MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ το κέντρο του Κ. Ο τροχός έχει ακτίνα \[R\]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του ταχύτητας με το χρόνο. Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
2. Οι δυο ομόκεντροι τροχοί του διπλανού σχήματος είναι κολλημένοι και μπορούν να περιστρέφονται γύρω από άξονα που διέρχεται από το κέντρο τους. Αν το σύστημα περιστρέφεται με σταθερή γωνιακή ταχύτητα με τη φορά των δεικτών του ρολογιού τότε για τα μέτρα των δυνάμεων ισχύει
3. Σε μια ράβδο ΑΓ που ισορροπεί πάνω σε οριζόντιο επίπεδο ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\], όπως φαίνεται στο σχήμα. Το μέτρο της ροπής του ζεύγους είναι
4. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα κάθετο στις βάσεις του που διέρχεται απ’ το κέντρο του. Ένα σημείο της περιφέρειάς του αυξάνει το μέτρο της γραμμικής ταχύτητάς του σύμφωνα με την εξίσωση \[υ=3t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Η διπλή τροχαλία του σχήματος είναι ελεύθερη και αποτελείται από δύο συγκολλημένους ομοαξονικούς δίσκους με ακτίνες \[R\] και \[2R\]. Στον δίσκο με ακτίνα \[R\] είναι τυλιγμένο αρκετές φορές νήμα το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο στην οροφή. Στον μεγάλο δίσκο ακτίνας \[2R\] είναι τυλιγμένο νήμα το οποίο τυλίγεται γύρω από την τροχαλία ακτίνας \[R\]. Η τροχαλία συγκρατείται από ακλόνητο άξονα περιστροφής και μπορεί να στρέφεται χωρίς τριβές. Το άκρο Α του νήματος με κατάλληλη δύναμη έχει ταχύτητα \[υ\] προς τα κάτω με αποτέλεσμα η διπλή τροχαλία να μεταφέρεται προς τα πάνω και να στρέφεται με φορά αντίθετη των δεικτών του ρολογιού. Αν τα νήματα είναι αβαρή, μη εκτατά και δεν ολισθαίνουν στις τροχαλίες, η ταχύτητα που κινείται το σημείο Β είναι:
6. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:

α) \[ ωR\],              β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],           β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\],       γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].

Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],                    β) \[ω\left( \frac{R}{r}+1 \right)\],                γ) \[ ω \left( \frac{R}{r}-1\right) \].

Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:

α) \[0\],                             β) \[ω^2 R\],                     γ) \[ω^2 r\].

7. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομόκεντρους ομογενείς ομογενείς δίσκους \[(1)\, , \, (2)\] ακτίνων \[R_1\, ,\, R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κοινό κέντρο Κ των δύο δίσκων και είναι κάθετος στο επίπεδό τους. Απ’ την περιφέρεια του κάθε δίσκου έχουμε κρεμάσει μέσω αβαρών νημάτων ένα σώμα μάζας \[m_1\] απ’ την περιφέρεια του δίσκου \[(1)\] και ένα σώμα μάζας \[m_2\] απ’ την περιφέρεια του δίσκου \[(2)\]. Αν το βάρος της διπλής τροχαλίας είναι \[7w_1\] τότε το μέτρο της δύναμης που δέχεται η διπλή τροχαλία απ’ τον άξονα περιστροφής της είναι:
8. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\]. Όταν το σημείο Ζ έχει ταχύτητα \[υ_Ζ=υ_{cm}\] η γωνία \[θ\] είναι:
9. Η ομογενής ράβδος ΟΑ μήκους \[\ell\] στρέφεται σε κατακόρυφο επίπεδο, γύρω από οριζόντιο άξονα που περνά από το άκρο Ο. Η ροπή του βάρους \[\vec{w}\] της ράβδου ως προς τον άξονα περιστροφής είναι
10. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
11. Ένα ελεύθερο στερεό σώμα ισορροπεί ακίνητο καθώς δέχεται τη δράση δυο ομοεπίπεδων δυνάμεων.

α) Ισχύει ότι οι δυο αυτές δυνάμεις πρέπει να έχουν τον ίδιο φορέα, ίσα μέτρα και αντίθετες κατευθύνσεις;
β) Αν οι δυο αυτές δυνάμεις γίνουν παράλληλες χωρίς να αλλάξει η φορά και το μέτρο τους θα συνεχίσει να ισορροπεί το στερεό σώμα;

12. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:
Α) Aν το κέντρο μάζας τη στιγμή \[t_1\] έχει ταχύτητα μέτρου \[υ_{cm}\], το άκρο Α έχει ταχύτητα μέτρου:

α) \[\frac{3}{2} υ_{cm} \],                β) \[2υ_{cm}\],        γ) \[υ_{cm}\].

Β) Αν το κέντρο μάζας του δίσκου έχει επιτάχυνση μέτρου \[α_{cm}\], τότε το ελεύθερο άκρο Α του νήματος έχει επιτάχυνση μέτρου:

α) \[α_{cm}\],                      β) \[\frac{3}{2} α_{cm}\],                       γ) \[2α_{cm}\].

