MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ένα μπαλάκι μάζας \[m\] προσκρούει κάθετα σε οριζόντιο πάτωμα με ταχύτητα μέτρου \[υ_1\] και αναπηδά κατακόρυφα με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της πρόσκρουσης είναι \[Δt\]. Η αντίσταση του αέρα θεωρείται αμελητέα. Το μέτρο της μέσης δύναμης που ασκείται κατά τη διάρκεια της πρόσκρουσης από το πάτωμα στο μπαλάκι είναι
2. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=2m\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\]. To άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
3. Σε ένα λείο οριζόντιο επίπεδο βρίσκεται μία σανίδα μάζας \[m=10\; kg\] και πάνω της ένα ακίνητο παιδί μάζας \[M=40\; kg\]. Αν το παιδί ξεκινήσει να κινείται στη σανίδα με ταχύτητα \[u_1=2\; \frac{m}{s}\] ως προς το έδαφος,
4. Μια αυτοκινητοβιομηχανία για να ελέγξει τους αερόσακους των νέων αυτοκινήτων χρησιμοποιεί δοκιμαστικές κούκλες μάζας \[80 \; kg\] που μπορούν να συγκρουστούν με ακίνητους αερόσακους . Η ταχύτητα μιας τέτοιας κούκλας είναι \[40 \; \frac{m}{s}\]. Μετά από \[0,2\; s\] η κούκλα ακινητοποιείται αφού ο αερόσακος έχει ανοίξει. Η μέση δύναμη που δέχεται η κούκλα σε αυτό το χρονικό διάστημα είναι:
5. Δύο σώματα έχουν μάζες \[m_1=m\] και \[m_2=4m\] και οριζόντιες σταθερές και ομόρροπες ταχύτητες με μέτρα \[u_1=8u\] και \[u_2= 3u\]. Η αλγεβρική τιμή της ορμής του συστήματος είναι:
6. Δύο παγοδρόμοι, Α και Β, με μάζες \[m_1= 60\, kg\] και \[m_2= 80\, kg\] αντίστοιχα, βρίσκονται σε απόσταση \[L\], σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί. Κάποια στιγμή ο Α τραβάει απότομα το σχοινί προς το μέρος του, με αποτέλεσμα να κινηθούν και οι δύο με σταθερές ταχύτητες πλησιάζοντας μεταξύ τους. Εάν ο Α διανύσει απόσταση \[L_1\] και ο Β απόσταση \[L_2\] μέχρι να συναντηθούν, τότε ισχύει:
7. Σώμα μάζας \[m\] κινείται με οριζόντια ταχύτητα \[ υ\], συγκρούεται κάθετα και ελαστικά με κατακόρυφο τοίχο και ανακλάται με ταχύτητα \[υ'\]. Το μέτρο της μεταβολής της ορμής του σώματος είναι:
8. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=4m\] που είναι δεμένο στο κάτω άκρο αβαρούς ράβδου μήκους \[\ell\]. To άλλο άκρο της ράβδου είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
9. Μια σφαίρα με μάζα \[m_1\] κινείται οριζόντια με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2=λ\, m_1\]. Το ποσοστό % της ελάττωσης της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] λόγω της κρούσης είναι ίσο με
10. Ακίνητο σώμα εκρήγνυται και διασπάται σε δύο κομμάτια με ίσες μάζες. Η εκλυόμενη ενέργεια από την έκρηξη μετατρέπεται κατά \[50\%\] σε θερμότητα. Αυτό σημαίνει ότι η κινητική ενέργεια κάθε κομματιού που προέκυψε από την έκρηξη αποτελεί:
11. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της ορμής σε συνάρτηση με το χρόνο \[p=f(t),\] ενός σώματος που προσκρούει σε ακλόνητο κατακόρυφο τοίχο. Η μέση δύναμη που ασκεί το μπαλάκι στον τοίχο κατά τη διάρκεια της κρούσης έχει μέτρο:
12. Δύο παγοδρόμοι, με μάζες \[m_1\] και \[m_2\] αντίστοιχα (με \[m_1 \neq m_2\]), στέκονται ακίνητοι ο ένας απέναντι στον άλλο, πάνω σε ένα οριζόντιο παγοδρόμιο. Κάποια στιγμή ο πρώτος σπρώχνει το δεύτερο με αποτέλεσμα να κινηθούν αποκρινόμενοι με ταχύτητες σταθερού μέτρου. Κάποια επόμενη χρονική στιγμή οι αποστάσεις που έχουν διανύσει είναι \[x_1\, , \, x_2\], αντίστοιχα. Αν αγνοήσουμε όλων των ειδών τις τριβές τότε ισχύει:
13. Μια σφαίρα \[Σ_1\] συγκρούεται έκκεντρα με ακίνητη σφαίρα \[Σ_2\] ίδιας μάζας. Μετά την κρούση οι σφαίρες κινούνται στο ίδιο επίπεδο και σε διευθύνσεις κάθετες μεταξύ τους. Η κρούση μεταξύ των δυο σφαιρών είναι
14. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Τρεις σφαίρες ίδιας μάζας προσπίπτουν κάθετα σε τοίχο. Η κρούση της πρώτης είναι ελαστική της δεύτερης ανελαστική και της τρίτης πλαστική. Αν οι κρούσεις έχουν την ίδια διάρκεια τότε ο τοίχος δέχεται μεγαλύτερη δύναμη στην περίπτωση της
