MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
2. Δύο μικρά σώματα συγκρούονται μετωπικά και πλαστικά. Ο λόγος της ολικής κινητικής ενέργειας του συστήματος των μαζών αμέσως μετά την κρούση προς την ολική κινητική ενέργεια των μαζών πριν την κρούση είναι \[0,75\]. Το ποσοστό της ολικής κινητικής ενέργειας πριν την κρούση που μετατράπηκε σε θερμότητα κατά την κρούση είναι:
3. Σφαίρα \[Σ_1\], μάζας \[m_1\] κινείται με ταχύτητα \[υ_1\] και συγκρούεται έκκεντρα και ελαστικά με άλλη σφαίρα \[Σ_2\], μάζας \[m_2\], που αρχικά είναι ακίνητη. Μετά την κρούση οι δύο σφαίρες κινούνται σε κάθετες διευθύνσεις με ταχύτητες \[v_1\, ,\, v_2\]. Ο λόγος των μαζών τους \[\frac{m_1}{m_2}\] είναι:
4. Δυο σώματα \[Σ_1\] και \[Σ_2\] που κινούνται ομόρροπα με ταχύτητες μέτρων \[2υ\] και \[υ\] αντίστοιχα συγκρούονται κεντρικά και πλαστικά. Λόγω της κρούσης εκλύεται ποσό θερμότητας \[Q_1\]. Αν τα δυο σώματα κινούνται αντίρροπα με τα ίδια μέτρα ταχυτήτων και συγκρουστούν πάλι κεντρικά και πλαστικά το ποσό θερμότητας \[Q_2\] που εκλύεται λόγω της κρούσης θα είναι
5. Μια αυτοκινητοβιομηχανία για να ελέγξει τους αερόσακους των νέων αυτοκινήτων χρησιμοποιεί δοκιμαστικές κούκλες μάζας \[80 \; kg\] που μπορούν να συγκρουστούν με ακίνητους αερόσακους . Η ταχύτητα μιας τέτοιας κούκλας είναι \[40 \; \frac{m}{s}\]. Μετά από \[0,2\; s\] η κούκλα ακινητοποιείται αφού ο αερόσακος έχει ανοίξει. Η μέση δύναμη που δέχεται η κούκλα σε αυτό το χρονικό διάστημα είναι:
6. Δύο παγοδρόμοι, με μάζες \[m_1\] και \[m_2\] αντίστοιχα (με \[m_1 \neq m_2\]), στέκονται ακίνητοι ο ένας απέναντι στον άλλο, πάνω σε ένα οριζόντιο παγοδρόμιο. Κάποια στιγμή ο πρώτος σπρώχνει το δεύτερο με αποτέλεσμα να κινηθούν αποκρινόμενοι με ταχύτητες σταθερού μέτρου. Κάποια επόμενη χρονική στιγμή οι αποστάσεις που έχουν διανύσει είναι \[x_1\, , \, x_2\], αντίστοιχα. Αν αγνοήσουμε όλων των ειδών τις τριβές τότε ισχύει:
7. Δύο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[Κ_{αρχ}\] και \[Κ_{τελ}\] τις κινητικές ενέργειες του συστήματος πρίν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac{ Κ_{τελ}}{Κ_{αρχ}}\] παίρνει
8. Σε μια μετωπική κρούση δύο σωμάτων:
9. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
10. Κατά την κεντρική πλαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που κτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\]. Να επιλέξετε τις σωστές από τις παρακάτω προτάσεις.
11. Δύο σώματα μάζας \[m\] και \[2m\] κινούνται σε κάθετες κατευθύνσεις με ταχύτητες \[υ\] και \[\frac{υ}{2}\] αντίστοιχα και συγκρούονται πλαστικά. Το μέτρο της ταχύτητας του συσσωματώματος που δημιουργείται από τη πλαστική κρούση των σωμάτων είναι:
12. Σε ένα σώμα μάζας \[m\], που ηρεμεί σε λείο οριζόντιο επίπεδο, ασκείται οριζόντια σταθερή δύναμη \[F\]. Η ορμή του σώματος:
13. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
14. Μια σφαίρα μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2\]. Το ποσοστό % της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] που μεταφέρεται στη σφαίρα μάζας \[m_2\] ισούται με
15. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
16. Μια σφαίρα μάζας \[m\] κινείται κατακόρυφα προς τα κάτω και συγκρούεται ελαστικά με λείο οριζόντιο δάπεδο. Ελάχιστα πριν την κρούση η ταχύτητα της σφαίρας ήταν \[υ\]. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Αν θεωρήσουμε ως θετική φορά τη φορά προς τα κάτω τότε η αλγεβρική τιμή της μεταβολής της ορμής της σφαίρας εξαιτίας της κρούσης ισούται με
17. Σφαίρα μάζας \[m_1\] προσπίπτει με ταχύτητα \[υ_1\] σε ακίνητη σφαίρα μάζας \[m_2\], με την οποία συγκρούεται κεντρικά και ελαστικά. Μετά την κρούση η σφαίρα μάζας \[m_1\] γυρίζει πίσω με ταχύτητα μέτρου ίσου με το \[\frac{1}{5}\] της αρχικής της τιμής. Για το λόγο των μαζών ισχύει
18. Τρεις μικρές σφαίρες \[Σ_1\, ,\, Σ_2\] και \[Σ_3\] βρίσκονται ακίνητες πάνω σε λείο οριζόντιο επίπεδο. Οι σφαίρες έχουν μάζες \[m_1=m_2=m\] και \[m_3=3m\] αντίστοιχα. Δίνουμε στη σφαίρα \[Σ_1\] ταχύτητα μέτρου \[υ_1\] και συγκρούεται κεντρικά και ελαστικά με τη δεύτερη ακίνητη σφαίρα \[Σ_2\]. Στη συνέχεια η δεύτερη σφαίρα \[Σ_2\] συγκρούεται κεντρικά και ελαστικά με την τρίτη ακίνητη σφαίρα \[Σ_3\]. Η τρίτη σφαίρα αποκτά τότε ταχύτητα μέτρου \[υ_3\]. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_3}{υ_1}\] είναι:
19. Σωμάτιο \[α\] \[(m_α=4m_p)\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[υ\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου. Ο πυρήνας Π θα μπορούσε να είναι πυρήνας
20. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Μια κινούμενη ελαστική σφαίρα Α κινείται με ταχύτητα \[υ_1\] και συγκρούεται μετωπικά και ελαστικά με άλλη αρχικά ακίνητη σφαίρα Β. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της ορμής σε συνάρτηση με το χρόνο \[p=f(t),\] ενός σώματος που προσκρούει σε ακλόνητο κατακόρυφο τοίχο. Η μέση δύναμη που ασκεί το μπαλάκι στον τοίχο κατά τη διάρκεια της κρούσης έχει μέτρο:
23. Όταν μια μικρή σφαίρα προσκρούει ελαστικά και κάθετα στην επιφάνεια ενός τοίχου, τότε:
24. Σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[u_1\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β μάζας \[m_2\]. Αν η ταχύτητα της σφαίρας Α μετά τη κρούση έχει μέτρο \[\frac{u_1}{4}\] και φορά αντίθετη της αρχικής ταχύτητας τότε το πηλίκο \[\frac{m_1}{m_2}\] των μαζών των δύο σφαιρών ισούται με:
25. Σώμα μάζας \[m\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται πλαστικά με ακίνητο σώμα ίδιας μάζας. Η ταχύτητα του συσσωματώματος μετά τη κρούση είναι:
26. Τρεις σφαίρες ίδιας μάζας προσπίπτουν κάθετα σε τοίχο. Η κρούση της πρώτης είναι ελαστική της δεύτερης ανελαστική και της τρίτης πλαστική. Αν οι κρούσεις έχουν την ίδια διάρκεια τότε ο τοίχος δέχεται μεγαλύτερη δύναμη στην περίπτωση της
27. Θεωρούμε ως σύστημα τα δύο σώματα \[Σ_1,Σ_2\] και το νήμα. Τα σώματα έχουν μάζες (\[m_1=m\]) και (\[m_2=4m\]) αντίστοιχα. Ασκούμε σταθερή οριζόντια δύναμη και τα κινούμε στο λείο οριζόντιο επίπεδο. Το νήμα είναι αβαρές, μη εκτατό και διαρκώς τεντωμένο
28. Μια σφαίρα \[Σ_1\] συγκρούεται έκκεντρα με ακίνητη σφαίρα \[Σ_2\] ίδιας μάζας. Μετά την κρούση οι σφαίρες κινούνται στο ίδιο επίπεδο και σε διευθύνσεις κάθετες μεταξύ τους. Η κρούση μεταξύ των δυο σφαιρών είναι
29. Δύο παγοδρόμοι, Α και Β, με μάζες \[m_1= 60\, kg\] και \[m_2= 80\, kg\] αντίστοιχα, βρίσκονται σε απόσταση \[L\], σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί. Κάποια στιγμή ο Α τραβάει απότομα το σχοινί προς το μέρος του, με αποτέλεσμα να κινηθούν και οι δύο με σταθερές ταχύτητες πλησιάζοντας μεταξύ τους. Εάν ο Α διανύσει απόσταση \[L_1\] και ο Β απόσταση \[L_2\] μέχρι να συναντηθούν, τότε ισχύει:
30. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:

    +30

    CONTACT US
    CALL US