13. Για να αρχίσει να στρέφεται ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται δυνάμεις πρέπει
14. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα \[υ_{cm}\] προς τα δεξιά και η γωνιακή ταχύτητα έχει τη φορά που φαίνεται στο παρακάτω σχήμα και σταθερό μέτρο. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] οριζόντια προς τα αριστερά. Σε χρόνο \[Δt\] ο τροχός διαγράφει γωνία \[Δθ\] και το cm μετατοπίζεται οριζόντια κατά \[Δx_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
15. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:
16. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος έχει μικρό κυκλικό αυλάκι με κέντρο το κέντρο του τροχού και ακτίνα \[r=\frac{R}{2}\]. Στο αυλάκι ακουμπάμε λεπτή οριζόντια ράβδο και με κατάλληλο μηχανισμό ο τροχός αρχίζει να κυλίεται χωρίς να ολισθαίνει και ταυτόχρονα μεταφέρεται η ράβδος χωρίς να ολισθαίνει στο αυλάκι και παραμένοντας συνεχώς οριζόντια. Τη στιγμή που το κέντρο μάζας του τροχού έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας της ράβδου είναι:
17. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

18. Τροχός στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του τροχού μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] και το κέντρο μάζας του έχει σταθερή ταχύτητα \[\vec{υ}_{cm}\] ενώ ένα σημείο Ζ που απέχει \[r\] απ’ το κέντρο Κ του τροχού έχει γραμμική ταχύτητα \[\vec{υ}_{γρ_Ζ }\]. Σύμφωνα με την αρχή της επαλληλίας των κινήσεων η ταχύτητα του σημείου Ζ είναι:
20. Για ένα ακίνητο στερεό σώμα την t=0, για να μην αρχίσει να κινείται αμέσως μετά την t=0, θα πρέπει την t=0 να ισχύει:
21. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Ο τροχός του παρακάτω σχήματος εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη βάση του με τη φορά που φαίνεται στο σχήμα. Το μέτρο της γωνιακής του ταχύτητας μειώνεται με το χρόνο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
23. Η ομογενής σφαίρα του παρακάτω σχήματος έχει ακτίνα \[R\] και βάρος \[w\], βρίσκεται σε οριζόντιο επίπεδο και πρόκειται να ανέβει ένα τραχύ σκαλοπάτι ύψους \[h = \frac{R}{4}\]. Για το σκοπό αυτό ασκούμε μια οριζόντια δύναμη \[F_1\] στο κέντρο της Κ με την κατεύθυνση του σχήματος. Επαναλαμβάνουμε το ίδιο πείραμα ασκώντας μια ομόρροπη οριζόντια δύναμη \[F_2\] στο ανώτερο σημείο της Α. Ο λόγος των μέτρων των δύο ελάχιστων δυνάμεων \[ F_{1,min} \, , \, F_{2,min} \] ώστε να αρχίσει η υπερπήδηση της σφαίρας είναι \[\frac{F_{1,min} } { F_{2,min} }\]:
24. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα \[ω\]. Η σχέση που συνδέει την ίδια στιγμή τα μέτρα των ταχυτήτων των σημείων της κατακόρυφης διαμέτρου ΑΒ με την απόστασή τους \[x\] απ’ το σημείο Α του τροχού που την ίδια στιγμή είναι σε επαφή με το έδαφος είναι:
25. Ο τροχός του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο και το cm του έχει σταθερή επιτάχυνση \[\vec{α}_{cm} \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Τα σημεία Β, Γ, Δ κάποια χρονική στιγμή βρίσκονται στην ίδια κατακόρυφη διάμετρο και την ίδια στιγμή έχουν ταχύτητες μέτρων \[υ_Β,\, υ_Γ,\, υ_Δ\] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι σωστή;
27. H αβαρής ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από άξονα κάθετο στο επίπεδο του σχήματος και διερχόμενο από το άκρο της Ο. Αν Μ είναι το μέσο της ράβδου για να ισορροπεί αυτή πρέπει το μέτρο της δύναμης \[F_2\] να είναι
28. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
29. Σφαιρίδιο εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\] και η αλγεβρική τιμή της στροφορμής του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Από \[0\] ως \[t_1\] το μέτρο της συνισταμένης ροπής που δέχεται το σφαιρίδιο ως προς τον άξονα περιστροφής του είναι \[Στ_1\] ενώ απ’ την \[t_1\] ως την \[t_2\] είναι \[Στ_2\]. Αντίστοιχα οι επιτρόχιες επιταχύνσεις του σφαιριδίου στα δύο παραπάνω χρονικά διαστήματα έχουν μέτρο \[α_1\, , \, α_2\]. Για τα παραπάνω μεγέθη ισχύουν:
30. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Σε έναν κύβο το κέντρο μάζας του ταυτίζεται με το σημείο τομής των διαγωνίων του. Αυτό σημαίνει ότι:

    +30

    CONTACT US
    CALL US