16. Σωμάτιο \[α\] \[(m_α=4m_p)\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[υ\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου. Ο πυρήνας Π θα μπορούσε να είναι πυρήνας
17. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
18. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
19. Μια σφαίρα πολύ μικρής μάζας κινείται με ταχύτητα \[\vec{υ}\] και συγκρούεται κεντρικά και ελαστικά με άλλη ακίνητη σφαίρα πολύ μεγαλύτερης μάζας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
20. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:
21. Τρεις μικρές σφαίρες \[Σ_1\, ,\, Σ_2\] και \[Σ_3\] βρίσκονται ακίνητες πάνω σε λείο οριζόντιο επίπεδο. Οι σφαίρες έχουν μάζες \[m_1=m_2=m\] και \[m_3=3m\] αντίστοιχα. Δίνουμε στη σφαίρα \[Σ_1\] ταχύτητα μέτρου \[υ_1\] και συγκρούεται κεντρικά και ελαστικά με τη δεύτερη ακίνητη σφαίρα \[Σ_2\]. Στη συνέχεια η δεύτερη σφαίρα \[Σ_2\] συγκρούεται κεντρικά και ελαστικά με την τρίτη ακίνητη σφαίρα \[Σ_3\]. Η τρίτη σφαίρα αποκτά τότε ταχύτητα μέτρου \[υ_3\]. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_3}{υ_1}\] είναι:
22. Στο παρακάτω σχήμα φαίνονται δύο ελαστικές σφαίρες \[Σ_1\] και \[Σ_2\] με μάζες \[m_1\] και \[m_2\] αντίστοιχα, που μπορούν να κινηθούν σε λείο οριζόντιο επίπεδο ανάμεσα σε λείους κατακόρυφους τοίχους που απέχουν απόσταση \[d\]. Η σφαίρα \[Σ_2\] είναι ακίνητη σε απόσταση \[\frac{d}{4}\] από τον ένα τοίχο ενώ η \[Σ_1\] έρχεται με ταχύτητα \[\vec{u}\]. Οι δύο σφαίρες συγκρούονται μετωπικά και ελαστικά και στη συνέχεια αφού συγκρουστούν ελαστικά με τους τοίχους, συναντώνται ξανά στο μέσο της απόστασης μεταξύ αυτών. Η σχέση ανάμεσα στις αλγεβρικές τιμές των ταχυτήτων \[\vec{u}\] και \[\vec{u}_1'\] είναι:
23. Σφαίρα \[Σ_1\], μάζας \[m_1\] κινείται με ταχύτητα \[υ_1\] και συγκρούεται έκκεντρα και ελαστικά με άλλη σφαίρα \[Σ_2\], μάζας \[m_2\], που αρχικά είναι ακίνητη. Μετά την κρούση οι δύο σφαίρες κινούνται σε κάθετες διευθύνσεις με ταχύτητες \[v_1\, ,\, v_2\]. Ο λόγος των μαζών τους \[\frac{m_1}{m_2}\] είναι:
24. Δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1\] και \[\vec {υ}_2\] και συγκρούονται κεντρικά και ελαστικά. Αν μετά την κρούση οι δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1'\] και \[\vec {υ}_2'\] τότε ισχύει:
25. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
26. Δυο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[p_{αρχ}\] και \[p_{τελ}\] τα μέτρα των ολικών ορμών του συστήματος πριν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac {p_{αρχ}} {p_{τελ}}\] παίρνει
27. Αν \[ g=10 \frac{m}{s^2} \] ποιο από τα παρακάτω σώματα έχει μεγαλύτερου μέτρου ορμή;
28. Σφαίρα μάζας \[m_1\] κινείται με ταχύτητα \[u_0\] και συγκρούεται κεντρικά και ελαστικά με ακίνητο κιβώτιο μάζας \[m_2=2m_1\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\], τo άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει η σφαίρα ώστε το κιβώτιο να εκτελέσει οριακά ανακύκλωση θα είναι:
29. Σώμα βρίσκεται αρχικά ακίνητο και απέχει αποστάσεις \[L_1\] και \[L_2\] από τις άκρες ενός λείου, οριζόντιου τραπεζιού. Κάποια στιγμή το σώμα εκρήγνυται σε δύο κομμάτια με μάζες \[m_2=4m_1\].

Αν τα δύο κομμάτια φτάνουν ταυτόχρονα στις άκρες του τραπεζιού, τότε ισχύει:

30. Οι τρεις ακίνητες ελαστικές σφαίρες \[Σ_1\, ,\, Σ_2\, ,\, Σ_3\] του παρακάτω σχήματος βρίσκονται πάνω σε λείο οριζόντιο δάπεδο έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στην ίδια οριζόντια ευθεία και έχουν μάζες \[m_1=m\, ,\, m_2=m\, ,\, m_3=2m\] αντίστοιχα. Αρχικά οι σφαίρες είναι ακίνητες. Κάποια στιγμή δίνουμε στη σφαίρα \[Σ_2\] ταχύτητα μέτρου \[υ\] με διεύθυνση πάνω στην ευθεία που ενώνει τα κέντρα των σφαιρών και με φορά προς τα δεξιά.

Μετά το τέλος όλων των κρούσεων των σφαιρών που θεωρούνται ελαστικές και κεντρικές, η σφαίρα Σ1 έχει ταχύτητα μέτρου


    +30

    CONTACT US
    CALL US