MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στερεό αρχίζει την \[t=0\] να περιστρέφεται γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο.
A) Τη χρονική στιγμή \[3t_1\] το στερεό σώμα έχει γωνιακή ταχύτητα:

α) \[α_{γων_0 } t_1\],                   β) \[  \frac{  α_{γων_0} t_1}{2} \],             γ) \[0\].

Β) Απ’ τη χρονική στιγμή \[0\] μέχρι τη χρονική στιγμή \[3t_1\]  η γωνιακή μετατόπιση του στερεού είναι:

α) \[0\],                             β) \[α_{γων} t_1^2\],                      γ) \[\frac{3}{2} α_{γων} t_1^2 \].

2. Μια λεπτή ομογενής σανίδα βάρους \[w\] και μήκους \[\ell\] διατηρείται οριζόντια έχοντας δεμένα στα δυο άκρα της ένα νήμα και ένα δυναμόμετρο. Σε ένα σημείο της σανίδας που απέχει \[\frac{\ell}{4}\] από το άκρο Α, τοποθετούμε 2 όμοια σώματα (Σ), βάρους \[w\] το καθένα.

Α. Η ένδειξη του δυναμόμετρου είναι ίση με:

α) \[w\]

β) \[2w\]

γ) \[3w\]

δ) \[4w\]

Β. Αν διπλασιάσουμε το πλήθος των σωμάτων (Σ) η ένδειξη του δυναμόμετρου θα:

α) διπλασιαστεί

β) τετραπλασιαστεί

γ) αυξηθεί κατά \[1,5\] φορές

3. Στο σχήμα οι \[\vec{F}_1 \] και \[\vec{F}_2 \] αποτελούν ζεύγος δυνάμεων. Αν \[x_1,\, x_2\] είναι οι αποστάσεις των φορέων των δυνάμεων \[\vec{F}_1,\, \vec{F}_2\] αντίστοιχα από το Κ τότε η αλγεβρική τιμή της ροπής του ζεύγους ως προς το σημείο Κ είναι
4. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τη στιγμή \[t_1\] ένα σημείο Γ της περιφέρειάς του που απέχει \[R\] απ’ το έδαφος έχει ταχύτητα μέτρου \[υ\]. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Το μέτρο της ταχύτητας του ανώτερου σημείου του τροχού την ίδια στιγμή έχει ταχύτητα μέτρου:
5. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Ζ:
6. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το κέντρο μάζας του στερεού σώματος:
7. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] ο τροχός έχει στραφεί κατά \[Δθ\] ποια απ’ τις επόμενες προτάσεις είναι σωστή; Ένα σημείο Α που απέχει \[\frac R2\] απ’ το κέντρο του τροχού, λόγω της μεταφορικής του κίνησης διανύει στον ίδιο χρόνο απόσταση:
8. Η ράβδος ΑΒ του παρακάτω σχήματος εκτελεί ομαλή στροφική κίνηση πάνω σε οριζόντιο επίπεδο γύρω από σταθερό κατακόρυφο άξονα που περνά από ένα σημείο της Ζ. Στο σχήμα φαίνονται οι ταχύτητες των άκρων της Α, Β. Το σημείο Ζ απέχει απ’ το άκρο Α:
9. Στον ομογενή ακίνητο κύλινδρο του παρακάτω σχήματος έχουμε τυλίξει λεπτό και μη εκτατό νήμα. Τραβώντας το άκρο Α του νήματος ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και το κέντρο μάζας του κυλίνδρου αποκτά επιτάχυνση μέτρου \[α_{cm}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το ελεύθερο άκρο Α του νήματος έχει επιτάχυνση μέτρου:
10. Σύμφωνα με το σχήμα ποια από τις παρακάτω σχέσεις είναι η σωστή; Ως θετική φορά να λάβετε τη φορά που φαίνεται στο σχήμα και να θεωρήσετε ότι οι ροπές των δυνάμεων \[\vec{w},\, \vec{F}\] υπολογίζονται ως προς το άκρο Ο της ράβδου.
11. Αβαρής ράβδος μήκους \[ \ell \] ισορροπεί οριζόντια με την επίδραση των δυνάμεων \[\vec{F}_1\] και \[ \vec{F}_2\] όπως φαίνεται στο σχήμα. Η απόσταση \[x\] δίνεται από τη σχέση
12. Τα σώματα \[Σ_1\] και \[Σ_2\] κρέμονται μέσω διαφορετικών αβαρών νημάτων από μια διπλή τροχαλία όπως φαίνεται στο σχήμα και παραμένουν ακίνητα. Αν είναι \[R_1=\frac{R_2}{2}\], για τις μάζες \[m_1\] και \[m_2\] των σωμάτων \[Σ_1\] και \[Σ_2\], ισχύει η σχέση:
13. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Η ομογενής σφαίρα του παρακάτω σχήματος έχει ακτίνα \[R\] και βάρος \[w\], βρίσκεται σε οριζόντιο επίπεδο και πρόκειται να ανέβει ένα τραχύ σκαλοπάτι ύψους \[h = \frac{R}{4}\]. Για το σκοπό αυτό ασκούμε μια οριζόντια δύναμη \[F_1\] στο κέντρο της Κ με την κατεύθυνση του σχήματος. Επαναλαμβάνουμε το ίδιο πείραμα ασκώντας μια ομόρροπη οριζόντια δύναμη \[F_2\] στο ανώτερο σημείο της Α. Ο λόγος των μέτρων των δύο ελάχιστων δυνάμεων \[ F_{1,min} \, , \, F_{2,min} \] ώστε να αρχίσει η υπερπήδηση της σφαίρας είναι \[\frac{F_{1,min} } { F_{2,min} }\]:
15. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Τα σημεία Β, Γ, Δ κάποια χρονική στιγμή βρίσκονται στην ίδια κατακόρυφη διάμετρο και την ίδια στιγμή έχουν ταχύτητες μέτρων \[υ_Β,\, υ_Γ,\, υ_Δ\] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι σωστή;
16. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και το κέντρο μάζας του έχει σταθερή επιτάχυνση μέτρου \[α_{cm}\]. Τη χρονική στιγμή \[t_1\] το μέτρο της γωνιακής ταχύτητας του τροχού είναι \[ω_1\].

