MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ένας λαμπτήρας πυρακτώσεως λειτουργεί με εναλλασσόμενη τάση και αναγράφει στοιχεία κανονικής λειτουργίας \[ 60 \, V / 30\, W\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Η ράβδος ΟΑ στο παρακάτω σχήμα έχει μήκος \[ \ell \], αντίσταση \[R\] και στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που περνά απ’ το κέντρο της Ο. Το άκρο της Ο ολισθαίνει σε κυκλικό οριζόντιο αγωγό κέντρου Ο ακτίνας \[\ell \] και αμελητέας αντίστασης. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B \]. Το άκρο Ο της ράβδου γεφυρώνεται με ένα σημείο Κ της περιφέρειας του κυκλικού αγωγού με αντιστάτη \[R_1\] αντίστασης \[R\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου, ασκούμε στο άκρο της Α οριζόντια δύναμη συνεχώς κάθετη σ’ αυτήν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Στο παρακάτω σχήμα α το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L_1\] ενώ στο σχήμα β το πηνίο έχει συντελεστή αυτεπαγωγής \[L_2=L_1\] και αντίσταση \[R_π=2R\]. Και στα δύο σχήματα οι πηγές έχουν την ίδια ΗΕΔ \[\mathcal{E}\] και την αντίσταση \[r=R\]. Κάποια στιγμή κλείνουμε τους διακόπτες \[δ_1\, , \, δ_2\].

Όταν τα ρεύματα στα δύο κυκλώματα αποκτήσουν σταθερές εντάσεις, οι αποθηκευμένες ενέργειες των μαγνητικών πεδίων των δύο πηνίων είναι \[U_1,U_2\]  αντίστοιχα. Ο λόγος \[\frac{U_1}{U_2}\] είναι:

4. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του συνεχώς σε επαφή με τους παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] μεγάλου μήκους που έχουν αμελητέα αντίσταση. Ο αγωγός έχει αρχική ταχύτητα \[υ_0\] που είναι παράλληλη στους αγωγούς \[Αx_1,\, Γx_2\]. Την \[t=0\] ασκούμε στο κέντρο του αγωγού ΚΛ δύναμη \[F\] ίδιας διεύθυνσης με τη \[υ_0\] και τέτοια ώστε ο αγωγός να αρχίσει να επιβραδύνεται ομαλά μέχρι να σταματήσει. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό, ο αντιστάτης έχει αντίσταση \[R\] και η πηγή ΗΕΔ \[E\] και αντίσταση \[r=2R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Όταν ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ίσος με μηδέν, το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U\]. Τη χρονική στιγμή \[t_1\] που το μέτρο του ρυθμού μεταβολής της έντασης γίνει ίσος με το μισό της μέγιστης τιμής του, τότε το πηνίο έχει αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_1\]. Το μέγιστο μέτρο της έντασης του ρεύματος είναι:
6. Δύο αντιστάτες \[(1),\, (2)\] είναι συνδεδεμένοι σε σειρά και έχουν αντιστάσεις \[R_1\] και \[R_2=4R_1\] αντίστοιχα. Στο σύστημα των δύο αντιστατών έχουμε εφαρμόσει εναλλασσόμενη τάση της μορφής \[v=V\, ημωt\]. Οι μέγιστες τιμές των ισχύων που καταναλώνουν οι δύο αντιστάτες είναι \[P_{1_{max} },\, P_{2_{max} } \] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι η σωστή;
7. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] το ρεύμα στο κύκλωμα έχει ένταση ίση με:
8. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του όπως φαίνεται στο παρακάτω σχήμα. Πλησιάζουμε τον μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
9. Στο παρακάτω σχήμα τα δύο πηνία \[Π_1,\, Π_2\] έχουν κοινό άξονα και βρίσκονται σε μικρή μεταξύ τους απόσταση. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
10. Ένας κυκλικός αγωγός δένεται σε οροφή μέσω μονωτικού νήματος ώστε το επίπεδό του να διατηρείται κατακόρυφο. Ένας οριζόντιος ραβδόμορφος μαγνήτης έχει άξονα που διέρχεται απ’ το κέντρο του κυκλικού αγωγού και είναι κάθετος στο επίπεδό του. Δημιουργούμε στον κυκλικό αγωγό εγκοπή μεταξύ των σημείων Κ, Λ και πλησιάζουμε το ραβδόμορφο μαγνήτη προς τον αγωγό κατά τη διεύθυνση του άξονα του μαγνήτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Το σωληνοειδές Σ του παρακάτω σχήματος περιέχει στο εσωτερικό του πυρήνα από μαλακό σίδηρο και ο άξονάς του ταυτίζεται με τον άξονα του ραβδόμορφου μαγνήτη. Το σωληνοειδές διαρρέεται από επαγωγικό ρεύμα που έχει τη φορά του σχήματος. Να επιλέξετε τη σωστή απάντηση.
12. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει τα άκρα του σε επαφή με δύο παράλληλους ευθύγραμμους οριζόντιους αγωγούς \[Αx_1\] και \[Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Την \[t=0\] ο αγωγός έχει αρχική ταχύτητα μέτρου \[υ_0\] παράλληλη στους δύο άλλους αγωγούς. Τη στιγμή αυτή ασκώ στον αγωγό σταθερή δύναμη \[F\] ομόρροπη της ταχύτητας. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[Β\] που οι δυναμικές γραμμές είναι κάθετες στο επίπεδο των αγωγών. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
13. Το σωληνοειδές Σ του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], εμβαδόν σπείρας \[S\], αριθμό σπειρών \[N\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που οι δυναμικές γραμμές είναι παράλληλες με τον άξονα του σωληνοειδούς. Τα άκρα του σωληνοειδούς συνδέονται μέσω κατακόρυφων συρμάτων αμελητέας αντίστασης με μεταλλικό ευθύγραμμο οριζόντιο αγωγό ΖΛ που έχει μήκος \[\ell\], αντίσταση \[R\] και βάρος μέτρου \[w\]. Ο αγωγός ΖΛ είναι προσδεμένος στο κέντρο του με ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\]. Ο αγωγός ΖΛ βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που οι δυναμικές του γραμμές είναι κάθετες στον αγωγό αυτό. Αν το μέτρο της έντασης του \[B_1\] μεταβάλλεται σύμφωνα με τη σχέση \[Β_1=3+2t\] (S.I.) χωρίς να μεταβάλλεται η φορά της, τότε ο αγωγός ΖΛ ισορροπεί οριζόντιος και το ελατήριο έχει το φυσικό του μήκος.


