MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Οι τρεις ακίνητες ελαστικές σφαίρες \[Σ_1\, ,\, Σ_2\, ,\, Σ_3\] του παρακάτω σχήματος βρίσκονται πάνω σε λείο οριζόντιο δάπεδο έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στην ίδια οριζόντια ευθεία και έχουν μάζες \[m_1=m\, ,\, m_2=m\, ,\, m_3=2m\] αντίστοιχα. Αρχικά οι σφαίρες είναι ακίνητες. Κάποια στιγμή δίνουμε στη σφαίρα \[Σ_2\] ταχύτητα μέτρου \[υ\] με διεύθυνση πάνω στην ευθεία που ενώνει τα κέντρα των σφαιρών και με φορά προς τα δεξιά.

Μετά το τέλος όλων των κρούσεων των σφαιρών που θεωρούνται ελαστικές και κεντρικές, η σφαίρα Σ1 έχει ταχύτητα μέτρου

2. Σφαίρα μάζας \[m_1\] προσπίπτει με ταχύτητα \[υ_1\] σε ακίνητη σφαίρα μάζας \[m_2\], με την οποία συγκρούεται κεντρικά και ελαστικά. Μετά την κρούση η σφαίρα μάζας \[m_1\] γυρίζει πίσω με ταχύτητα μέτρου ίσου με το \[\frac{1}{5}\] της αρχικής της τιμής. Για το λόγο των μαζών ισχύει
3. Για να επιβραδύνουμε ένα νετρόνιο, προκαλούμε την κρούση του με έναν πυρήνα. Για να έχει το νετρόνιo τη μικρότερη δυνατή κινητική ενέργεια μετά τη κρούση πρέπει να συγκρουστεί κεντρικά με πυρήνα:
4. Κατά την μετωπική ελαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που χτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\],
5. Σε ένα λείο οριζόντιο επίπεδο βρίσκεται μία σανίδα μάζας \[m=10\; kg\] και πάνω της ένα ακίνητο παιδί μάζας \[M=40\; kg\]. Αν το παιδί ξεκινήσει να κινείται στη σανίδα με ταχύτητα \[u_1=2\; \frac{m}{s}\] ως προς το έδαφος,
6. Σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[u_1\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β μάζας \[m_2\]. Αν η ταχύτητα της σφαίρας Α μετά τη κρούση έχει μέτρο \[\frac{u_1}{4}\] και φορά αντίθετη της αρχικής ταχύτητας τότε το πηλίκο \[\frac{m_1}{m_2}\] των μαζών των δύο σφαιρών ισούται με:
7. Σώμα μάζας \[m\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται πλαστικά με ακίνητο σώμα ίδιας μάζας. Η ταχύτητα του συσσωματώματος μετά τη κρούση είναι:
8. Δυο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[p_{αρχ}\] και \[p_{τελ}\] τα μέτρα των ολικών ορμών του συστήματος πριν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac {p_{αρχ}} {p_{τελ}}\] παίρνει
9. Ένα σώμα κινείται με σταθερή επιτάχυνση \[ \vec{ α} \]. Η μεταβολή της ορμής του \[ Δ\vec{ p} \] έχει την κατεύθυνση:
10. Μια σφαίρα με μάζα \[m_1\] κινείται οριζόντια με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2=λ\, m_1\]. Το ποσοστό % της ελάττωσης της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] λόγω της κρούσης είναι ίσο με
11. Μια σφαίρα πολύ μικρής μάζας κινείται με ταχύτητα \[\vec{υ}\] και συγκρούεται κεντρικά και ελαστικά με άλλη ακίνητη σφαίρα πολύ μεγαλύτερης μάζας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
12. Ένα μπαλάκι μάζας \[m\] προσκρούει κάθετα σε οριζόντιο πάτωμα με ταχύτητα μέτρου \[υ_1\] και αναπηδά κατακόρυφα με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της πρόσκρουσης είναι \[Δt\]. Η αντίσταση του αέρα θεωρείται αμελητέα. Το μέτρο της μέσης δύναμης που ασκείται κατά τη διάρκεια της πρόσκρουσης από το πάτωμα στο μπαλάκι είναι
13. Μια σφαίρα \[Σ_1\] συγκρούεται έκκεντρα με ακίνητη σφαίρα \[Σ_2\] ίδιας μάζας. Μετά την κρούση οι σφαίρες κινούνται στο ίδιο επίπεδο και σε διευθύνσεις κάθετες μεταξύ τους. Η κρούση μεταξύ των δυο σφαιρών είναι
14. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της ορμής σε συνάρτηση με το χρόνο \[p=f(t),\] ενός σώματος που προσκρούει σε ακλόνητο κατακόρυφο τοίχο. Η μέση δύναμη που ασκεί το μπαλάκι στον τοίχο κατά τη διάρκεια της κρούσης έχει μέτρο:
15. Στο παρακάτω σχήμα φαίνονται δύο ελαστικές σφαίρες \[Σ_1\] και \[Σ_2\] με μάζες \[m_1\] και \[m_2\] αντίστοιχα, που μπορούν να κινηθούν σε λείο οριζόντιο επίπεδο ανάμεσα σε λείους κατακόρυφους τοίχους που απέχουν απόσταση \[d\]. Η σφαίρα \[Σ_2\] είναι ακίνητη σε απόσταση \[\frac{d}{4}\] από τον ένα τοίχο ενώ η \[Σ_1\] έρχεται με ταχύτητα \[\vec{u}\]. Οι δύο σφαίρες συγκρούονται μετωπικά και ελαστικά και στη συνέχεια αφού συγκρουστούν ελαστικά με τους τοίχους, συναντώνται ξανά στο μέσο της απόστασης μεταξύ αυτών. Η σχέση ανάμεσα στις αλγεβρικές τιμές των ταχυτήτων \[\vec{u}\] και \[\vec{u}_1'\] είναι:
16. Σφαίρα μάζας \[m_1\] κινείται με ταχύτητα \[u_0\] και συγκρούεται κεντρικά και ελαστικά με ακίνητο κιβώτιο μάζας \[m_2=2m_1\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\], τo άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει η σφαίρα ώστε το κιβώτιο να εκτελέσει οριακά ανακύκλωση θα είναι:
17. Δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1\] και \[\vec {υ}_2\] και συγκρούονται κεντρικά και ελαστικά. Αν μετά την κρούση οι δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1'\] και \[\vec {υ}_2'\] τότε ισχύει:
18. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Σώμα βρίσκεται αρχικά ακίνητο και απέχει αποστάσεις \[L_1\] και \[L_2\] από τις άκρες ενός λείου, οριζόντιου τραπεζιού. Κάποια στιγμή το σώμα εκρήγνυται σε δύο κομμάτια με μάζες \[m_2=4m_1\].

