MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Τα σημεία Β, Γ, Δ κάποια χρονική στιγμή βρίσκονται στην ίδια κατακόρυφη διάμετρο και την ίδια στιγμή έχουν ταχύτητες μέτρων \[υ_Β,\, υ_Γ,\, υ_Δ\] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι σωστή;
2. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\]. Όταν το σημείο Ζ έχει ταχύτητα \[υ_Ζ=υ_{cm}\] η γωνία \[θ\] είναι:
3. Η ράβδος ΟΑ του παρακάτω σχήματος α εκτελεί στροφική κίνηση γύρω από κατακόρυφο άξονα κάθετο στη ράβδο που διέρχεται απ’ το άκρο της Ο. Στο σχήμα β φαίνεται η μεταβολή της γωνιακής ταχύτητας της ράβδου με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Τροχός ακτίνας \[R=0,25\, m\] στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ το κέντρο του. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=10-4t\] (S.I.). Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
5. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γραφική παράσταση της γωνιακής ταχύτητας του τροχού με το χρόνο δίνεται απ’ το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

7. Οι οδοντωτοί τροχοί του παρακάτω σχήματος έρχονται σε επαφή και στρέφονται ταυτόχρονα γύρω από σταθερό άξονα που ο καθένας είναι κάθετος στο επίπεδο των βάσεών του. Οι κινήσεις τους είναι ομαλά επιταχυνόμενες. Ποιες από τις επόμενες προτάσεις είναι σωστές; Οι δύο οδοντωτοί τροχοί:
8. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν.
9. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Σε ομογενή ράβδο ΚΛ μήκους \[\ell\] του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκούνται δύο δυνάμεις παράλληλες, ίδιου μέτρου \[F_1=F_2=F\] και αντίθετης φοράς που σχηματίζουν με τη ράβδο γωνία \[φ\] με \[ημφ=0,8\], συνφ=0,6. Το μέτρο της συνισταμένης ροπής των δύο αυτών δυνάμεων είναι:
11. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
12. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Ποιες από τις επόμενες προτάσεις είναι σωστές;
13. H αβαρής ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από άξονα κάθετο στο επίπεδο του σχήματος και διερχόμενο από το άκρο της Ο. Αν Μ είναι το μέσο της ράβδου για να ισορροπεί αυτή πρέπει το μέτρο της δύναμης \[F_2\] να είναι
14. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος εκτελεί ένας τροχός:
15. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα \[ω\]. Η σχέση που συνδέει την ίδια στιγμή τα μέτρα των ταχυτήτων των σημείων της κατακόρυφης διαμέτρου ΑΒ με την απόστασή τους \[x\] απ’ το σημείο Α του τροχού που την ίδια στιγμή είναι σε επαφή με το έδαφος είναι:
16. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Στο σχήμα οι \[\vec{F}_1 \] και \[\vec{F}_2 \] αποτελούν ζεύγος δυνάμεων. Αν \[x_1,\, x_2\] είναι οι αποστάσεις των φορέων των δυνάμεων \[\vec{F}_1,\, \vec{F}_2\] αντίστοιχα από το Κ τότε η αλγεβρική τιμή της ροπής του ζεύγους ως προς το σημείο Κ είναι
18. Ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται ομοεπίπεδες δυνάμεις παραμένει ακίνητο αν:
19. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο έδαφος. Ποιες από τις επόμενες προτάσεις είναι σωστές;
20. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο έδαφος. Τα μέτρα των ταχυτήτων των σημείων Β, Γ, Δ την ίδια στιγμή είναι αντίστοιχα \[υ_Β,\, υ_Γ,\, υ_Δ\]. Ποια από τις παρακάτω σχέσεις είναι σωστή;
21. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] και το κέντρο μάζας του έχει σταθερή ταχύτητα \[\vec{υ}_{cm}\] ενώ ένα σημείο Ζ που απέχει \[r\] απ’ το κέντρο Κ του τροχού έχει γραμμική ταχύτητα \[\vec{υ}_{γρ_Ζ }\]. Σύμφωνα με την αρχή της επαλληλίας των κινήσεων η ταχύτητα του σημείου Ζ είναι:
