MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Δύο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[Κ_{αρχ}\] και \[Κ_{τελ}\] τις κινητικές ενέργειες του συστήματος πρίν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac{ Κ_{τελ}}{Κ_{αρχ}}\] παίρνει
2. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=2m\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\]. To άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
3. Κατά την κεντρική πλαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που κτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\]. Να επιλέξετε τις σωστές από τις παρακάτω προτάσεις.
4. Σώμα που αρχικά ηρεμεί, διασπάται σε τμήματα με μάζες \[m_1=m\] και \[m_2=2m\]. Ο λόγος των ταχυτήτων \[\frac{v_1}{v_2}\] των δύο θραυσμάτων είναι:
5. Η μονάδα μέτρησης της ορμής \[1kg·\frac{m}{s}\] είναι ισοδύναμη με την μονάδα μέτρησης:
6. Ένα σώμα εκτελεί οριζόντια βολή από κάποιο ύψος \[h\]. Κατά τη κίνηση του σώματος:
7. Μια σφαίρα μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2\]. Το ποσοστό % της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] που μεταφέρεται στη σφαίρα μάζας \[m_2\] ισούται με
8. Σφαίρα \[Σ_1\], μάζας \[m_1\] κινείται με ταχύτητα \[υ_1\] και συγκρούεται έκκεντρα και ελαστικά με άλλη σφαίρα \[Σ_2\], μάζας \[m_2\], που αρχικά είναι ακίνητη. Μετά την κρούση οι δύο σφαίρες κινούνται σε κάθετες διευθύνσεις με ταχύτητες \[v_1\, ,\, v_2\]. Ο λόγος των μαζών τους \[\frac{m_1}{m_2}\] είναι:
9. Σώμα \[m\] κινείται με ταχύτητα \[ \vec{ u} \] και συγκρούεται κεντρικά και πλαστικά με ακίνητο σώμα \[Μ=2m\]. Η μεταβολή του μέτρου της ορμής του σώματος \[m\] είναι:
10. Δυο σώματα \[Σ_1\] και \[Σ_2\] που κινούνται ομόρροπα με ταχύτητες μέτρων \[2υ\] και \[υ\] αντίστοιχα συγκρούονται κεντρικά και πλαστικά. Λόγω της κρούσης εκλύεται ποσό θερμότητας \[Q_1\]. Αν τα δυο σώματα κινούνται αντίρροπα με τα ίδια μέτρα ταχυτήτων και συγκρουστούν πάλι κεντρικά και πλαστικά το ποσό θερμότητας \[Q_2\] που εκλύεται λόγω της κρούσης θα είναι
11. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
12. Σε ένα σώμα μάζας \[m\], που ηρεμεί σε λείο οριζόντιο επίπεδο, ασκείται οριζόντια σταθερή δύναμη \[F\]. Η ορμή του σώματος:
13. Σώμα μάζας \[m\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται πλαστικά με ακίνητο σώμα ίδιας μάζας. Η ταχύτητα του συσσωματώματος μετά τη κρούση είναι:
14. Δύο σώματα μάζας \[m\] και \[2m\] κινούνται σε κάθετες κατευθύνσεις με ταχύτητες \[υ\] και \[\frac{υ}{2}\] αντίστοιχα και συγκρούονται πλαστικά. Το μέτρο της ταχύτητας του συσσωματώματος που δημιουργείται από τη πλαστική κρούση των σωμάτων είναι:
15. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
16. Ακίνητο σώμα εκρήγνυται και διασπάται σε δύο κομμάτια με ίσες μάζες. Η εκλυόμενη ενέργεια από την έκρηξη μετατρέπεται κατά \[50\%\] σε θερμότητα. Αυτό σημαίνει ότι η κινητική ενέργεια κάθε κομματιού που προέκυψε από την έκρηξη αποτελεί:
17. Τρεις σφαίρες ίδιας μάζας προσπίπτουν κάθετα σε τοίχο. Η κρούση της πρώτης είναι ελαστική της δεύτερης ανελαστική και της τρίτης πλαστική. Αν οι κρούσεις έχουν την ίδια διάρκεια τότε ο τοίχος δέχεται μεγαλύτερη δύναμη στην περίπτωση της
18. Δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1\] και \[\vec {υ}_2\] και συγκρούονται κεντρικά και ελαστικά. Αν μετά την κρούση οι δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1'\] και \[\vec {υ}_2'\] τότε ισχύει:
19. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
20. Ένας άνθρωπος, που βρίσκεται ακίνητος πάνω σε λεία επιφάνεια, πετάει μία πέτρα που κρατούσε. Τότε:
21. Μια σφαίρα \[Σ_1\] συγκρούεται έκκεντρα με ακίνητη σφαίρα \[Σ_2\] ίδιας μάζας. Μετά την κρούση οι σφαίρες κινούνται στο ίδιο επίπεδο και σε διευθύνσεις κάθετες μεταξύ τους. Η κρούση μεταξύ των δυο σφαιρών είναι
22. Στο παρακάτω σχήμα φαίνονται δύο ελαστικές σφαίρες \[Σ_1\] και \[Σ_2\] με μάζες \[m_1\] και \[m_2\] αντίστοιχα, που μπορούν να κινηθούν σε λείο οριζόντιο επίπεδο ανάμεσα σε λείους κατακόρυφους τοίχους που απέχουν απόσταση \[d\]. Η σφαίρα \[Σ_2\] είναι ακίνητη σε απόσταση \[\frac{d}{4}\] από τον ένα τοίχο ενώ η \[Σ_1\] έρχεται με ταχύτητα \[\vec{u}\]. Οι δύο σφαίρες συγκρούονται μετωπικά και ελαστικά και στη συνέχεια αφού συγκρουστούν ελαστικά με τους τοίχους, συναντώνται ξανά στο μέσο της απόστασης μεταξύ αυτών. Η σχέση ανάμεσα στις αλγεβρικές τιμές των ταχυτήτων \[\vec{u}\] και \[\vec{u}_1'\] είναι:
23. Δύο σώματα έχουν μάζες \[m_1=m\] και \[m_2=4m\] και οριζόντιες σταθερές και ομόρροπες ταχύτητες με μέτρα \[u_1=8u\] και \[u_2= 3u\]. Η αλγεβρική τιμή της ορμής του συστήματος είναι:
24. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:
25. Σφαίρα μάζας \[m_1\] κινείται με ταχύτητα \[u_0\] και συγκρούεται κεντρικά και ελαστικά με ακίνητο κιβώτιο μάζας \[m_2=2m_1\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\], τo άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει η σφαίρα ώστε το κιβώτιο να εκτελέσει οριακά ανακύκλωση θα είναι:
26. Ένα σώμα κινείται με σταθερή επιτάχυνση \[ \vec{ α} \]. Η μεταβολή της ορμής του \[ Δ\vec{ p} \] έχει την κατεύθυνση:
27. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=4m\] που είναι δεμένο στο κάτω άκρο αβαρούς ράβδου μήκους \[\ell\]. To άλλο άκρο της ράβδου είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
28. Ποιο από τα ακόλουθα σώματα έχει τη μεγαλύτερη κατά μέτρο ορμή;
29. Μια σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[12\frac{m}{s}\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β διπλάσιας μάζας. Ποια από τις επόμενες προτάσεις είναι η σωστή:
30. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας

    +30

    CONTACT US
    CALL US