1. Στα παρακάτω φίλτρα ταχυτήτων των σχημάτων α, β εισέρχεται ένα αρνητικό (σχήμα α) και ένα θετικό φορτίο (σχήμα β) με ίδιες κατά μέτρο ταχύτητες υ που οι κατευθύνσεις τους φαίνονται στα σχήματα. Τα μέτρα των εντάσεων των πεδίων και στα δύο πεδία είναι \[\vec{E}\, , \, \vec{B}\]. Τα φορτία δεν εκτρέπονται περνώντας απ’ τα φίλτρα ταχυτήτων. Οι βαρυτικές δυνάμεις θεωρούνται αμελητέες. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα \[\vec{υ}\] που σχηματίζει γωνία \[θ\] με την ένταση \[ \vec{B}\] του πεδίου με \[ 0 < θ < π \]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το έργο της δύναμης Lorentz \[\vec{F}_{Lo}\] που δέχεται το σωματίδιο σε μια διαδρομή του μέσα στο πεδίο είναι: 7. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Βόρειο και νότιο μαγνητικό πόλο μπορούμε να παρατηρήσουμε στο μαγνητικό πεδίο: 9. Φορτισμένο σωματίδιο εισέρχεται σε ομογενές μαγνητικό πεδίο κάθετα στις δυναμικές γραμμές του με ορμή μέτρου \[p\]. Στο σωματίδιο ασκείται μόνο η δύναμη Lorentz απ’ το πεδίο αυτό. Το σωματίδιο εκτελεί ομαλή κυκλική κίνηση ακτίνας \[R_1\] και περιόδου \[T_1\]. Αν το ίδιο σωματίδιο εισέρχονταν στο ίδιο πεδίο με ταχύτητα ίδιας κατεύθυνσης και ορμής διπλάσιου μέτρου τότε θα εκτελούσε ομαλή κυκλική κίνηση ακτίνας \[R_2\] και περιόδου \[Τ_2\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για τις παραπάνω ακτίνες και περιόδους ισχύει: 10. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Η μάζα \[m\] του ηλεκτρονίου: 11. Ένα φορτισμένο σωματίδιο μάζας \[m\] και φορτίου \[q\] εκτελεί ομαλή κυκλική κίνηση μέσα σε ομογενές μαγνητικό πεδίο δεχόμενο δύναμη μόνο απ’ το μαγνητικό αυτό πεδίο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Η ακτίνα της κυκλικής τροχιάς του σωματιδίου: 12. Σωματίδιο κινείται κάθετα στις δυναμικές γραμμές του πεδίου με ταχύτητα μέτρου \[υ\] και δέχεται μόνο τη δύναμη Lorentz \[\vec{F}_{Lo}\] απ’ το πεδίο αυτό. Ο ρυθμός μεταβολής της κινητικής ενέργειας του σωματιδίου είναι: 17. Στο παρακάτω σχήμα φαίνονται τρεις διαδρομές \[ S_1\, , \, S_2\, , \, S_3\] και οι φορές διαγραφής τους. Τα έγκλειστα ρεύματα απ’ τις διαδρομές αυτές έχουν ίδια ένταση \[Ι\] και οι φορές τους φαίνονται στο σχήμα. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Το άθροισμα \[∑B\cdot Δ\ell \cdot συνθ\]:
19. Στο παρακάτω σχήμα ο κυκλικός αγωγός ακτίνας \[α\] συνδέεται με πηγή έντασης \[ \mathcal{E} \]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
22. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Ένα στοιχειώδες τμήμα \[Δ\ell\] ενός ρευματοφόρου αγωγού τυχαίου σχήματος που διαρρέεται από ρεύμα έντασης \[Ι\] δημιουργεί σ’ ένα σημείο Α του χώρου που απέχει \[r\] απ’ το τμήμα \[Δ\ell\] μαγνητικό πεδίο έντασης \[Δ\vec{B}\]. Η απόσταση \[r\] είναι κάθετη στο τμήμα \[Δ\ell\]. 23. Το παρακάτω αγώγιμο πλαίσιο ΚΛΜΝ σχήματος ορθογωνίου παραλληλογράμμου βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο έντασης μέτρου \[Β\] που οι δυναμικές γραμμές του είναι παράλληλες στο επίπεδό του. Όλες οι πλευρές του πλαισίου διαρρέονται απ’ το ίδιο ρεύμα έντασης \[Ι\]. Τα μήκη των πλευρών του πλαισίου είναι \[α,\, β\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή;