22. Η ράβδος ΚΛ είναι αρθρωμένη στο σημείο Κ σε κατακόρυφο τοίχο και δεμένη με ένα νήμα στο σημείο Ν και ισορροπεί. Ζητήθηκε από τρεις μαθητές (α), (β) και (γ) να σχεδιάσουν τη δύναμη της άρθρωσης και αυτοί σχεδίασαν αντίστοιχα τις δυνάμεις: α. \[\vec{F}_1\] β. \[\vec{F}_2\] γ. \[\vec{F}_3\]. Εσείς με ποια άποψη συμφωνείτε;
23. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα \[υ_{cm}\] προς τα δεξιά και η γωνιακή ταχύτητα έχει τη φορά που φαίνεται στο παρακάτω σχήμα και σταθερό μέτρο. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] οριζόντια προς τα αριστερά. Σε χρόνο \[Δt\] ο τροχός διαγράφει γωνία \[Δθ\] και το cm μετατοπίζεται οριζόντια κατά \[Δx_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
24. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τα σημεία Ζ, Η του τροχού βρίσκονται κάποια στιγμή στην κατακόρυφη διάμετρο και είναι συμμετρικά ως προς το κέντρο μάζας Κ του τροχού. Η διαφορά των μέτρων των ταχυτήτων τους είναι \[υ_Ζ-υ_Η=\frac{2}{3} υ_{cm}\] όπου \[υ_{cm}\] το μέτρο της ταχύτητας του κέντρου μάζας του τροχού την ίδια στιγμή. Η απόσταση των δύο σημείων Ζ, Η του τροχού από το κέντρο Κ είναι:
26. Αβαρής ράβδος μήκους \[ \ell \] ισορροπεί οριζόντια με την επίδραση των δυνάμεων \[\vec{F}_1\] και \[ \vec{F}_2\] όπως φαίνεται στο σχήμα. Η απόσταση \[x\] δίνεται από τη σχέση
27. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Η ταχύτητα του κέντρου μάζας του είναι σταθερή και έχει μέτρο \[υ_{cm}\]. Σημείο Ζ απέχει απόσταση \[r=\frac{R}{2}\] απ’ το κέντρο του τροχού. Όταν η επιβατική ακτίνα του Ζ σχηματίζει γωνία \[θ=60^0\] με την κατακόρυφη διάμετρο (βλ. σχήμα), το μέτρο της ταχύτητας του Ζ είναι:
28. Ομογενής κύλινδρος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει με σταθερή επιτάχυνση \[α_{cm}\] λόγω μεταφορικής κίνησης και γωνιακή επιτάχυνση \[α_{γων}\]. Κάποια χρονική στιγμή τα μέτρα της ταχύτητας λόγω μεταφορικής κίνησης και της γωνιακής ταχύτητας είναι \[υ_{cm}\] και \[ω\] αντίστοιχα. Ποιες από τις επόμενες σχέσεις είναι σωστές;
29. Η διπλή τροχαλία του σχήματος είναι ελεύθερη και αποτελείται από δύο συγκολλημένους ομοαξονικούς δίσκους με ακτίνες \[R\] και \[2R\]. Στον δίσκο με ακτίνα \[R\] είναι τυλιγμένο αρκετές φορές νήμα το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο στην οροφή. Στον μεγάλο δίσκο ακτίνας \[2R\] είναι τυλιγμένο νήμα το οποίο τυλίγεται γύρω από την τροχαλία ακτίνας \[R\]. Η τροχαλία συγκρατείται από ακλόνητο άξονα περιστροφής και μπορεί να στρέφεται χωρίς τριβές. Το άκρο Α του νήματος με κατάλληλη δύναμη έχει ταχύτητα \[υ\] προς τα κάτω με αποτέλεσμα η διπλή τροχαλία να μεταφέρεται προς τα πάνω και να στρέφεται με φορά αντίθετη των δεικτών του ρολογιού. Αν τα νήματα είναι αβαρή, μη εκτατά και δεν ολισθαίνουν στις τροχαλίες, η ταχύτητα που κινείται το σημείο Β είναι:
30. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος έχει μικρό κυκλικό αυλάκι με κέντρο το κέντρο του τροχού και ακτίνα \[r=\frac{R}{2}\]. Στο αυλάκι ακουμπάμε λεπτή οριζόντια ράβδο και με κατάλληλο μηχανισμό ο τροχός αρχίζει να κυλίεται χωρίς να ολισθαίνει και ταυτόχρονα μεταφέρεται η ράβδος χωρίς να ολισθαίνει στο αυλάκι και παραμένοντας συνεχώς οριζόντια. Τη στιγμή που το κέντρο μάζας του τροχού έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας της ράβδου είναι:

    +30

    CONTACT US
    CALL US