MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Θεωρούμε ως σύστημα τα δύο σώματα \[Σ_1,Σ_2\] και το νήμα. Τα σώματα έχουν μάζες (\[m_1=m\]) και (\[m_2=4m\]) αντίστοιχα. Ασκούμε σταθερή οριζόντια δύναμη και τα κινούμε στο λείο οριζόντιο επίπεδο. Το νήμα είναι αβαρές, μη εκτατό και διαρκώς τεντωμένο
2. Σώμα μάζας \[m_2=m\] ισορροπεί πάνω σε πλατφόρμα μάζας \[Μ=8m\] όπως φαίνεται στο σχήμα. Το σύστημα αρχικά ηρεμεί σε λείο οριζόντιο επίπεδο. Το σώμα \[Σ_2\] παρουσιάζει με την πλατφόρμα τριβή ολίσθησης. Βλήμα μάζας \[m_1=m\] που κινείται οριζόντια σφηνώνεται με ταχύτητα \[υ\] στο σώμα \[Σ\]. Η συνολική θερμότητα \[Q\], που εκλύθηκε από τη στιγμή που άρχισε η κρούση μέχρι το συσσωμάτωμα και η πλατφόρμα να αποκτήσουν κοινή ταχύτητα είναι:
3. Ακίνητο σώμα εκρήγνυται και διασπάται σε δύο κομμάτια με ίσες μάζες. Η εκλυόμενη ενέργεια από την έκρηξη μετατρέπεται κατά \[50\%\] σε θερμότητα. Αυτό σημαίνει ότι η κινητική ενέργεια κάθε κομματιού που προέκυψε από την έκρηξη αποτελεί:
4. Σφαίρα \[Σ_1\], μάζας \[m_1\] κινείται με ταχύτητα \[υ_1\] και συγκρούεται έκκεντρα και ελαστικά με άλλη σφαίρα \[Σ_2\], μάζας \[m_2\], που αρχικά είναι ακίνητη. Μετά την κρούση οι δύο σφαίρες κινούνται σε κάθετες διευθύνσεις με ταχύτητες \[v_1\, ,\, v_2\]. Ο λόγος των μαζών τους \[\frac{m_1}{m_2}\] είναι:
5. Οι τρεις ακίνητες ελαστικές σφαίρες \[Σ_1\, ,\, Σ_2\, ,\, Σ_3\] του παρακάτω σχήματος βρίσκονται πάνω σε λείο οριζόντιο δάπεδο έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στην ίδια οριζόντια ευθεία και έχουν μάζες \[m_1=m\, ,\, m_2=m\, ,\, m_3=2m\] αντίστοιχα. Αρχικά οι σφαίρες είναι ακίνητες. Κάποια στιγμή δίνουμε στη σφαίρα \[Σ_2\] ταχύτητα μέτρου \[υ\] με διεύθυνση πάνω στην ευθεία που ενώνει τα κέντρα των σφαιρών και με φορά προς τα δεξιά.

Μετά το τέλος όλων των κρούσεων των σφαιρών που θεωρούνται ελαστικές και κεντρικές, η σφαίρα Σ1 έχει ταχύτητα μέτρου

6. Ένας άνθρωπος, που βρίσκεται ακίνητος πάνω σε λεία επιφάνεια, πετάει μία πέτρα που κρατούσε. Τότε:
7. Μια σφαίρα μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2\]. Το ποσοστό % της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] που μεταφέρεται στη σφαίρα μάζας \[m_2\] ισούται με
8. Ένα σώμα μάζας \[m\] κινείται με ταχύτητα \[u\] και συγκρούεται κεντρικά και ελαστικά με άλλο ακίνητο σώμα της ίδιας μάζας. Αν η διάρκεια της κρούσης είναι \[Δt\], τότε το μέτρο της δύναμης που ασκήθηκε πάνω στο δεύτερο σώμα είναι:
9. Σφαίρα μάζας \[m_1\] προσπίπτει με ταχύτητα \[υ_1\] σε ακίνητη σφαίρα μάζας \[m_2\], με την οποία συγκρούεται κεντρικά και ελαστικά. Μετά την κρούση η σφαίρα μάζας \[m_1\] γυρίζει πίσω με ταχύτητα μέτρου ίσου με το \[\frac{1}{5}\] της αρχικής της τιμής. Για το λόγο των μαζών ισχύει
10. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
11. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
12. Στο παρακάτω σχήμα φαίνονται δύο ελαστικές σφαίρες \[Σ_1\] και \[Σ_2\] με μάζες \[m_1\] και \[m_2\] αντίστοιχα, που μπορούν να κινηθούν σε λείο οριζόντιο επίπεδο ανάμεσα σε λείους κατακόρυφους τοίχους που απέχουν απόσταση \[d\]. Η σφαίρα \[Σ_2\] είναι ακίνητη σε απόσταση \[\frac{d}{4}\] από τον ένα τοίχο ενώ η \[Σ_1\] έρχεται με ταχύτητα \[\vec{u}\]. Οι δύο σφαίρες συγκρούονται μετωπικά και ελαστικά και στη συνέχεια αφού συγκρουστούν ελαστικά με τους τοίχους, συναντώνται ξανά στο μέσο της απόστασης μεταξύ αυτών. Η σχέση ανάμεσα στις αλγεβρικές τιμές των ταχυτήτων \[\vec{u}\] και \[\vec{u}_1'\] είναι:
13. Μια σφαίρα \[Σ_1\] συγκρούεται έκκεντρα με ακίνητη σφαίρα \[Σ_2\] ίδιας μάζας. Μετά την κρούση οι σφαίρες κινούνται στο ίδιο επίπεδο και σε διευθύνσεις κάθετες μεταξύ τους. Η κρούση μεταξύ των δυο σφαιρών είναι
14. Όταν μια μικρή σφαίρα προσκρούει ελαστικά και κάθετα στην επιφάνεια ενός τοίχου, τότε:
15. Σε μια μετωπική κρούση δύο σωμάτων:
16. Κατά την κεντρική πλαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που κτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\]. Να επιλέξετε τις σωστές από τις παρακάτω προτάσεις.
17. Κατά την μετωπική ελαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που χτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\],
18. Μια σφαίρα με μάζα \[m_1\] κινείται οριζόντια με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2=λ\, m_1\]. Το ποσοστό % της ελάττωσης της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] λόγω της κρούσης είναι ίσο με
19. Σωμάτιο \[α\] \[(m_α=4m_p)\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[υ\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου. Ο πυρήνας Π θα μπορούσε να είναι πυρήνας
20. Ποιο από τα ακόλουθα σώματα έχει τη μεγαλύτερη κατά μέτρο ορμή;
21. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
22. Δύο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[Κ_{αρχ}\] και \[Κ_{τελ}\] τις κινητικές ενέργειες του συστήματος πρίν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac{ Κ_{τελ}}{Κ_{αρχ}}\] παίρνει
23. Δύο παγοδρόμοι, Α και Β, με μάζες \[m_1= 60\, kg\] και \[m_2= 80\, kg\] αντίστοιχα, βρίσκονται σε απόσταση \[L\], σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί. Κάποια στιγμή ο Α τραβάει απότομα το σχοινί προς το μέρος του, με αποτέλεσμα να κινηθούν και οι δύο με σταθερές ταχύτητες πλησιάζοντας μεταξύ τους. Εάν ο Α διανύσει απόσταση \[L_1\] και ο Β απόσταση \[L_2\] μέχρι να συναντηθούν, τότε ισχύει:
24. Μια αυτοκινητοβιομηχανία για να ελέγξει τους αερόσακους των νέων αυτοκινήτων χρησιμοποιεί δοκιμαστικές κούκλες μάζας \[80 \; kg\] που μπορούν να συγκρουστούν με ακίνητους αερόσακους . Η ταχύτητα μιας τέτοιας κούκλας είναι \[40 \; \frac{m}{s}\]. Μετά από \[0,2\; s\] η κούκλα ακινητοποιείται αφού ο αερόσακος έχει ανοίξει. Η μέση δύναμη που δέχεται η κούκλα σε αυτό το χρονικό διάστημα είναι:
25. Δύο σώματα έχουν μάζες \[m_1=m\] και \[m_2=4m\] και οριζόντιες σταθερές και ομόρροπες ταχύτητες με μέτρα \[u_1=8u\] και \[u_2= 3u\]. Η αλγεβρική τιμή της ορμής του συστήματος είναι:
26. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
27. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=2m\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\]. To άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
28. Μια σφαίρα πολύ μικρής μάζας κινείται με ταχύτητα \[\vec{υ}\] και συγκρούεται κεντρικά και ελαστικά με άλλη ακίνητη σφαίρα πολύ μεγαλύτερης μάζας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
29. Ένα σώμα κινείται με σταθερή επιτάχυνση \[ \vec{ α} \]. Η μεταβολή της ορμής του \[ Δ\vec{ p} \] έχει την κατεύθυνση:
30. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[\vec{u}_0\] συγκρούεται κεντρικά και πλαστικά με κιβώτιο μάζας \[M=3m\] που είναι αρχικά ακίνητο στη βάση κεκλιμένου επιπέδου γωνίας κλίσης \[φ= 30^0\]. Το κεκλιμένο επίπεδο έχει μήκος \[S\] και παρουσιάζει συντελεστή τριβής \[μ=\frac{\sqrt{3}}{6}\] με το κιβώτιο. Tο μέτρο της ταχύτητας \[u_0\] που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα, μετά τη κρούση αφού ολισθήσει, να σταματήσει στη κορυφή του κεκλιμένου επιπέδου είναι:

    +30

    CONTACT US
    CALL US