MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ένα σώμα κινείται με σταθερή επιτάχυνση \[ \vec{ α} \]. Η μεταβολή της ορμής του \[ Δ\vec{ p} \] έχει την κατεύθυνση:
2. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
3. Για να επιβραδύνουμε ένα νετρόνιο, προκαλούμε την κρούση του με έναν πυρήνα. Για να έχει το νετρόνιo τη μικρότερη δυνατή κινητική ενέργεια μετά τη κρούση πρέπει να συγκρουστεί κεντρικά με πυρήνα:
4. Ένα μπαλάκι μάζας \[m\] προσκρούει κάθετα σε οριζόντιο πάτωμα με ταχύτητα μέτρου \[υ_1\] και αναπηδά κατακόρυφα με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της πρόσκρουσης είναι \[Δt\]. Η αντίσταση του αέρα θεωρείται αμελητέα. Το μέτρο της μέσης δύναμης που ασκείται κατά τη διάρκεια της πρόσκρουσης από το πάτωμα στο μπαλάκι είναι
5. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:
6. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
7. Σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[u_1\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β μάζας \[m_2\]. Αν η ταχύτητα της σφαίρας Α μετά τη κρούση έχει μέτρο \[\frac{u_1}{4}\] και φορά αντίθετη της αρχικής ταχύτητας τότε το πηλίκο \[\frac{m_1}{m_2}\] των μαζών των δύο σφαιρών ισούται με:
8. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[\vec{u}_0\] συγκρούεται κεντρικά και πλαστικά με κιβώτιο μάζας \[M=3m\] που είναι αρχικά ακίνητο στη βάση κεκλιμένου επιπέδου γωνίας κλίσης \[φ= 30^0\]. Το κεκλιμένο επίπεδο έχει μήκος \[S\] και παρουσιάζει συντελεστή τριβής \[μ=\frac{\sqrt{3}}{6}\] με το κιβώτιο. Tο μέτρο της ταχύτητας \[u_0\] που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα, μετά τη κρούση αφού ολισθήσει, να σταματήσει στη κορυφή του κεκλιμένου επιπέδου είναι:
9. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
10. Σε μια μετωπική κρούση δύο σωμάτων:
11. Ένας άνθρωπος, που βρίσκεται ακίνητος πάνω σε λεία επιφάνεια, πετάει μία πέτρα που κρατούσε. Τότε:
12. Μια αυτοκινητοβιομηχανία για να ελέγξει τους αερόσακους των νέων αυτοκινήτων χρησιμοποιεί δοκιμαστικές κούκλες μάζας \[80 \; kg\] που μπορούν να συγκρουστούν με ακίνητους αερόσακους . Η ταχύτητα μιας τέτοιας κούκλας είναι \[40 \; \frac{m}{s}\]. Μετά από \[0,2\; s\] η κούκλα ακινητοποιείται αφού ο αερόσακος έχει ανοίξει. Η μέση δύναμη που δέχεται η κούκλα σε αυτό το χρονικό διάστημα είναι:
13. Οι τρεις ακίνητες ελαστικές σφαίρες \[Σ_1\, ,\, Σ_2\, ,\, Σ_3\] του παρακάτω σχήματος βρίσκονται πάνω σε λείο οριζόντιο δάπεδο έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στην ίδια οριζόντια ευθεία και έχουν μάζες \[m_1=m\, ,\, m_2=m\, ,\, m_3=2m\] αντίστοιχα. Αρχικά οι σφαίρες είναι ακίνητες. Κάποια στιγμή δίνουμε στη σφαίρα \[Σ_2\] ταχύτητα μέτρου \[υ\] με διεύθυνση πάνω στην ευθεία που ενώνει τα κέντρα των σφαιρών και με φορά προς τα δεξιά.

Μετά το τέλος όλων των κρούσεων των σφαιρών που θεωρούνται ελαστικές και κεντρικές, η σφαίρα Σ1 έχει ταχύτητα μέτρου

14. Το βλήμα μάζας \[m\] του σχήματος κινείται παράλληλα με το οριζόντιο επίπεδο και συγκρούεται πλαστικά με το κιβώτιο μάζας \[Μ\] που ισορροπεί με τη βοήθεια μικρού εμποδίου πάνω σε λείο ακλόνητο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\].
Αν η ταχύτητα του βλήματος έχει μέτρο \[u\], τότε το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση θα είναι:
15. Ποιο από τα ακόλουθα σώματα έχει τη μεγαλύτερη κατά μέτρο ορμή;
16. Σώμα βρίσκεται αρχικά ακίνητο και απέχει αποστάσεις \[L_1\] και \[L_2\] από τις άκρες ενός λείου, οριζόντιου τραπεζιού. Κάποια στιγμή το σώμα εκρήγνυται σε δύο κομμάτια με μάζες \[m_2=4m_1\].

Αν τα δύο κομμάτια φτάνουν ταυτόχρονα στις άκρες του τραπεζιού, τότε ισχύει:

17. Μια σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[12\frac{m}{s}\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β διπλάσιας μάζας. Ποια από τις επόμενες προτάσεις είναι η σωστή:
18. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της ορμής σε συνάρτηση με το χρόνο \[p=f(t),\] ενός σώματος που προσκρούει σε ακλόνητο κατακόρυφο τοίχο. Η μέση δύναμη που ασκεί το μπαλάκι στον τοίχο κατά τη διάρκεια της κρούσης έχει μέτρο:
19. Μια σφαίρα μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2\]. Το ποσοστό % της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] που μεταφέρεται στη σφαίρα μάζας \[m_2\] ισούται με
20. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=2m\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\]. To άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
21. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
22. Δύο σώματα μάζας \[m\] και \[2m\] κινούνται σε κάθετες κατευθύνσεις με ταχύτητες \[υ\] και \[\frac{υ}{2}\] αντίστοιχα και συγκρούονται πλαστικά. Το μέτρο της ταχύτητας του συσσωματώματος που δημιουργείται από τη πλαστική κρούση των σωμάτων είναι:
23. Κατά την μετωπική ελαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που χτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\],
24. Όταν μια μικρή σφαίρα προσπίπτει πλάγια σε κατακόρυφο τοίχο και συγκρούεται με αυτόν ελαστικά, τότε
25. Δύο μικρά σώματα συγκρούονται μετωπικά και πλαστικά. Ο λόγος της ολικής κινητικής ενέργειας του συστήματος των μαζών αμέσως μετά την κρούση προς την ολική κινητική ενέργεια των μαζών πριν την κρούση είναι \[0,75\]. Το ποσοστό της ολικής κινητικής ενέργειας πριν την κρούση που μετατράπηκε σε θερμότητα κατά την κρούση είναι:
26. Σώμα μάζας \[m\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται πλαστικά με ακίνητο σώμα ίδιας μάζας. Η ταχύτητα του συσσωματώματος μετά τη κρούση είναι:
27. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Ένα σώμα μάζας \[m\] κινείται με ταχύτητα \[u\] και συγκρούεται κεντρικά και ελαστικά με άλλο ακίνητο σώμα της ίδιας μάζας. Αν η διάρκεια της κρούσης είναι \[Δt\], τότε το μέτρο της δύναμης που ασκήθηκε πάνω στο δεύτερο σώμα είναι:
29. Αν \[ g=10 \frac{m}{s^2} \] ποιο από τα παρακάτω σώματα έχει μεγαλύτερου μέτρου ορμή;
30. Μια σφαίρα μάζας \[m\] κινείται κατακόρυφα προς τα κάτω και συγκρούεται ελαστικά με λείο οριζόντιο δάπεδο. Ελάχιστα πριν την κρούση η ταχύτητα της σφαίρας ήταν \[υ\]. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Αν θεωρήσουμε ως θετική φορά τη φορά προς τα κάτω τότε η αλγεβρική τιμή της μεταβολής της ορμής της σφαίρας εξαιτίας της κρούσης ισούται με

    +30

    CONTACT US
    CALL US