2. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:
α) \[ ωR\], β) \[ωr\], γ) \[ω(R-r)\].
Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:
α) \[2υ_{cm}\], β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\], γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].
Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:
α) \[2υ_{cm}\], β) \[ω\left( \frac{R}{r}+1 \right)\], γ) \[ ω \left( \frac{R}{r}-1\right) \].
Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:
α) \[0\], β) \[ω^2 R\], γ) \[ω^2 r\].
3. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος με σταθερή μεταφορική ταχύτητα \[υ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 5. Να επιλέξετε τις σωστές από τις παρακάτω προτάσεις. 9. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Σφαίρα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που διέρχεται από μια διάμετρό της. Η γωνιακή ταχύτητα της σφαίρας σε συνάρτηση με το χρόνο παριστάνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
11. Στερεό αρχίζει την \[t=0\] να περιστρέφεται γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο.
A) Τη χρονική στιγμή \[3t_1\] το στερεό σώμα έχει γωνιακή ταχύτητα:
α) \[α_{γων_0 } t_1\], β) \[ \frac{ α_{γων_0} t_1}{2} \], γ) \[0\].
Β) Απ’ τη χρονική στιγμή \[0\] μέχρι τη χρονική στιγμή \[3t_1\] η γωνιακή μετατόπιση του στερεού είναι:
α) \[0\], β) \[α_{γων} t_1^2\], γ) \[\frac{3}{2} α_{γων} t_1^2 \].
14. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας με το χρόνο της στροφικής κίνησης ενός στερεού που γίνεται γύρω από σταθερό άξονα περιστροφής. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Το διάγραμμα της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω σχήμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει και η μεταφορική του κίνηση είναι ομαλά επιταχυνόμενη. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; 19. Τροχός ακτίνας \[R=0,25\, m\] στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ το κέντρο του. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=10-4t\] (S.I.). Ποιες από τις ακόλουθες προτάσεις είναι σωστές; 21. Για να αρχίσει να στρέφεται ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται δυνάμεις πρέπει 22. Μια αβαρής ράβδος ΟΑ μήκους \[\ell\] είναι αρθρωμένη σε κατακόρυφο τοίχο και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο. Στη ράβδο ασκούνται δυο δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] και ισορροπεί όπως φαίνεται στο σχήμα
Α. Τα μέτρα των δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\] συνδέονται με τη σχέση:
α) \[F_2=4F_1\]
β) \[F_2=3F_1\]
γ) \[F_1=4F_2\]
δ) \[F_1=3F_2\]
Β. Η άρθρωση ασκεί στη ράβδο δύναμη \[\vec{F}\]:
α) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_1\]
β) με διεύθυνση κατακόρυφη, φορά προς τα κάτω και μέτρο \[F=3F_1\]
γ) με διεύθυνση κατακόρυφη, φορά προς τα πάνω και μέτρο \[F=3F_2\]
23. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].
Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται
α) η οριζόντια δύναμη μέτρου \[F_2\] που είναι αντίθετη με την \[F_1\] ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν
β) η οριζόντια δύναμη \[F_3\] ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν
Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:
α) \[\frac{F_1}{3}\] β) \[3F_1\] γ) \[\frac{F_1}{4}\] δ) \[\frac{3F_1}{4}\]
24. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω σε οριζόντιο έδαφος. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
25. Σε ένα αρχικά ακίνητο σώμα που βρίσκεται εκτός πεδίου βαρύτητας ασκείται δύναμη \[\vec{F}\]. Αν ο φορέας της δύναμης \[\vec{F}\] δεν διέρχεται από το κέντρο μάζας του σώματος, τότε αυτό: 26. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\] είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\] και απ’ τη στιγμή \[2t_1\] ως \[4t_1\] τότε ισχύει: α) \[α_{γων_1 }=α_{γων_2 }\],
β) \[α_{γων_1 }=-α_{γων_2 }\],
γ) \[α_{γων_1 }=2α_{γων_2 }\],
δ) \[α_{γων_1 }=-2α_{γων_2 }\].
Β) Απ’ τη στιγμή \[t_1\] ως τη στιγμή \[2t_1\] ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.
29. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Ζ: