MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για να αρχίσει να στρέφεται ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται δυνάμεις πρέπει
2. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:

Α) Το κέντρο μάζας του δίσκου μέχρι τη στιγμή \[t_1\]  έχει μετατοπιστεί κατά \[Δx_{cm}\]  που είναι ίσο με:

α) \[ \ell \],                              β) \[\frac{\ell}{2}\],               γ) \[2\ell\].

Β) Το ελεύθερο άκρο του νήματος μέχρι τη στιγμή \[t_1\]  μετατοπίζεται κατά \[Δx_A\]  που είναι ίσο με:

α) \[3\ell\],                            β) \[2\ell\],                γ) \[\ell\].

3. Ένα ελεύθερο στερεό σώμα ισορροπεί ακίνητο καθώς δέχεται τη δράση δυο ομοεπίπεδων δυνάμεων.

α) Ισχύει ότι οι δυο αυτές δυνάμεις πρέπει να έχουν τον ίδιο φορέα, ίσα μέτρα και αντίθετες κατευθύνσεις;
β) Αν οι δυο αυτές δυνάμεις γίνουν παράλληλες χωρίς να αλλάξει η φορά και το μέτρο τους θα συνεχίσει να ισορροπεί το στερεό σώμα;

4. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\]  είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\]  και απ’ τη στιγμή \[2t_1\]  ως \[4t_1\]  τότε ισχύει:

α) \[α_{γων_1 }=α_{γων_2 }\],                
β) \[α_{γων_1 }=-α_{γων_2 }\],               
γ) \[α_{γων_1 }=2α_{γων_2 }\],              
δ) \[α_{γων_1 }=-2α_{γων_2 }\].

Β) Απ’ τη στιγμή \[t_1\]  ως τη στιγμή \[2t_1\]  ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.

5. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Ποιες από τις επόμενες προτάσεις είναι σωστές;
6. Σε λεπτό ομογενή κύλινδρο κέντρου Κ και ακτίνας \[R\] έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r\] και μπορεί να στρέφεται γύρω από οριζόντιο άξονα που είναι κάθετος στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν η επιτάχυνση του κέντρου μάζας του κυλίνδρου είναι \[α_{cm}\] τότε τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ }\] συνδέονται με τη σχέση:
7. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

9. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
11. Στον ομογενή ακίνητο κύλινδρο του παρακάτω σχήματος έχουμε τυλίξει λεπτό και μη εκτατό νήμα. Τραβώντας το άκρο Α του νήματος ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και το κέντρο μάζας του κυλίνδρου αποκτά επιτάχυνση μέτρου \[α_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το ελεύθερο άκρο Α του νήματος έχει επιτάχυνση μέτρου:
12. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα \[υ_{cm}\] προς τα δεξιά και η γωνιακή ταχύτητα έχει τη φορά που φαίνεται στο παρακάτω σχήμα και σταθερό μέτρο. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] οριζόντια προς τα αριστερά. Σε χρόνο \[Δt\] ο τροχός διαγράφει γωνία \[Δθ\] και το cm μετατοπίζεται οριζόντια κατά \[Δx_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
13. Η ράβδος ΚΛ είναι αρθρωμένη στο σημείο Κ σε κατακόρυφο τοίχο και δεμένη με ένα νήμα στο σημείο Ν και ισορροπεί. Ζητήθηκε από τρεις μαθητές (α), (β) και (γ) να σχεδιάσουν τη δύναμη της άρθρωσης και αυτοί σχεδίασαν αντίστοιχα τις δυνάμεις: α. \[\vec{F}_1\] β. \[\vec{F}_2\] γ. \[\vec{F}_3\]. Εσείς με ποια άποψη συμφωνείτε;
14. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
15. Μια ομογενής δοκός ΑΓ βάρους \[w\], είναι αρθρωμένη σε κατακόρυφο τοίχο και διατηρείται οριζόντια με τη βοήθεια κατακόρυφου νήματος που είναι δεμένο στο άλλο άκρο της, όπως φαίνεται στο σχήμα. Η δύναμη του νήματος \[\vec{T}\] έχει μέτρο:
16. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ το κέντρο του Κ. Ο τροχός έχει ακτίνα \[R\]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του ταχύτητας με το χρόνο. Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
17. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Στο παρακάτω σχήμα ο ομογενής κύλινδρος κέντρου Κ έχει ακτίνα \[R\] ενώ η τροχαλία Τ έχει ακτίνα \[r = \frac{R}{2}\]. Την \[t=0\] αφήνω το σύστημα ελεύθερο. Το σώμα Σ αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει πάνω στο δάπεδο, το σχοινί ξετυλίγεται απ’ αυτόν ενώ η τροχαλία εκτελεί μόνο στροφική κίνηση. Το νήμα είναι μη εκτατό και δεν ολισθαίνει ούτε στον κύλινδρο ούτε στην τροχαλία. Για τα μέτρα των γωνιακών επιταχύνσεων του κυλίνδρου \[α_{γων_Κ }\] και της τροχαλίας \[α_{γων_Τ}\] ισχύει:
18. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν το μέτρο της επιτάχυνσης του κυλίνδρου είναι \[α_{cm}\] τότε το μέτρο της επιτάχυνσης \[α_Σ\] του σώματος Σ είναι:
19. Στερεό σώμα στρέφεται γύρω από σταθερό άξονα και η μεταβολή της γωνιακής ταχύτητας του σώματος με το χρόνο φαίνεται στο παρακάτω διάγραμμα.
Ποιο απ’ τα παρακάτω διαγράμματα εκφράζει τη μεταβολή της γωνιακής επιτάχυνσης με το χρόνο;
20. Η ομογενής ράβδος ΟΑ του παρακάτω σχήματος στρέφεται πάνω σε οριζόντιο επίπεδο γύρω από σταθερό κατακόρυφο άξονα. Στο σχήμα φαίνονται οι κατευθύνσεις της γωνιακής επιτάχυνσης της ράβδου και της επιτρόχιας επιτάχυνσης του άκρου της Α. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
21. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Την ίδια χρονική στιγμή \[t_1\]:
22. Δύο στερεά σώματα (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερό άξονα περιστροφής το καθένα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας του κάθε στερεού με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
23. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].

Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται

α) η οριζόντια δύναμη μέτρου \[F_2\]  που είναι αντίθετη με την \[F_1\]  ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν

β) η οριζόντια δύναμη \[F_3\]  ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν

Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:

α) \[\frac{F_1}{3}\]         β) \[3F_1\]       γ) \[\frac{F_1}{4}\]        δ) \[\frac{3F_1}{4}\]

24. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος εκτελεί ένας τροχός:
25. Ένα στερεό, που αρχικά είναι ακίνητο, δέχεται ομοεπίπεδες δυνάμεις για τις οποίες ισχύουν \[Σ\vec{F}≠0\] και \[Στ=0\] ως προς άξονα κάθετο στο επίπεδο των δυνάμεων που διέρχεται από το cm του. Το στερεό αυτό:
26. Στερεό σώμα εκτελεί στροφική κίνηση και η γωνιακή του ταχύτητα δίνεται απ’ τη σχέση \[ω=5+2t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Σε μια ράβδο ΑΓ που ισορροπεί πάνω σε οριζόντιο επίπεδο ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\], όπως φαίνεται στο σχήμα. Το μέτρο της ροπής του ζεύγους είναι
28. Ράβδος την \[t=0\] αρχίζει να στρέφεται γύρω από σταθερό άξονα περιστροφής. Ο ρυθμός μεταβολής της γωνιακής ταχύτητάς της είναι σταθερός και ομόρροπος της γωνιακής της ταχύτητας. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Ο αριθμός των περιστροφών που έχει εκτελέσει η ράβδος μέχρι τη χρονική στιγμή \[t\] είναι ανάλογος του:
29. Τροχός ακτίνας \[R=0,5\, m\] στρέφεται γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ τα κέντρα τους. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=4t\] (S.I.). Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
30. Στο σχήμα οι \[\vec{F}_1 \] και \[\vec{F}_2 \] αποτελούν ζεύγος δυνάμεων. Αν \[x_1,\, x_2\] είναι οι αποστάσεις των φορέων των δυνάμεων \[\vec{F}_1,\, \vec{F}_2\] αντίστοιχα από το Κ τότε η αλγεβρική τιμή της ροπής του ζεύγους ως προς το σημείο Κ είναι

    +30

    CONTACT US
    CALL US