MENU

Τεστ στην Ηλεκτρομαγνητική Επαγωγή (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ο δίσκος του Faraday ακτίνας \[r\] στο παρακάτω σχήμα στρέφεται με σταθερή γωνιακή ταχύτητα γύρω από άξονα \[xx'\] που περνά απ’ το κέντρο του και είναι κάθετο στο επίπεδό του. Δύο ολισθαίνουσες επαφές (ψήκτρες) έχουν τοποθετηθεί όπως φαίνεται στο σχήμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Δημιουργούμε στο δακτύλιο εγκοπή μεταξύ των σημείων Κ, Λ και αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Ένα ακλόνητο πηνίο και ένας ραβδόμορφος μαγνήτης του παρακάτω σχήματος έχουν κοινό άξονα. Αρχίζουμε να κινούμε το μαγνήτη στη διεύθυνσή του κοινού τους άξονα με σταθερή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Είτε ο μαγνήτης πλησιάζει, είτε απομακρύνεται απ’ το πηνίο:
4. Κλειστό συρμάτινο πλαίσιο αντίστασης \[R\] βρίσκεται εντός ομογενούς μαγνητικού πεδίου με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Η μεταβολή της αλγεβρικής τιμής της έντασης \[B\] του μαγνητικού πεδίου φαίνεται στο παρακάτω διάγραμμα. Το πλαίσιο έχει σχήμα τετραγώνου πλευράς \[α\] και αποτελείται από \[N\] όμοιες σπείρες. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
5. Ο ευθύγραμμος οριζόντιος αγωγός ΑΓ έχει αμελητέο βάρος και είναι φτιαγμένος από ομογενές και ισοπαχές σύρμα ειδικής αντίστασης ρ, εμβαδό διατομής \[S\] και μήκος \[\ell\]. Ο αγωγός ΑΓ είναι σε επαφή με λείους κατακόρυφους αγωγούς \[yy'\] και \[y_1 y_1'\] αμελητέας αντίστασης που τα άκρα τους συνδέονται με πλαίσιο τετραγωνικού σχήματος πλευράς \[α\] και \[Ν\] σπειρών που η συνολική του αντίσταση είναι ίση με την αντίσταση του ευθύγραμμου αγωγού ΑΓ. Ο αγωγός ΑΓ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ είναι προσδεμένος στο κέντρο από το άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Το πλαίσιο βρίσκεται μέσα σε άλλο ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] και διατηρείται ακλόνητος με το επίπεδό του κατακόρυφο. Αυξάνουμε με σταθερό ρυθμό \[ \frac{ΔΒ_1} {Δt} = λ\] το μέτρο της έντασης \[Β_1\] χωρίς να μεταβάλλουμε τη φορά της και παρατηρούμε ότι ο αγωγός ΑΓ ισορροπεί με το ελατήριο να είναι παραμορφωμένο κατά \[Δ\ell_1\].


Α) Στη διάρκεια της ισορροπίας του αγωγού ΑΓ:

α) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS}{2ρk}\],

β) το ελατήριο είναι επιμηκυμένο κατά \[Δ \ell_1=N \frac{ Β_2 α^2 λS }{ 2ρk } \],

γ) το ελατήριο είναι επιμηκυμένο κατά \[ Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \],

δ) το ελατήριο είναι συσπειρωμένο κατά \[Δ \ell_1=N \frac{ B_2 α^2 λS }{ ρk } \].

B) Αντιστρέφουμε τη φορά της \[\vec{B}_1\] την \[t=0\] που αυτή έχει μέτρο \[B_0\] και αρχίζουμε να μεταβάλλουμε το μέτρο της σύμφωνα με τη σχέση \[B=B_0+2λt\] και τότε ο αγωγός ΑΓ ισορροπεί σε μια νέα θέση που το ελατήριο είναι παραμορφωμένο κατά \[Δ\ell_2\]. Η παραμόρφωση \[Δ \ell_2\]  του ελατηρίου είναι:

α) επιμήκυνση και ισχύει \[Δ \ell_2=\frac{ Δ \ell_1}{2}\].

β) συσπείρωση και ισχύει \[Δ \ell_2=\frac{Δ\ell_1}{2} \].

γ) συσπείρωση και ισχύει \[ Δ \ell_2=2Δ \ell_1\].