Α) Οι δυναμικές γραμμές του μαγνητικού πεδίου  έντασης \[B_2\]  έχουν φορά:

α) απ’ τον αναγνώστη προς τη σελίδα.

β) απ’ τη σελίδα προς τον αναγνώστη.

γ) μη προσδιορίσιμη με τα δεδομένα της άσκησης.

Β) Το μέτρο της έντασης \[Β_2\]  με όλα τα μεγέθη μετρημένα στο S.I. είναι:

α) \[Β_2=\frac{ w (R_Σ+R) }{ 2 N S  \ell }\],                  
β) \[Β_2=\frac{w (R_Σ+R) }{ 3NS \ell }\],    
γ) \[Β_2=\frac{ w (R_Σ+R) }{ N S \ell } \].

14. Ο ραβδόμορφος μαγνήτης Μ μάζας \[m\] του παρακάτω σχήματος αφήνεται να πέσει κατακόρυφα από ύψος \[h\] απ’ το οριζόντιο έδαφος κατά τη διεύθυνση του άξονά του που περνά απ’ το κέντρο του ακλόνητου κυκλικού δακτυλίου Δ. Οι αντιστάσεις του αέρα θεωρούνται αμελητέες και η επιτάχυνση της βαρύτητας έχει μέτρο \[g\]. Όταν ο μαγνήτης φτάνει στο ύψος \[h'=\frac{h}{3}\] απ’ το έδαφος, η θερμότητα που έχει εκλυθεί απ’ τον αντιστάτη του Δ λόγω φαινομένου Joule είναι \[Q=\frac{mgh}{6}\]. Στο ύψος \[h'\] ο μαγνήτης έχει ταχύτητα:
15. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Ο ρυθμός εκτέλεσης έργου της δύναμης Laplace (η ισχύς της) είναι:
16. Ο ευθύγραμμος αγωγός ΚΛ του παρακάτω σχήματος έχει αντίσταση \[R\], μήκος \[\ell\] και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα. Ο αγωγός κινείται με σταθερή ταχύτητα πάνω στους λείους αγωγούς \[Αx_1\] και \[Γx_2\] μεγάλου μήκους και αμελητέας αντίστασης που τα άκρα τους Α, Γ είναι συνδεμένα με αντιστάτη αντίστασης \[R_1=R\]. Ο αγωγός ΚΛ ακουμπά στους αγωγούς μεγάλου μήκους στα σημεία Ν, Ζ που έχουν απόσταση \[ΝΖ=\frac{ \ell } { 2 }\] ενώ τα τμήματα του αγωγού που προεξέχουν απ’ τους αγωγούς \[Αx_1\] και \[Γx_2\] έχουν ίδιο μήκος. Το σύστημα όλων των αγωγών βρίσκεται σε ομογενές κατακόρυφο μαγνητικό πεδίο έντασης μέτρου \[\vec{B}\] που περιορίζεται στο χώρο μεταξύ των αγωγών \[Ax_1\] και \[Γx_2\] και οι δυναμικές του γραμμές είναι κάθετες στο επίπεδο που σχηματίζουν οι αγωγοί. Το μέτρο της οριζόντιας εξωτερικής δύναμης \[F\] που πρέπει να ασκούμε στο μέσο Μ του αγωγού ΚΛ και κάθετα στη διεύθυνσή του ώστε αυτός να διατηρεί σταθερή την ταχύτητά του είναι:
17. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Το μέτρο της δύναμης Laplace που δέχεται ο αγωγός ΟΓ απ’ το μαγνητικό πεδίο έχει μέτρο:
18. Το κυκλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ακλόνητο με το επίπεδό του κατακόρυφο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το πλαίσιο αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\]. Το πλαίσιο συνδέεται μέσω αβαρών συρμάτων αμελητέας αντίστασης με δύο κατακόρυφους αγωγούς \[y_1 y_1'\] και \[y_2 y_2'\] που και αυτοί έχουν αμελητέα αντίσταση. Ευθύγραμμος αγωγός ΑΓ είναι κάθετος στους κατακόρυφους αγωγούς και τα άκρα του Α, Γ είναι σε επαφή με αυτούς. Οι τριβές μεταξύ του αγωγού ΑΓ και των κατακόρυφων αγωγών θεωρούνται αμελητέες. Ο αγωγός ΑΓ βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η φορά της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει στερεωθεί απ’ το κέντρο του στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Όταν η ένταση του μαγνητικού πεδίου \[\vec{Β}_1\] αρχίζει να μεταβάλλει το μέτρο της με σταθερό ρυθμό \[\left| \frac{ΔΒ_1}{Δt} \right|=λ\] χωρίς να μεταβάλλεται η φορά της, ο αγωγός ΑΓ ισορροπεί και το ελατήριο είναι συσπειρωμένο κατά \[Δ\ell\]. Ο αγωγός ΑΓ έχει αντίσταση \[R_1=NR\], μήκος \[\ell=2α\] και μάζα \[m\] ενώ το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].
A) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[B_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε να γνωρίζουμε αν αυξάνεται ή μειώνεται.

Β) Το μέτρο \[λ\] του ρυθμού μεταβολής της έντασης \[B_1\]  είναι:

α) \[λ=\frac{mgR}{α^3 πΒ_2 }\],                      
β) \[λ=\frac{  (mg+kΔ\ell) R }{Nα^3 πB_2 }\],                    
γ) \[λ=\frac{(mg+kΔ\ell)R}{α^3 πB_2 }\].

19. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].


Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:

α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],

β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],

γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],

δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].

B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\]  του ελατηρίου είναι:

α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].

β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].

γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].

δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].