Αν τα δύο κομμάτια φτάνουν ταυτόχρονα στις άκρες του τραπεζιού, τότε ισχύει:

20. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
21. Αν \[ g=10 \frac{m}{s^2} \] ποιο από τα παρακάτω σώματα έχει μεγαλύτερου μέτρου ορμή;
22. Όταν μια μικρή σφαίρα προσκρούει ελαστικά και κάθετα στην επιφάνεια ενός τοίχου, τότε:
23. Όταν μια μικρή σφαίρα προσπίπτει πλάγια σε κατακόρυφο τοίχο και συγκρούεται με αυτόν ελαστικά, τότε
24. Δυο σφαίρες \[Σ_1\] και \[Σ_2\] έχουν λόγο μαζών \[\frac{m_1}{m_2}=λ\] και κινούνται στην ίδια ευθεία με αντίθετες ταχύτητες. Τα μέτρα των ταχυτήτων των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν λόγο \[\frac{v_1'}{v_2'}\] που είναι ίσος με
25. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
26. Δύο παγοδρόμοι, με μάζες \[m_1\] και \[m_2\] αντίστοιχα (με \[m_1 \neq m_2\]), στέκονται ακίνητοι ο ένας απέναντι στον άλλο, πάνω σε ένα οριζόντιο παγοδρόμιο. Κάποια στιγμή ο πρώτος σπρώχνει το δεύτερο με αποτέλεσμα να κινηθούν αποκρινόμενοι με ταχύτητες σταθερού μέτρου. Κάποια επόμενη χρονική στιγμή οι αποστάσεις που έχουν διανύσει είναι \[x_1\, , \, x_2\], αντίστοιχα. Αν αγνοήσουμε όλων των ειδών τις τριβές τότε ισχύει:
27. Δύο σώματα έχουν μάζες \[m_1=m\] και \[m_2=4m\] και οριζόντιες σταθερές και ομόρροπες ταχύτητες με μέτρα \[u_1=8u\] και \[u_2= 3u\]. Η αλγεβρική τιμή της ορμής του συστήματος είναι:
28. Τρεις σφαίρες ίδιας μάζας προσπίπτουν κάθετα σε τοίχο. Η κρούση της πρώτης είναι ελαστική της δεύτερης ανελαστική και της τρίτης πλαστική. Αν οι κρούσεις έχουν την ίδια διάρκεια τότε ο τοίχος δέχεται μεγαλύτερη δύναμη στην περίπτωση της
29. Σωμάτιο \[α\] \[(m_α=4m_p)\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[υ\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου. Ο πυρήνας Π θα μπορούσε να είναι πυρήνας
30. Η μονάδα μέτρησης της ορμής \[1kg·\frac{m}{s}\] είναι ισοδύναμη με την μονάδα μέτρησης:

    +30

    CONTACT US
    CALL US