δ) επιμήκυνση και ισχύει \[Δ \ell_2=2Δ \ell_1\].

6. Το κυκλικό πλαίσιο του παρακάτω σχήματος βρίσκεται ακλόνητο με το επίπεδό του κατακόρυφο μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που η κατεύθυνσή της φαίνεται στο παρακάτω σχήμα. Το πλαίσιο αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\]. Το πλαίσιο συνδέεται μέσω αβαρών συρμάτων αμελητέας αντίστασης με δύο κατακόρυφους αγωγούς \[y_1 y_1'\] και \[y_2 y_2'\] που και αυτοί έχουν αμελητέα αντίσταση. Ευθύγραμμος αγωγός ΑΓ είναι κάθετος στους κατακόρυφους αγωγούς και τα άκρα του Α, Γ είναι σε επαφή με αυτούς. Οι τριβές μεταξύ του αγωγού ΑΓ και των κατακόρυφων αγωγών θεωρούνται αμελητέες. Ο αγωγός ΑΓ βρίσκεται σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που η φορά της φαίνεται στο παρακάτω σχήμα. Ο αγωγός ΑΓ έχει στερεωθεί απ’ το κέντρο του στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι στερεωμένο σε οροφή. Όταν η ένταση του μαγνητικού πεδίου \[\vec{Β}_1\] αρχίζει να μεταβάλλει το μέτρο της με σταθερό ρυθμό \[\left| \frac{ΔΒ_1}{Δt} \right|=λ\] χωρίς να μεταβάλλεται η φορά της, ο αγωγός ΑΓ ισορροπεί και το ελατήριο είναι συσπειρωμένο κατά \[Δ\ell\]. Ο αγωγός ΑΓ έχει αντίσταση \[R_1=NR\], μήκος \[\ell=2α\] και μάζα \[m\] ενώ το μέτρο της επιτάχυνσης της βαρύτητας είναι \[g\].
A) Στη διάρκεια της ισορροπίας του αγωγού το μέτρο της έντασης \[B_1\]:

α) αυξάνεται,              

β) μειώνεται,

γ) δεν μπορούμε να γνωρίζουμε αν αυξάνεται ή μειώνεται.

Β) Το μέτρο \[λ\] του ρυθμού μεταβολής της έντασης \[B_1\]  είναι:

α) \[λ=\frac{mgR}{α^3 πΒ_2 }\],                      
β) \[λ=\frac{  (mg+kΔ\ell) R }{Nα^3 πB_2 }\],                    
γ) \[λ=\frac{(mg+kΔ\ell)R}{α^3 πB_2 }\].

7. Το τετράγωνο πλαίσιο του παρακάτω σχήματος έχει πλευρά μήκους \[α\], αποτελείται από \[N\] σπείρες που η καθεμιά έχει αντίσταση \[R\] και βρίσκεται ακλόνητο πάνω σε οριζόντιο δάπεδο. Το πλαίσιο βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B_1\] που η κατεύθυνσή του φαίνεται στο παρακάτω σχήμα. Τα άκρα Κ, Λ του πλαισίου συνδέονται μέσω συρμάτων αμελητέας αντίστασης με ευθύγραμμο αγωγό ΑΓ. Ο αγωγός ΑΓ βρίσκεται ακλόνητος στο ίδιο οριζόντιο δάπεδο και έχει αντίσταση \[R\]. Η ένταση \[Β_1\] την \[t=0\] αρχίζει να μεταβάλλει το μέτρο της και η απόλυτη τιμή του ρυθμού μεταβολής \[ \left| \frac{ΔB_1}{Δt } \right| \] είναι σταθερή και ίση με \[λ\]. Στη διάρκεια της μεταβολής αυτής γύρω απ’ τον αγωγό ΑΓ δημιουργείται μαγνητικό πεδίο. Σε σημείο Δ που απέχει \[r\] απ’ τον ευθύγραμμο αγωγό η ένταση του μαγνητικού πεδίου είναι σταθερή, έχει μέτρο \[Β_Δ\] και η φορά της φαίνεται στο σχήμα. Η απόσταση \[r\] είναι πολύ μικρή σε σχέση με το μήκος του αγωγού. H μαγνητική διαπερατότητα του κενού είναι \[μ_0\].
A) Η ένταση του μαγνητικού πεδίου \[B_1\]:

α) αυξάνεται,                          

β) μειώνεται,

γ) δεν μπορούμε να προβλέψουμε αν αυξάνεται ή μειώνεται.

Β) Η απόλυτη τιμή του ρυθμού μεταβολής του μέτρου της έντασης \[B_1\]  είναι:

α) \[λ=\frac{2πΒ_Δ R}{μ_0 α^2 } r\],              
β) \[ λ =\frac{2πΒ_Δ (Ν+1)R}{Nμ_0 α^2} r\],             
γ) \[λ=\frac{4πΒ_Δ (Ν+1)R}{μ_0 α^2 } r\].

8. Ένα πηνίο έχει \[Ν\] σπείρες και ο συντελεστής αυτεπαγωγής του είναι ίσος με \[L\]. Η ένταση του ρεύματος που διαρρέει το πηνίο αυξάνεται με σταθερό ρυθμό ίσο με \[λ\]. Κάποια στιγμή που η ένταση του ρεύματος που διαρρέει το πηνίο έχει την τιμή \[Ι_0\], ο ρυθμός αποθήκευσης ενέργειας στο μαγνητικό πεδίο του πηνίου είναι ίσος με
9. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο πηνίο είναι \[\left| \frac{di }{ dt} \right|= \frac{E }{2L} \]. Από τη χρονική στιγμή \[t=0\] ως τη στιγμή \[t_1\], η θερμότητα που έχει εκλυθεί από όλους τους αντιστάτες του κυκλώματος είναι:
10. Στο παρακάτω σχήμα ο μαγνήτης την \[t=0\] αρχίζει να κινείται στη διεύθυνση κοινού άξονα σωληνοειδούς μαγνήτη πλησιάζοντας το σωληνοειδές και ακινητοποιείται τη στιγμή \[t_1\] που δεν έχει έρθει ακόμα σε επαφή με το άκρο Κ του σωληνοειδούς. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
11. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Η διαφορά δυναμικού \[V_{ΚΛ}\] στα άκρα του αντιστάτη \[R_1\] είναι ίση με:
12. Στο παρακάτω σχήμα ο ευθύγραμμος αγωγός ΚΛ μήκους \[\ell\] μπορεί να κινείται χωρίς τριβές με τα άκρα του Κ, Λ να βρίσκονται πάντα σε επαφή με τους οριζόντιους αγωγούς \[Αx_1,\, Γx_2\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το σύστημα των αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \[B\] που οι δυναμικές γραμμές του είναι συνεχώς κάθετες στον αγωγό. Αρχικά ο αγωγός ΚΛ είναι ακίνητος και την \[t=0\] ασκώ στο μέσο του οριζόντια σταθερή δύναμη κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους οριζόντιους αγωγούς μέχρι που αποκτά σταθερή οριακή ταχύτητα \[υ_{ορ}\] τη χρονική στιγμή \[t_1\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
13. Ένα πηνίο με συντελεστή αυτεπαγωγής \[L=2\, mH\] διαρρέεται από ρεύμα μεταβλητής έντασης όπως απεικονίζεται στο σχήμα. Το πηνίο αποτελείται από \[1000\] σπείρες. Ο ρυθμός μεταβολής της ροής που διέρχεται από την κάθε σπείρα του πηνίου είναι
14. Το σωληνοειδές Σ του παρακάτω σχήματος έχει αντίσταση \[R_Σ\], εμβαδόν σπείρας \[S\], αριθμό σπειρών \[N\] και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης \[\vec{B}_1\] που οι δυναμικές γραμμές είναι παράλληλες με τον άξονα του σωληνοειδούς. Τα άκρα του σωληνοειδούς συνδέονται μέσω κατακόρυφων συρμάτων αμελητέας αντίστασης με μεταλλικό ευθύγραμμο οριζόντιο αγωγό ΖΛ που έχει μήκος \[\ell\], αντίσταση \[R\] και βάρος μέτρου \[w\]. Ο αγωγός ΖΛ είναι προσδεμένος στο κέντρο του με ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\]. Ο αγωγός ΖΛ βρίσκεται μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο σταθερής έντασης \[\vec{B}_2\] που οι δυναμικές του γραμμές είναι κάθετες στον αγωγό αυτό. Αν το μέτρο της έντασης του \[B_1\] μεταβάλλεται σύμφωνα με τη σχέση \[Β_1=3+2t\] (S.I.) χωρίς να μεταβάλλεται η φορά της, τότε ο αγωγός ΖΛ ισορροπεί οριζόντιος και το ελατήριο έχει το φυσικό του μήκος.