20. Ο κυκλικός αγωγός του παρακάτω σχήματος είναι μονωμένος εξωτερικά, στηρίζεται πάνω σε ευθύγραμμο οριζόντιο αγωγό μεγάλου μήκους έτσι ώστε μια διάμετρός του να ταυτίζεται με τη διεύθυνση του ευθύγραμμου αγωγού. Ο ευθύγραμμος αγωγός διαρρέεται από ρεύμα έντασης \[I\] που η φορά του φαίνεται στο παρακάτω σχήμα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Όταν μεταβάλλεται η ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό χωρίς ν’ αλλάξουμε τη φορά του, τότε στη διάρκεια αυτή ο κυκλικός αγωγός:
21. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, , \, Λ_2\] είναι όμοιοι και το πηνίο έχει αντίσταση \[R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι φωτεινότητες των δύο λαμπτήρων είναι σταθερές. Την \[t=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Στο παρακάτω κύκλωμα το πηνίο έχει αντίσταση \[R_π\], ο αντιστάτης αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r\]. Ισχύει ότι \[r=R_π=R\]. Την \[t_0=0\] κλείνουμε το διακόπτη \[δ\] και η ένταση του ρεύματος αρχίζει να αυξάνεται μέχρι να πάρει τη σταθερή τιμή \[I\]. Τη στιγμή που το ρεύμα έχει ένταση \[\frac{I}{2}\], τότε η ΗΕΔ από αυτεπαγωγή στο πηνίο:
23. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Το μέτρο της δύναμης \[\vec{F}\] είναι:
24. Η ένταση του ρεύματος που διαρρέει ένα πηνίο αυξάνεται με σταθερό ρυθμό. Κάποια στιγμή που η ένταση του ρεύματος που το διαρρέει είναι \[i_1\] ο ρυθμός αποθήκευσης ενέργειας στο μαγνητικό πεδίο του πηνίου είναι \[λ_1\]. Την στιγμή που η ένταση του ρεύματος που διαρρέει το πηνίο γίνεται \[2i_1\] ο ρυθμός αποθήκευσης ενέργειας μαγνητικού πεδίου στο πηνίο είναι:
25. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
26. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=0,6\, mH\] αποτελείται από \[300\] σπείρες. Το πηνίο διαρρέεται από ρεύμα σταθερής έντασης με τιμή ίση με \[2\, Α\]. Η μαγνητική ροή που διέρχεται από την κάθε σπείρα του πηνίου είναι
27. Στο παρακάτω σχήμα το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=2R\]. Ο αντιστάτης \[R\] έχει αντίσταση \[R\], η πηγή έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=R\]. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Το ρεύμα σταθεροποιείται σε μέγιστη τιμή έντασης \[Ι\]. Τη χρονική στιγμή \[t_1\] η ένταση που διαρρέει το πηνίο είναι \[I_1 = \frac{I}{4}\]. Απ’ τη στιγμή που η ένταση στο κύκλωμα σταθεροποιείται, ο ρυθμός κατανάλωσης της ηλεκτρικής ενέργειας στο πηνίο είναι:
28. Ο αγωγός ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και αντίσταση \[R\], κινείται με ταχύτητα μέτρου \[υ_0\] διατηρώντας συνεχώς τα άκρα του σε επαφή με τους δύο παράλληλους αγωγούς \[Αx_1\] και \[Γx_2\] που είναι μεγάλου μήκους και αμελητέας αντίστασης. Την \[t=0\] ασκώ στον αγωγό ΚΛ σταθερή δύναμη μέτρου \[F\] ομόρροπη της \[υ_0\] και σε λίγο αυτός αποκτά οριακή ταχύτητα μέτρου \[υ_{ορ}\]. Αν για τα μέτρα των ταχυτήτων ισχύει \[υ_{ορ}<υ_0\], ποια απ’ τις παρακάτω σχέσεις είναι σωστή;
29. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης \[R_1\] έχει αντίσταση \[3R\] και η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\]. Ο μεταγωγός αρχικά είναι στη θέση Α και το πηνίο έχει μέγιστη αποθηκευμένη ενέργεια μαγνητικού πεδίου \[U_{max}\]. Τη χρονική στιγμή \[t_0=0\] μεταφέρουμε το μεταγωγό στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου που είναι αποθηκευμένη στο πηνίο είναι \[U_1 = \frac{U_{max} }{4}\]. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της αποθηκευμένης ενέργειας στο πηνίο είναι:
30. Στο παρακάτω σχήμα οι κατακόρυφοι αγωγοί \[Αy_1\] και \[Γy_2\] είναι αμελητέας αντίστασης και μεγάλου μήκους ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[R_1=R\]. Αρχικά ο διακόπτης δ είναι ανοικτός. Ο αγωγός ΚΛ έχει αντίσταση \[R_{ΚΛ}=R\] κινείται κατακόρυφα με σταθερή ταχύτητα \[ \vec{ υ }_1 \] με φορά προς τα πάνω χωρίς να δέχεται τριβές και παραμένει συνεχώς κάθετος στους αγωγούς \[Ay_1,\, Αy_2\] ενώ τα άκρα του παραμένουν συνεχώς σε επαφή με τους κατακόρυφους αγωγούς. Στο μέσο του αγωγού ασκείται κατακόρυφη σταθερή δύναμη \[F\] κάθετη στη διεύθυνσή του και φοράς προς τα πάνω. Οι αντιστάτες \[R_2,\, R_3\], έχουν αντιστάσεις \[ R _ 2 = R _ 3 = \frac { R } { 2 } \]. Το σύστημα των αγωγών βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B\] που οι δυναμικές γραμμές τους είναι κάθετες στο επίπεδό τους. Τη στιγμή \[t =0\] κλείνω το διακόπτη δ χωρίς να καταργήσω τη δύναμη \[F\].

Α) Αμέσως μετά τη χρονική στιγμή \[t=0\] ο αγωγός:

α) θ’ αρχίσει να επιταχύνεται.

β) θ’ αρχίσει να επιβραδύνεται.

γ) θα εκτελεί ομαλά μεταβαλλόμενη κίνηση.

Β) Κάποια στιγμή \[t_1\]  μετά την \[t=0\] ο αγωγός αποκτά οριακή ταχύτητα μέτρου \[υ_2\]  για τον οποίο ισχύει:

α) \[ υ_2= \frac{3}{4} υ_1\],                 β) \[υ_2=\frac{3υ_1}{2}\],                    γ) \[υ_2=\frac{2υ_1}{3}\].


    +30

    CONTACT US
    CALL US