MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=2m\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\]. To άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
2. Οι τρεις ακίνητες ελαστικές σφαίρες \[Σ_1\, ,\, Σ_2\, ,\, Σ_3\] του παρακάτω σχήματος βρίσκονται πάνω σε λείο οριζόντιο δάπεδο έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στην ίδια οριζόντια ευθεία και έχουν μάζες \[m_1=m\, ,\, m_2=m\, ,\, m_3=2m\] αντίστοιχα. Αρχικά οι σφαίρες είναι ακίνητες. Κάποια στιγμή δίνουμε στη σφαίρα \[Σ_2\] ταχύτητα μέτρου \[υ\] με διεύθυνση πάνω στην ευθεία που ενώνει τα κέντρα των σφαιρών και με φορά προς τα δεξιά.

Μετά το τέλος όλων των κρούσεων των σφαιρών που θεωρούνται ελαστικές και κεντρικές, η σφαίρα Σ1 έχει ταχύτητα μέτρου

3. Μια σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[12\frac{m}{s}\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β διπλάσιας μάζας. Ποια από τις επόμενες προτάσεις είναι η σωστή:
4. Σε ένα λείο οριζόντιο επίπεδο βρίσκεται μία σανίδα μάζας \[m=10\; kg\] και πάνω της ένα ακίνητο παιδί μάζας \[M=40\; kg\]. Αν το παιδί ξεκινήσει να κινείται στη σανίδα με ταχύτητα \[u_1=2\; \frac{m}{s}\] ως προς το έδαφος,
5. Για να επιβραδύνουμε ένα νετρόνιο, προκαλούμε την κρούση του με έναν πυρήνα. Για να έχει το νετρόνιo τη μικρότερη δυνατή κινητική ενέργεια μετά τη κρούση πρέπει να συγκρουστεί κεντρικά με πυρήνα:
6. Τρεις μικρές σφαίρες \[Σ_1\, ,\, Σ_2\] και \[Σ_3\] βρίσκονται ακίνητες πάνω σε λείο οριζόντιο επίπεδο. Οι σφαίρες έχουν μάζες \[m_1=m_2=m\] και \[m_3=3m\] αντίστοιχα. Δίνουμε στη σφαίρα \[Σ_1\] ταχύτητα μέτρου \[υ_1\] και συγκρούεται κεντρικά και ελαστικά με τη δεύτερη ακίνητη σφαίρα \[Σ_2\]. Στη συνέχεια η δεύτερη σφαίρα \[Σ_2\] συγκρούεται κεντρικά και ελαστικά με την τρίτη ακίνητη σφαίρα \[Σ_3\]. Η τρίτη σφαίρα αποκτά τότε ταχύτητα μέτρου \[υ_3\]. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_3}{υ_1}\] είναι:
7. Το βλήμα μάζας \[m\] του σχήματος κινείται παράλληλα με το οριζόντιο επίπεδο και συγκρούεται πλαστικά με το κιβώτιο μάζας \[Μ\] που ισορροπεί με τη βοήθεια μικρού εμποδίου πάνω σε λείο ακλόνητο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\].
Αν η ταχύτητα του βλήματος έχει μέτρο \[u\], τότε το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση θα είναι:
8. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
9. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[\vec{u}_0\] συγκρούεται κεντρικά και πλαστικά με κιβώτιο μάζας \[M=3m\] που είναι αρχικά ακίνητο στη βάση κεκλιμένου επιπέδου γωνίας κλίσης \[φ= 30^0\]. Το κεκλιμένο επίπεδο έχει μήκος \[S\] και παρουσιάζει συντελεστή τριβής \[μ=\frac{\sqrt{3}}{6}\] με το κιβώτιο. Tο μέτρο της ταχύτητας \[u_0\] που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα, μετά τη κρούση αφού ολισθήσει, να σταματήσει στη κορυφή του κεκλιμένου επιπέδου είναι:
10. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
11. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Δύο μικρά σώματα συγκρούονται μετωπικά και πλαστικά. Ο λόγος της ολικής κινητικής ενέργειας του συστήματος των μαζών αμέσως μετά την κρούση προς την ολική κινητική ενέργεια των μαζών πριν την κρούση είναι \[0,75\]. Το ποσοστό της ολικής κινητικής ενέργειας πριν την κρούση που μετατράπηκε σε θερμότητα κατά την κρούση είναι:
13. Μια κινούμενη ελαστική σφαίρα Α κινείται με ταχύτητα \[υ_1\] και συγκρούεται μετωπικά και ελαστικά με άλλη αρχικά ακίνητη σφαίρα Β. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Στο παρακάτω σχήμα φαίνονται δύο ελαστικές σφαίρες \[Σ_1\] και \[Σ_2\] με μάζες \[m_1\] και \[m_2\] αντίστοιχα, που μπορούν να κινηθούν σε λείο οριζόντιο επίπεδο ανάμεσα σε λείους κατακόρυφους τοίχους που απέχουν απόσταση \[d\]. Η σφαίρα \[Σ_2\] είναι ακίνητη σε απόσταση \[\frac{d}{4}\] από τον ένα τοίχο ενώ η \[Σ_1\] έρχεται με ταχύτητα \[\vec{u}\]. Οι δύο σφαίρες συγκρούονται μετωπικά και ελαστικά και στη συνέχεια αφού συγκρουστούν ελαστικά με τους τοίχους, συναντώνται ξανά στο μέσο της απόστασης μεταξύ αυτών. Η σχέση ανάμεσα στις αλγεβρικές τιμές των ταχυτήτων \[\vec{u}\] και \[\vec{u}_1'\] είναι:
15. Σώμα μάζας \[m_2=m\] ισορροπεί πάνω σε πλατφόρμα μάζας \[Μ=8m\] όπως φαίνεται στο σχήμα. Το σύστημα αρχικά ηρεμεί σε λείο οριζόντιο επίπεδο. Το σώμα \[Σ_2\] παρουσιάζει με την πλατφόρμα τριβή ολίσθησης. Βλήμα μάζας \[m_1=m\] που κινείται οριζόντια σφηνώνεται με ταχύτητα \[υ\] στο σώμα \[Σ\]. Η συνολική θερμότητα \[Q\], που εκλύθηκε από τη στιγμή που άρχισε η κρούση μέχρι το συσσωμάτωμα και η πλατφόρμα να αποκτήσουν κοινή ταχύτητα είναι:
16. Όταν μια μικρή σφαίρα προσπίπτει πλάγια σε κατακόρυφο τοίχο και συγκρούεται με αυτόν ελαστικά, τότε
17. Δυο σώματα \[Σ_1\] και \[Σ_2\] που κινούνται ομόρροπα με ταχύτητες μέτρων \[2υ\] και \[υ\] αντίστοιχα συγκρούονται κεντρικά και πλαστικά. Λόγω της κρούσης εκλύεται ποσό θερμότητας \[Q_1\]. Αν τα δυο σώματα κινούνται αντίρροπα με τα ίδια μέτρα ταχυτήτων και συγκρουστούν πάλι κεντρικά και πλαστικά το ποσό θερμότητας \[Q_2\] που εκλύεται λόγω της κρούσης θα είναι
18. Σφαίρα μάζας \[m_1\] κινείται με ταχύτητα \[u_0\] και συγκρούεται κεντρικά και ελαστικά με ακίνητο κιβώτιο μάζας \[m_2=2m_1\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\], τo άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει η σφαίρα ώστε το κιβώτιο να εκτελέσει οριακά ανακύκλωση θα είναι:
19. Δύο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[Κ_{αρχ}\] και \[Κ_{τελ}\] τις κινητικές ενέργειες του συστήματος πρίν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac{ Κ_{τελ}}{Κ_{αρχ}}\] παίρνει
20. Δύο παγοδρόμοι, Α και Β, με μάζες \[m_1= 60\, kg\] και \[m_2= 80\, kg\] αντίστοιχα, βρίσκονται σε απόσταση \[L\], σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί. Κάποια στιγμή ο Α τραβάει απότομα το σχοινί προς το μέρος του, με αποτέλεσμα να κινηθούν και οι δύο με σταθερές ταχύτητες πλησιάζοντας μεταξύ τους. Εάν ο Α διανύσει απόσταση \[L_1\] και ο Β απόσταση \[L_2\] μέχρι να συναντηθούν, τότε ισχύει:
21. Ένα σώμα κινείται με σταθερή επιτάχυνση \[ \vec{ α} \]. Η μεταβολή της ορμής του \[ Δ\vec{ p} \] έχει την κατεύθυνση:
22. Σφαίρα \[Σ_1\], μάζας \[m_1\] κινείται με ταχύτητα \[υ_1\] και συγκρούεται έκκεντρα και ελαστικά με άλλη σφαίρα \[Σ_2\], μάζας \[m_2\], που αρχικά είναι ακίνητη. Μετά την κρούση οι δύο σφαίρες κινούνται σε κάθετες διευθύνσεις με ταχύτητες \[v_1\, ,\, v_2\]. Ο λόγος των μαζών τους \[\frac{m_1}{m_2}\] είναι:
23. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
24. Σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[u_1\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β μάζας \[m_2\]. Αν η ταχύτητα της σφαίρας Α μετά τη κρούση έχει μέτρο \[\frac{u_1}{4}\] και φορά αντίθετη της αρχικής ταχύτητας τότε το πηλίκο \[\frac{m_1}{m_2}\] των μαζών των δύο σφαιρών ισούται με:
25. Δύο σώματα έχουν μάζες \[m_1=m\] και \[m_2=4m\] και οριζόντιες σταθερές και ομόρροπες ταχύτητες με μέτρα \[u_1=8u\] και \[u_2= 3u\]. Η αλγεβρική τιμή της ορμής του συστήματος είναι:
26. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:
27. Ένα μπαλάκι μάζας \[m\] προσκρούει κάθετα σε οριζόντιο πάτωμα με ταχύτητα μέτρου \[υ_1\] και αναπηδά κατακόρυφα με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της πρόσκρουσης είναι \[Δt\]. Η αντίσταση του αέρα θεωρείται αμελητέα. Το μέτρο της μέσης δύναμης που ασκείται κατά τη διάρκεια της πρόσκρουσης από το πάτωμα στο μπαλάκι είναι
28. Ένας άνθρωπος, που βρίσκεται ακίνητος πάνω σε λεία επιφάνεια, πετάει μία πέτρα που κρατούσε. Τότε:
29. Σώμα που αρχικά ηρεμεί, διασπάται σε τμήματα με μάζες \[m_1=m\] και \[m_2=2m\]. Ο λόγος των ταχυτήτων \[\frac{v_1}{v_2}\] των δύο θραυσμάτων είναι:
30. Θεωρούμε ως σύστημα τα δύο σώματα \[Σ_1,Σ_2\] και το νήμα. Τα σώματα έχουν μάζες (\[m_1=m\]) και (\[m_2=4m\]) αντίστοιχα. Ασκούμε σταθερή οριζόντια δύναμη και τα κινούμε στο λείο οριζόντιο επίπεδο. Το νήμα είναι αβαρές, μη εκτατό και διαρκώς τεντωμένο

    +30

    CONTACT US
    CALL US