

Η ενεργός τιμή του εναλλασσόμενου αυτού ρεύματος είναι:

23. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι σε σειρά και έχουν αντιστάσεις \[R_1\] και \[R_2=4R_1\] αντίστοιχα. Στο σύστημα των δύο αντιστατών έχουμε εφαρμόσει εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Οι μέγιστες τιμές των ισχύων που καταναλώνουν οι δύο αντιστάτες είναι \[P_{1_{max} },\, P_{2_{max} } \] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι η σωστή;
24. Το τετράγωνο πλαίσιο πλευράς \[α\] του παρακάτω σχήματος, έχει \[Ν\] σπείρες, αντίσταση \[R\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το μέτρο της έντασης \[Β_1\] μεταβάλλεται με σταθερό ρυθμό που έχει μέτρο \[ \left| \frac {ΔΒ_1} {Δt} \right| = λ \] ενώ η κατεύθυνσή της μένει σταθερή. Το πλαίσιο συγκρατείται ακλόνητο με το επίπεδό του κατακόρυφο. Τα άκρα Κ, Λ του πλαισίου συνδέονται μέσω αβαρών συρμάτων αμελητέας αντίστασης με ευθύγραμμο οριζόντιο αγωγό ΑΓ αντίστασης \[R\] ο οποίος αιωρείται ακίνητος πάνω απ’ το έδαφος χωρίς να του ασκούμε καμία δύναμη στήριξης. Ολόκληρος ο ευθύγραμμος αγωγός βρίσκεται μέσα σε οριζόντιο μαγνητικό πεδίο σταθερής έντασης μέτρου \[Β_2\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει μάζα \[m_1\], μήκος \[\ell\] και το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].

Α) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[Β_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε με τα δεδομένα της άσκησης να βρούμε αν αυξάνεται ή μειώνεται.

Β) Στην διάρκεια της ισορροπίας του αγωγού η σταθερά \[λ\] είναι:

α) \[\frac{mgR}{B_1 Nα^2 \ell  }\]     β) \[\frac{mgR}{B_2 Nα^2 \ell}\],     γ) \[\frac{2mgR}{B_2 Nα^2 \ell}\].

25. Τα παρακάτω πλαίσια \[(1),\, (2)\] του παρακάτω σχήματος εισέρχονται με ταχύτητες μέτρων \[υ_1,\, υ_2\] μέσα στο ίδιο ομογενές μαγνητικό πεδίο για τα οποία ισχύει \[υ_1=2υ_2\]. Τα πλαίσια έχουν πλευρές \[α_1=α\] και \[α_2=2 α\] και οι ταχύτητές τους είναι κάθετες στις δυναμικές γραμμές του πεδίου και τις πλευρές των πλαισίων που πρώτα αυτές εισέρχονται στο πεδίο. Τα πλαίσια αποτελούνται από μια σπείρα και είναι ομογενή απ’ το ίδιο ομογενές και ισοπαχές σύρμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
26. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του όπως φαίνεται στο παρακάτω σχήμα. Πλησιάζουμε τον μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
27. Στα άκρα αντιστάτη αντίστασης \[R=10\, Ω\] εφαρμόζουμε εναλλασσόμενη τάση με εξίσωση \[v=20\sqrt{2}\, ημ100πt\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Στο παρακάτω σχήμα στο εσωτερικό του σωληνοειδούς Σ υπάρχει σιδηρομαγνητικό υλικό που σ’ ένα σημείο έχουμε τοποθετήσει ελαφρύ αγώγιμο δακτύλιο Δ. Όταν κλείσουμε το διακόπτη δ, τότε ο δακτύλιος:
29. Κλειστό συρμάτινο πλαίσιο αντίστασης \[R\] βρίσκεται εντός ομογενούς μαγνητικού πεδίου με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Η μεταβολή της αλγεβρικής τιμής της έντασης \[B\] του μαγνητικού πεδίου φαίνεται στο παρακάτω διάγραμμα. Το πλαίσιο έχει σχήμα τετραγώνου πλευράς \[α\] και αποτελείται από \[N\] όμοιες σπείρες. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
30. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Το μέτρο της δύναμης Laplace που δέχεται ο αγωγός ΟΓ απ’ το μαγνητικό πεδίο έχει μέτρο:

    +30

    CONTACT US
    CALL US