MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Μια κινούμενη ελαστική σφαίρα Α κινείται με ταχύτητα \[υ_1\] και συγκρούεται μετωπικά και ελαστικά με άλλη αρχικά ακίνητη σφαίρα Β. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της ορμής σε συνάρτηση με το χρόνο \[p=f(t),\] ενός σώματος που προσκρούει σε ακλόνητο κατακόρυφο τοίχο. Η μέση δύναμη που ασκεί το μπαλάκι στον τοίχο κατά τη διάρκεια της κρούσης έχει μέτρο:
3. Σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[u_1\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β μάζας \[m_2\]. Αν η ταχύτητα της σφαίρας Α μετά τη κρούση έχει μέτρο \[\frac{u_1}{4}\] και φορά αντίθετη της αρχικής ταχύτητας τότε το πηλίκο \[\frac{m_1}{m_2}\] των μαζών των δύο σφαιρών ισούται με:
4. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=2m\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\]. To άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
5. Μια αυτοκινητοβιομηχανία για να ελέγξει τους αερόσακους των νέων αυτοκινήτων χρησιμοποιεί δοκιμαστικές κούκλες μάζας \[80 \; kg\] που μπορούν να συγκρουστούν με ακίνητους αερόσακους . Η ταχύτητα μιας τέτοιας κούκλας είναι \[40 \; \frac{m}{s}\]. Μετά από \[0,2\; s\] η κούκλα ακινητοποιείται αφού ο αερόσακος έχει ανοίξει. Η μέση δύναμη που δέχεται η κούκλα σε αυτό το χρονικό διάστημα είναι:
6. Δυο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[p_{αρχ}\] και \[p_{τελ}\] τα μέτρα των ολικών ορμών του συστήματος πριν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac {p_{αρχ}} {p_{τελ}}\] παίρνει
7. Δύο σώματα έχουν μάζες \[m_1=m\] και \[m_2=4m\] και οριζόντιες σταθερές και ομόρροπες ταχύτητες με μέτρα \[u_1=8u\] και \[u_2= 3u\]. Η αλγεβρική τιμή της ορμής του συστήματος είναι:
8. Ένα σώμα μάζας \[m\] κινείται με ταχύτητα \[u\] και συγκρούεται κεντρικά και ελαστικά με άλλο ακίνητο σώμα της ίδιας μάζας. Αν η διάρκεια της κρούσης είναι \[Δt\], τότε το μέτρο της δύναμης που ασκήθηκε πάνω στο δεύτερο σώμα είναι:
9. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
10. Δύο μικρά σώματα συγκρούονται μετωπικά και πλαστικά. Ο λόγος της ολικής κινητικής ενέργειας του συστήματος των μαζών αμέσως μετά την κρούση προς την ολική κινητική ενέργεια των μαζών πριν την κρούση είναι \[0,75\]. Το ποσοστό της ολικής κινητικής ενέργειας πριν την κρούση που μετατράπηκε σε θερμότητα κατά την κρούση είναι:
11. Θεωρούμε ως σύστημα τα δύο σώματα \[Σ_1,Σ_2\] και το νήμα. Τα σώματα έχουν μάζες (\[m_1=m\]) και (\[m_2=4m\]) αντίστοιχα. Ασκούμε σταθερή οριζόντια δύναμη και τα κινούμε στο λείο οριζόντιο επίπεδο. Το νήμα είναι αβαρές, μη εκτατό και διαρκώς τεντωμένο
12. Μια σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[12\frac{m}{s}\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β διπλάσιας μάζας. Ποια από τις επόμενες προτάσεις είναι η σωστή:
13. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
14. Δυο σφαίρες \[Σ_1\] και \[Σ_2\] έχουν λόγο μαζών \[\frac{m_1}{m_2}=λ\] και κινούνται στην ίδια ευθεία με αντίθετες ταχύτητες. Τα μέτρα των ταχυτήτων των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν λόγο \[\frac{v_1'}{v_2'}\] που είναι ίσος με
15. Σφαίρα \[Σ_1\], μάζας \[m_1\] κινείται με ταχύτητα \[υ_1\] και συγκρούεται έκκεντρα και ελαστικά με άλλη σφαίρα \[Σ_2\], μάζας \[m_2\], που αρχικά είναι ακίνητη. Μετά την κρούση οι δύο σφαίρες κινούνται σε κάθετες διευθύνσεις με ταχύτητες \[v_1\, ,\, v_2\]. Ο λόγος των μαζών τους \[\frac{m_1}{m_2}\] είναι:
16. Μια σφαίρα μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2\]. Το ποσοστό % της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] που μεταφέρεται στη σφαίρα μάζας \[m_2\] ισούται με
17. Μια σφαίρα πολύ μικρής μάζας κινείται με ταχύτητα \[\vec{υ}\] και συγκρούεται κεντρικά και ελαστικά με άλλη ακίνητη σφαίρα πολύ μεγαλύτερης μάζας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Σωμάτιο \[α\] \[(m_α=4m_p)\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[υ\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου. Ο πυρήνας Π θα μπορούσε να είναι πυρήνας
19. Δύο παγοδρόμοι, Α και Β, με μάζες \[m_1= 60\, kg\] και \[m_2= 80\, kg\] αντίστοιχα, βρίσκονται σε απόσταση \[L\], σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί. Κάποια στιγμή ο Α τραβάει απότομα το σχοινί προς το μέρος του, με αποτέλεσμα να κινηθούν και οι δύο με σταθερές ταχύτητες πλησιάζοντας μεταξύ τους. Εάν ο Α διανύσει απόσταση \[L_1\] και ο Β απόσταση \[L_2\] μέχρι να συναντηθούν, τότε ισχύει:
20. Σώμα μάζας \[m\] κινείται με οριζόντια ταχύτητα \[ υ\], συγκρούεται κάθετα και ελαστικά με κατακόρυφο τοίχο και ανακλάται με ταχύτητα \[υ'\]. Το μέτρο της μεταβολής της ορμής του σώματος είναι:
21. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[\vec{u}_0\] συγκρούεται κεντρικά και πλαστικά με κιβώτιο μάζας \[M=3m\] που είναι αρχικά ακίνητο στη βάση κεκλιμένου επιπέδου γωνίας κλίσης \[φ= 30^0\]. Το κεκλιμένο επίπεδο έχει μήκος \[S\] και παρουσιάζει συντελεστή τριβής \[μ=\frac{\sqrt{3}}{6}\] με το κιβώτιο. Tο μέτρο της ταχύτητας \[u_0\] που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα, μετά τη κρούση αφού ολισθήσει, να σταματήσει στη κορυφή του κεκλιμένου επιπέδου είναι:
22. Σε ένα λείο οριζόντιο επίπεδο βρίσκεται μία σανίδα μάζας \[m=10\; kg\] και πάνω της ένα ακίνητο παιδί μάζας \[M=40\; kg\]. Αν το παιδί ξεκινήσει να κινείται στη σανίδα με ταχύτητα \[u_1=2\; \frac{m}{s}\] ως προς το έδαφος,
23. Ένας άνθρωπος, που βρίσκεται ακίνητος πάνω σε λεία επιφάνεια, πετάει μία πέτρα που κρατούσε. Τότε:
24. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
25. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:
26. Σώμα που αρχικά ηρεμεί, διασπάται σε τμήματα με μάζες \[m_1=m\] και \[m_2=2m\]. Ο λόγος των ταχυτήτων \[\frac{v_1}{v_2}\] των δύο θραυσμάτων είναι:
27. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
28. Αν \[ g=10 \frac{m}{s^2} \] ποιο από τα παρακάτω σώματα έχει μεγαλύτερου μέτρου ορμή;
29. Τρεις μικρές σφαίρες \[Σ_1\, ,\, Σ_2\] και \[Σ_3\] βρίσκονται ακίνητες πάνω σε λείο οριζόντιο επίπεδο. Οι σφαίρες έχουν μάζες \[m_1=m_2=m\] και \[m_3=3m\] αντίστοιχα. Δίνουμε στη σφαίρα \[Σ_1\] ταχύτητα μέτρου \[υ_1\] και συγκρούεται κεντρικά και ελαστικά με τη δεύτερη ακίνητη σφαίρα \[Σ_2\]. Στη συνέχεια η δεύτερη σφαίρα \[Σ_2\] συγκρούεται κεντρικά και ελαστικά με την τρίτη ακίνητη σφαίρα \[Σ_3\]. Η τρίτη σφαίρα αποκτά τότε ταχύτητα μέτρου \[υ_3\]. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_3}{υ_1}\] είναι:
30. Όταν μια μικρή σφαίρα προσπίπτει πλάγια σε κατακόρυφο τοίχο και συγκρούεται με αυτόν ελαστικά, τότε

    +30

    CONTACT US
    CALL US