MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Η μονάδα μέτρησης της ορμής \[1kg·\frac{m}{s}\] είναι ισοδύναμη με την μονάδα μέτρησης:
2. Σώμα μάζας \[m\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται πλαστικά με ακίνητο σώμα ίδιας μάζας. Η ταχύτητα του συσσωματώματος μετά τη κρούση είναι:
3. Τρεις σφαίρες ίδιας μάζας προσπίπτουν κάθετα σε τοίχο. Η κρούση της πρώτης είναι ελαστική της δεύτερης ανελαστική και της τρίτης πλαστική. Αν οι κρούσεις έχουν την ίδια διάρκεια τότε ο τοίχος δέχεται μεγαλύτερη δύναμη στην περίπτωση της
4. Ένα μπαλάκι μάζας \[m\] προσκρούει κάθετα σε οριζόντιο πάτωμα με ταχύτητα μέτρου \[υ_1\] και αναπηδά κατακόρυφα με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της πρόσκρουσης είναι \[Δt\]. Η αντίσταση του αέρα θεωρείται αμελητέα. Το μέτρο της μέσης δύναμης που ασκείται κατά τη διάρκεια της πρόσκρουσης από το πάτωμα στο μπαλάκι είναι
5. Σώμα που αρχικά ηρεμεί, διασπάται σε τμήματα με μάζες \[m_1=m\] και \[m_2=2m\]. Ο λόγος των ταχυτήτων \[\frac{v_1}{v_2}\] των δύο θραυσμάτων είναι:
6. Σώμα \[m\] κινείται με ταχύτητα \[ \vec{ u} \] και συγκρούεται κεντρικά και πλαστικά με ακίνητο σώμα \[Μ=2m\]. Η μεταβολή του μέτρου της ορμής του σώματος \[m\] είναι:
7. Ακίνητο σώμα εκρήγνυται και διασπάται σε δύο κομμάτια με ίσες μάζες. Η εκλυόμενη ενέργεια από την έκρηξη μετατρέπεται κατά \[50\%\] σε θερμότητα. Αυτό σημαίνει ότι η κινητική ενέργεια κάθε κομματιού που προέκυψε από την έκρηξη αποτελεί:
8. Σε μια μετωπική κρούση δύο σωμάτων:
9. Σώμα βρίσκεται αρχικά ακίνητο και απέχει αποστάσεις \[L_1\] και \[L_2\] από τις άκρες ενός λείου, οριζόντιου τραπεζιού. Κάποια στιγμή το σώμα εκρήγνυται σε δύο κομμάτια με μάζες \[m_2=4m_1\].

Αν τα δύο κομμάτια φτάνουν ταυτόχρονα στις άκρες του τραπεζιού, τότε ισχύει:

10. Δυο σφαίρες \[Σ_1\] και \[Σ_2\] έχουν λόγο μαζών \[\frac{m_1}{m_2}=λ\] και κινούνται στην ίδια ευθεία με αντίθετες ταχύτητες. Τα μέτρα των ταχυτήτων των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν λόγο \[\frac{v_1'}{v_2'}\] που είναι ίσος με
11. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της ορμής σε συνάρτηση με το χρόνο \[p=f(t),\] ενός σώματος που προσκρούει σε ακλόνητο κατακόρυφο τοίχο. Η μέση δύναμη που ασκεί το μπαλάκι στον τοίχο κατά τη διάρκεια της κρούσης έχει μέτρο:
12. Δύο παγοδρόμοι, Α και Β, με μάζες \[m_1= 60\, kg\] και \[m_2= 80\, kg\] αντίστοιχα, βρίσκονται σε απόσταση \[L\], σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί. Κάποια στιγμή ο Α τραβάει απότομα το σχοινί προς το μέρος του, με αποτέλεσμα να κινηθούν και οι δύο με σταθερές ταχύτητες πλησιάζοντας μεταξύ τους. Εάν ο Α διανύσει απόσταση \[L_1\] και ο Β απόσταση \[L_2\] μέχρι να συναντηθούν, τότε ισχύει:
13. Το βλήμα μάζας \[m\] του σχήματος κινείται παράλληλα με το οριζόντιο επίπεδο και συγκρούεται πλαστικά με το κιβώτιο μάζας \[Μ\] που ισορροπεί με τη βοήθεια μικρού εμποδίου πάνω σε λείο ακλόνητο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\].
Αν η ταχύτητα του βλήματος έχει μέτρο \[u\], τότε το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση θα είναι:
14. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[\vec{u}_0\] συγκρούεται κεντρικά και πλαστικά με κιβώτιο μάζας \[M=3m\] που είναι αρχικά ακίνητο στη βάση κεκλιμένου επιπέδου γωνίας κλίσης \[φ= 30^0\]. Το κεκλιμένο επίπεδο έχει μήκος \[S\] και παρουσιάζει συντελεστή τριβής \[μ=\frac{\sqrt{3}}{6}\] με το κιβώτιο. Tο μέτρο της ταχύτητας \[u_0\] που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα, μετά τη κρούση αφού ολισθήσει, να σταματήσει στη κορυφή του κεκλιμένου επιπέδου είναι:
15. Μια σφαίρα μάζας \[m\] κινείται κατακόρυφα προς τα κάτω και συγκρούεται ελαστικά με λείο οριζόντιο δάπεδο. Ελάχιστα πριν την κρούση η ταχύτητα της σφαίρας ήταν \[υ\]. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Αν θεωρήσουμε ως θετική φορά τη φορά προς τα κάτω τότε η αλγεβρική τιμή της μεταβολής της ορμής της σφαίρας εξαιτίας της κρούσης ισούται με
16. Δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1\] και \[\vec {υ}_2\] και συγκρούονται κεντρικά και ελαστικά. Αν μετά την κρούση οι δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1'\] και \[\vec {υ}_2'\] τότε ισχύει:
17. Μια σφαίρα πολύ μικρής μάζας κινείται με ταχύτητα \[\vec{υ}\] και συγκρούεται κεντρικά και ελαστικά με άλλη ακίνητη σφαίρα πολύ μεγαλύτερης μάζας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
19. Μια σφαίρα μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2\]. Το ποσοστό % της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] που μεταφέρεται στη σφαίρα μάζας \[m_2\] ισούται με
20. Για να επιβραδύνουμε ένα νετρόνιο, προκαλούμε την κρούση του με έναν πυρήνα. Για να έχει το νετρόνιo τη μικρότερη δυνατή κινητική ενέργεια μετά τη κρούση πρέπει να συγκρουστεί κεντρικά με πυρήνα:
21. Δύο μικρά σώματα συγκρούονται μετωπικά και πλαστικά. Ο λόγος της ολικής κινητικής ενέργειας του συστήματος των μαζών αμέσως μετά την κρούση προς την ολική κινητική ενέργεια των μαζών πριν την κρούση είναι \[0,75\]. Το ποσοστό της ολικής κινητικής ενέργειας πριν την κρούση που μετατράπηκε σε θερμότητα κατά την κρούση είναι:
22. Ένα σώμα μάζας \[m\] κινείται με ταχύτητα \[u\] και συγκρούεται κεντρικά και ελαστικά με άλλο ακίνητο σώμα της ίδιας μάζας. Αν η διάρκεια της κρούσης είναι \[Δt\], τότε το μέτρο της δύναμης που ασκήθηκε πάνω στο δεύτερο σώμα είναι:
23. Μια σφαίρα \[Σ_1\] συγκρούεται έκκεντρα με ακίνητη σφαίρα \[Σ_2\] ίδιας μάζας. Μετά την κρούση οι σφαίρες κινούνται στο ίδιο επίπεδο και σε διευθύνσεις κάθετες μεταξύ τους. Η κρούση μεταξύ των δυο σφαιρών είναι
24. Ένας άνθρωπος, που βρίσκεται ακίνητος πάνω σε λεία επιφάνεια, πετάει μία πέτρα που κρατούσε. Τότε:
25. Θεωρούμε ως σύστημα τα δύο σώματα \[Σ_1,Σ_2\] και το νήμα. Τα σώματα έχουν μάζες (\[m_1=m\]) και (\[m_2=4m\]) αντίστοιχα. Ασκούμε σταθερή οριζόντια δύναμη και τα κινούμε στο λείο οριζόντιο επίπεδο. Το νήμα είναι αβαρές, μη εκτατό και διαρκώς τεντωμένο
26. Τρεις μικρές σφαίρες \[Σ_1\, ,\, Σ_2\] και \[Σ_3\] βρίσκονται ακίνητες πάνω σε λείο οριζόντιο επίπεδο. Οι σφαίρες έχουν μάζες \[m_1=m_2=m\] και \[m_3=3m\] αντίστοιχα. Δίνουμε στη σφαίρα \[Σ_1\] ταχύτητα μέτρου \[υ_1\] και συγκρούεται κεντρικά και ελαστικά με τη δεύτερη ακίνητη σφαίρα \[Σ_2\]. Στη συνέχεια η δεύτερη σφαίρα \[Σ_2\] συγκρούεται κεντρικά και ελαστικά με την τρίτη ακίνητη σφαίρα \[Σ_3\]. Η τρίτη σφαίρα αποκτά τότε ταχύτητα μέτρου \[υ_3\]. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_3}{υ_1}\] είναι:
27. Σωμάτιο \[α\] \[(m_α=4m_p)\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[υ\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου. Ο πυρήνας Π θα μπορούσε να είναι πυρήνας
28. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=2m\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\]. To άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
29. Μια αυτοκινητοβιομηχανία για να ελέγξει τους αερόσακους των νέων αυτοκινήτων χρησιμοποιεί δοκιμαστικές κούκλες μάζας \[80 \; kg\] που μπορούν να συγκρουστούν με ακίνητους αερόσακους . Η ταχύτητα μιας τέτοιας κούκλας είναι \[40 \; \frac{m}{s}\]. Μετά από \[0,2\; s\] η κούκλα ακινητοποιείται αφού ο αερόσακος έχει ανοίξει. Η μέση δύναμη που δέχεται η κούκλα σε αυτό το χρονικό διάστημα είναι:
30. Μια σφαίρα με μάζα \[m_1\] κινείται οριζόντια με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2=λ\, m_1\]. Το ποσοστό % της ελάττωσης της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] λόγω της κρούσης είναι ίσο με

    +30

    CONTACT US
    CALL US