Α) Οι δυναμικές γραμμές του μαγνητικού πεδίου  έντασης \[B_2\]  έχουν φορά:

α) απ’ τον αναγνώστη προς τη σελίδα.

β) απ’ τη σελίδα προς τον αναγνώστη.

γ) μη προσδιορίσιμη με τα δεδομένα της άσκησης.

Β) Το μέτρο της έντασης \[Β_2\]  με όλα τα μεγέθη μετρημένα στο S.I. είναι:

α) \[Β_2=\frac{ w (R_Σ+R) }{ 2 N S  \ell }\],                  
β) \[Β_2=\frac{w (R_Σ+R) }{ 3NS \ell }\],    
γ) \[Β_2=\frac{ w (R_Σ+R) }{ N S \ell } \].

15. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και έχει συντελεστή αυτεπαγωγής \[L\], ο αντιστάτης έχει αντίσταση \[R\] και η πηγή έχει ΗΕΔ \[E\] και εσωτερική αντίσταση \[r=R\]. Την \[t_0=0\] κλείνω το διακόπτη \[δ\]. Αν \[i\] η στιγμιαία ένταση του ρεύματος που διαρρέει το κύκλωμα για μια χρονική στιγμή \[t≥0\], το μέτρο του ρυθμού μεταβολής της έντασης του ρεύματος στο κύκλωμα την ίδια χρονική στιγμή \[t\] δίνεται απ’ τη σχέση.
16. Η λεπτή μεταλλική ομογενής και ισοπαχής ράβδος ΟΑ μήκους \[\ell \] και αντίστασης \[R\] στρέφεται χωρίς τριβές με σταθερή γωνιακή ταχύτητα \[ω\] γύρω από άξονα που περνά απ’ το κέντρο της Ο και είναι κάθετος σ’ αυτήν. Η ράβδος βρίσκεται συνεχώς σε επαφή στο σημείο της Γ με \[ΟΓ = \frac{ \ell }{ 4 }\] με κυκλικό αγωγό ακτίνας l/4 αμελητέας αντίστασης που έχει κέντρο το άκρο Ο της ράβδου και το επίπεδό της ταυτίζεται με τον άξονα περιστροφής. Το σημείο Ο της ράβδου γεφυρώνεται με το σημείο Κ της περιφέρειάς του κυκλικού αγωγού με αντιστάτη αντίσταση \[R_1 = \frac{11R }{ 4 }\]. Η ράβδος βρίσκεται σε ομογενές μαγνητικό πεδίο έντασης μέτρου Β που οι δυναμικές γραμμές της είναι κάθετες στο επίπεδο περιστροφής της. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Αντιστάτης διαρρέεται από εναλλασσόμενο ρεύμα που η έντασή του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα.

Η ενεργός τιμή του εναλλασσόμενου αυτού ρεύματος είναι:

18. Οι κυκλικοί οριζόντιοι ομοεπίπεδοι και ομόκεντροι αγωγοί του παρακάτω σχήματος έχουν κέντρο το Ο και ακτίνες \[\frac{\ell}{3}\], \[\ell\] αντίστοιχα και τα άκρα τους Κ, Λ γεφυρώνονται με αντιστάτη \[R_1\] αντίστασης \[R_1=\frac{R}{3}\]. Μεταλλική ράβδος ΟΓ μήκους \[\ell\] και αντίστασης \[R\] στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω στο επίπεδο των δύο αγωγών έχοντας το σημείο Δ και το άκρο της Γ συνεχώς σε επαφή με αυτούς. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου της ασκούμε στο άκρο της Γ οριζόντια δύναμη μέτρου \[F\] που είναι συνεχώς κάθετη στη ράβδο. Το μέτρο της δύναμης \[\vec{F}\] είναι:
19. Η οριζόντια ράβδος ΟΓ έχει μήκος \[\ell\], αντίσταση \[2R\] και στρέφεται με σταθερή γωνιακή ταχύτητα σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που διέρχεται απ’ το άκρο της Ο. Το μέσο Μ της ράβδου βρίσκεται σε επαφή με κυκλικό αγωγό κέντρου Ο και ακτίνας \[\frac{\ell }{2 }\] που το επίπεδό του ταυτίζεται με το επίπεδο περιστροφής της ράβδου. Μεταξύ του σημείου Ο και του σημείου Κ του αγωγού συνδέουμε αντιστάτη αντίστασης \[R\]. Το σύστημα των αγωγών βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\]. Το μέτρο της δύναμης Laplace που δέχεται ο αγωγός ΟΓ απ’ το μαγνητικό πεδίο έχει μέτρο:
20. Ο ευθύγραμμος αγωγός του παρακάτω σχήματος έχει μήκος \[\ell \] και αντίσταση \[R\] και μπορεί να κινείται χωρίς τριβές έχοντας στα άκρα του συνεχώς σε επαφή με τους λείους ευθύγραμμους παράλληλους λείους αγωγούς \[Αx\] και \[Γy\] που έχουν μεγάλο μήκος και αμελητέα αντίσταση. Το επίπεδο των δύο αγωγών βρίσκεται μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο που οι δυναμικές γραμμές του είναι κάθετες στο επίπεδο των αγωγών. Αρχικά ο αγωγός είναι ακίνητος. Ασκούμε στο κέντρο του οριζόντια σταθερή δύναμη μέτρου \[F\] κάθετη στη διεύθυνσή του και αυτός αρχίζει να κινείται παράλληλα στους αγωγούς \[Αx\] και \[Γy\] με τα άκρα του να μένουν πάντα σ’ επαφή με αυτόν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Ο μαγνήτης Μ και το σωληνοειδές Σ έχουν κοινό άξονα. Το επαγωγικό ρεύμα που διαρρέει τον αντιστάτη \[R\] έχει τη φορά του σχήματος. Απ’ τη φορά του ρεύματος αυτού συμπεραίνουμε ότι μπορεί:
22. Το ορθογώνιο μεταλλικό πλαίσιο ΚΛΜΝ και ο ευθύγραμμος αγωγός μεγάλου μήκους βρίσκονται πάνω στο ίδιο οριζόντιο λείο και μονωτικό δάπεδο. Ο ευθύγραμμος αγωγός είναι ακλόνητος και διαρρέεται από ρεύμα έντασης \[Ι\] και φοράς όπως φαίνεται στο σχήμα. Το πλαίσιο αρχικά είναι ακίνητο. Αρχίζω να μετακινώ το πλαίσιο με οριζόντια ταχύτητα \[υ\] που είναι παράλληλη στην πλευρά του ΚΛ και έχει φορά προς τα δεξιά.

Α) Καθώς το πλαίσιο απομακρύνεται απ’ τον ευθύγραμμο αγωγό δημιουργείται στο πλαίσιο:

α) επαγωγικό ρεύμα που έχει την ωρολογιακή φορά.

β) επαγωγικό ρεύμα που έχει την αντιωρολογιακή φορά.

γ) επαγωγική ΗΕΔ αλλά όχι επαγωγικό ρεύμα.

Β) Αν το πλαίσιο είναι ακίνητο στην αρχική  του θέση και αρχίζω να αυξάνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε:

α) το πλαίσιο διαρρέεται από ρεύμα που έχει την ωρολογιακή φορά.

β) το πλαίσιο διαρρέεται από ρεύμα που έχει την αντιωρολογιακή φορά.

γ) το πλαίσιο δεν διαρρέεται από επαγωγικό ρεύμα.

Γ) Αν το πλαίσιο είναι ακίνητο στην αρχική του θέση και αρχίζω να μειώνω την ένταση του ρεύματος που διαρρέει τον ευθύγραμμο αγωγό, τότε το πλαίσιο:

α) θα έλκεται απ’ τον ευθύγραμμο αγωγό.

β) θα απωθείται απ’ τον ευθύγραμμο αγωγό.

γ) δεν θα δέχεται δύναμη απ’ τον ευθύγραμμο αγωγό.