24. Στο παρακάτω σχήμα φαίνονται διαγράμματα που αναφέρονται στο μαγνητικό πεδίο ευθύγραμμου ρευματοφόρου αγωγού απείρου μήκους. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Ο αγωγός του παρακάτω σχήματος είναι τμήμα κύκλου ακτίνας \[r\] και κέντρου Κ. Η επίκεντρη γωνία που του αντιστοιχεί είναι \[Δθ\] μετρημένη σε \[rad\]. Ο αγωγός διαρρέεται από ρεύμα έντασης \[Ι\] που η φορά του φαίνεται στο σχήμα. Αν \[μ_0\] η μαγνητική διαπερατότητα του κενού, τότε η ένταση του μαγνητικού πεδίου του αγωγού στο κέντρο του Κ:
27. Θετικά φορτισμένα σωματίδια μάζας \[m\] και φορτίου \[q\] επιταχύνονται απ’ την ηρεμία υπό τάση \[V\] και κατόπιν εισέρχονται σε φίλτρο ταχυτήτων μαγνητικού πεδίου έντασης \[ \vec{B} \] και ηλεκτρικού πεδίου έντασης \[\vec{E}\] όπως φαίνεται στο παρακάτω σχήμα. Αν τετραπλασιάσουμε την τάση που επιταχύνει το φορτίο τότε για να μην εκτραπεί της αρχικής του πορείας από το φίλτρο ταχυτήτων πρέπει:
29. Ο ευθύγραμμος αγωγός ΚΛ έχει μήκος \[\ell\] και αντίσταση \[R\]. Ο αγωγός κρέμεται συνδεδεμένος στο μέσο του με δυναμόμετρο. Ο αγωγός βρίσκεται κατά ένα μέρος του μέσα σε οριζόντιο ομογενές μαγνητικό πεδίο, ενώ τα τμήματά του μήκους \[α\] το καθένα βρίσκονται εκτός του μαγνητικού πεδίου όπως φαίνεται στο διπλανό σχήμα. Η ένταση του μαγνητικού πεδίου είναι οριζόντια και κάθετη στο μαγνητικό πεδίο του αγωγού. Ο αγωγός συνδέεται μέσω συρμάτων αμελητέας αντίστασης και διακόπτη δ με πηγή που έχει ΗΕΔ \[\mathcal{E}\] και εσωτερική αντίσταση \[r=R\]. Αρχικά ο διακόπτης δ είναι ανοικτός, η ένδειξη του δυναμομέτρου είναι ίση με \[F\] και ο αγωγός ισορροπεί. Όταν κλείσουμε το διακόπτη, η ένδειξη του δυναμομέτρου στη νέα θέση ισορροπίας του αγωγού είναι μηδενική. Για την αντίσταση \[R\] του αγωγού και την φορά της \[\vec{B}\] του μαγνητικού πεδίου ισχύουν:
30. Στο παρακάτω σχήμα οι ευθύγραμμοι παράλληλοι αγωγοί (1), (2) βρίσκονται στο ίδιο οριζόντιο επίπεδο, είναι στερεωμένοι σε απόσταση r ώστε να παραμένουν ακίνητοι και διαρρέονται από αντίρροπα ρεύματα εντάσεων \[Ι_1,\, Ι_2\] αντίστοιχα με \[I_2 > I_1\]. Τρίτος ευθύγραμμος ρευματοφόρος αγωγός τοποθετείται παράλληλα με τους δύο πρώτους και πάνω στο ίδιο οριζόντιο επίπεδο με αυτούς. Αν η συνισταμένη δύναμη Laplace ανά μονάδα μήκους που δέχεται ο αγωγός (3) απ’ τους άλλους δύο είναι μηδενική:
Α) ο αγωγός (3) πρέπει να τοποθετηθεί:
α) μεταξύ των αγωγών.
β) πιο κοντά στον αγωγό (1).
γ) πιο κοντά στον αγωγό (2).
Β) Ο αγωγός (3) τοποθετείται σε απόσταση \[\frac{ r }{ 3 }\] απ’ τον αγωγό (1), τότε η συνισταμένη δύναμη Laplace ανά μονάδα μήκους που δέχεται ο (3) απ’ τους άλλους δύο είναι μηδενική. Τότε για τις εντάσεις των ρευμάτων των (1), (2) και τη φορά του ρεύματος του αγωγού (3) ισχύει:
α) \[\frac{I_1}{I_2} =\frac{1}{2}\] και πρέπει οπωσδήποτε το ρεύμα του (3) να είναι ομόρροπο του ρεύματος του (1).
β) \[\frac{Ι_1}{Ι_2} =\frac{1}{2}\] και το ρεύμα του (3) μπορεί να έχει οποιαδήποτε φορά.
γ) \[\frac{Ι_1}{Ι_2} =\frac{1}{4}\] και πρέπει οπωσδήποτε το ρεύμα του (3) να είναι ομόρροπο του ρεύματος του (2).
δ) \[\frac{Ι_1}{Ι_2} =\frac{1}{4}\] και το ρεύμα του (3) μπορεί να έχει οποιαδήποτε φορά.