23. Η ράβδος ΟΑ στο παρακάτω σχήμα έχει μήκος \[ \ell \], αντίσταση \[R\] και στρέφεται με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα που περνά απ’ το κέντρο της Ο. Το άκρο της Ο ολισθαίνει σε κυκλικό οριζόντιο αγωγό κέντρου Ο ακτίνας \[\ell \] και αμελητέας αντίστασης. Η ράβδος κατά την κίνησή της δεν δέχεται καμία τριβή. Το σύστημα βρίσκεται σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης μέτρου \[B \]. Το άκρο Ο της ράβδου γεφυρώνεται με ένα σημείο Κ της περιφέρειας του κυκλικού αγωγού με αντιστάτη \[R_1\] αντίστασης \[R\]. Για να διατηρείται σταθερή η γωνιακή ταχύτητα της ράβδου, ασκούμε στο άκρο της Α οριζόντια δύναμη συνεχώς κάθετη σ’ αυτήν. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Ραβδόμορφος μαγνήτης έχει άξονα κατακόρυφο που διέρχεται απ’ το κέντρο μεταλλικού δακτυλίου ο οποίος κρατείται ακίνητος. Αφήνουμε το μαγνήτη να πέσει ελεύθερα όπως φαίνεται στο σχήμα. Αντιστάσεις του αέρα αμελούνται. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
25. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό και οι λαμπτήρες είναι όμοιοι. Ο διακόπτης \[δ\] είναι κλειστός και η ενέργεια του μαγνητικού πεδίου του πηνίου έχει σταθερή τιμή. Την \[t=0\] ανοίγουμε τον \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
26. Στο παρακάτω κύκλωμα οι δύο αντιστάτες έχουν αντιστάσεις \[R_1=6R\] και \[R_2=2R\] αντίστοιχα ενώ το πηνίο έχει συντελεστή αυτεπαγωγής \[L\] και αντίσταση \[R_π=R\]. Η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R_π\]. Ο διακόπτης \[δ\] είναι κλειστός και οι κλάδοι του κυκλώματος διαρρέονται από ρεύματα σταθερής έντασης. Τη χρονική στιγμή \[t_0=0\] ανοίγω το διακόπτη \[δ\] χωρίς να δημιουργηθεί σπινθήρας. Η αποθηκευμένη ενέργεια του μαγνητικού πεδίου του πηνίου αμέσως πριν την \[t_0=0\] είναι:
27. Στα άκρα αντιστάτη αντίστασης \[R=10\, Ω\] εφαρμόζουμε εναλλασσόμενη τάση με εξίσωση \[v=20\sqrt{2}\, ημ100πt\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Στο παρακάτω σχήμα οι δύο λαμπτήρες \[Λ_1\, ,\, Λ_2\] είναι όμοιοι και το πηνίο ιδανικό. Την \[t=0\] κλείνουμε το διακόπτη \[δ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Το συρμάτινο πλαίσιο ΚΛΜΝ σχήματος ορθογωνίου παραλληλογράμμου του παρακάτω σχήματος αρχικά βρίσκεται έξω απ’ το ομογενές μαγνητικό πεδίο έντασης \[\vec{B}\] και αρχίζει να εισέρχεται σε αυτό με σταθερή ταχύτητα \[υ\] που έχει διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου και στην πλευρά ΛΜ όπως φαίνεται στο παρακάτω σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Στη διάρκεια εισόδου του πλαισίου στο μαγνητικό πεδίο:
30. Στο παρακάτω κύκλωμα το πηνίο είναι ιδανικό με συντελεστή αυτεπαγωγής \[L\], η πηγή έχει ΗΕΔ \[Ε\] και εσωτερική αντίσταση \[r=R\], ενώ ο αντιστάτης \[R_1\] έχει αντίσταση \[4R\]. Ο μεταγωγός \[μ\] βρίσκεται στη θέση Α και η ενέργεια του μαγνητικού πεδίου στο πηνίο έχει σταθερή τιμή \[U\]. Την \[t=0\] μεταφέρουμε το μεταγωγό \[μ\] στη θέση Β χωρίς να δημιουργηθεί σπινθήρας. Τη χρονική στιγμή \[t_1\] ο ρυθμός μείωσης της έντασης του ρεύματος στο κύκλωμα είναι \[\left| \frac{di}{dt}\right|= \frac{E }{ 10L}\]. Τη χρονική στιγμή \[t_1\] η ενέργεια του μαγνητικού πεδίου του πηνίου είναι \[U_1\]. Ο λόγος \[\frac{U}{U_1}\] είναι:

    +30

    CONTACT US
    CALL US