Α. Η επιτάχυνση του ανώτερου σημείου Β του τροχού τη στιγμή \[t_1\]  έχει μέτρο:

α) \[α_{cm}\],                      β) \[2α_{cm}\],                    γ) \[ \sqrt{4α_{cm}^2+(ω_1^2 R)^2 }\].

B) Η επιτάχυνση του σημείου επαφής Α του τροχού με το οριζόντιο δάπεδο έχει τη στιγμή \[t_1\] μέτρο:

α) \[ω_1^2 R\],                β) \[0\],                             γ) \[α_{cm}\].

17. Η ράβδος ΚΛ είναι αρθρωμένη στο σημείο Κ σε κατακόρυφο τοίχο και δεμένη με ένα νήμα στο σημείο Ν και ισορροπεί. Ζητήθηκε από τρεις μαθητές (α), (β) και (γ) να σχεδιάσουν τη δύναμη της άρθρωσης και αυτοί σχεδίασαν αντίστοιχα τις δυνάμεις: α. \[\vec{F}_1\] β. \[\vec{F}_2\] γ. \[\vec{F}_3\]. Εσείς με ποια άποψη συμφωνείτε;
18. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος έχει μικρό κυκλικό αυλάκι με κέντρο το κέντρο του τροχού και ακτίνα \[r=\frac{R}{2}\]. Στο αυλάκι ακουμπάμε λεπτή οριζόντια ράβδο και με κατάλληλο μηχανισμό ο τροχός αρχίζει να κυλίεται χωρίς να ολισθαίνει και ταυτόχρονα μεταφέρεται η ράβδος χωρίς να ολισθαίνει στο αυλάκι και παραμένοντας συνεχώς οριζόντια. Τη στιγμή που το κέντρο μάζας του τροχού έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας της ράβδου είναι:
19. Τροχός ακτίνας \[R\] εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το κέντρο μάζας του τροχού έχει οριζόντια σταθερή ταχύτητα μέτρου \[υ_{cm}\] με φορά προς τα δεξιά και ο τροχός στρέφεται δεξιόστροφα. Το σημείο Α του τροχού που βρίσκεται σε επαφή με το έδαφος έχει ταχύτητα \[\vec{υ}_Α\] προς τα δεξιά και μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Το ανώτερο σημείο Β του τροχού έχει ταχύτητα:
20. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\]. Όταν το σημείο Ζ έχει ταχύτητα \[υ_Ζ=υ_{cm}\] η γωνία \[θ\] είναι:
21. Τροχός στρέφεται γύρω από σταθερό άξονα εκτελώντας επιταχυνόμενη κίνηση. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Όλα τα κινούμενα σημεία του στερεού έχουν την ίδια στιγμή:
22. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
23. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:

α) \[ ωR\],              β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],           β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\],       γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].

Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],                    β) \[ω\left( \frac{R}{r}+1 \right)\],                γ) \[ ω \left( \frac{R}{r}-1\right) \].

Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:

α) \[0\],                             β) \[ω^2 R\],                     γ) \[ω^2 r\].

24. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα \[ω\]. Η σχέση που συνδέει την ίδια στιγμή τα μέτρα των ταχυτήτων των σημείων της κατακόρυφης διαμέτρου ΑΒ με την απόστασή τους \[x\] απ’ το σημείο Α του τροχού που την ίδια στιγμή είναι σε επαφή με το έδαφος είναι:
25. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Την ίδια χρονική στιγμή \[t_1\]:
26. Ο τροχός του παρακάτω σχήματος στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
27. Στερεό εκτελεί μεταβαλλόμενη στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Η γωνιακή επιτάχυνση του στερεού σώματος:
28. Ομογενής κύλινδρος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει με σταθερή επιτάχυνση \[α_{cm}\] λόγω μεταφορικής κίνησης και γωνιακή επιτάχυνση \[α_{γων}\]. Κάποια χρονική στιγμή τα μέτρα της ταχύτητας λόγω μεταφορικής κίνησης και της γωνιακής ταχύτητας είναι \[υ_{cm}\] και \[ω\] αντίστοιχα. Ποιες από τις επόμενες σχέσεις είναι σωστές;
29. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
30. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Η ταχύτητα του κέντρου μάζας του είναι σταθερή και έχει μέτρο \[υ_{cm}\]. Σημείο Ζ απέχει απόσταση \[r=\frac{R}{2}\] απ’ το κέντρο του τροχού. Όταν η επιβατική ακτίνα του Ζ σχηματίζει γωνία \[θ=60^0\] με την κατακόρυφη διάμετρο (βλ. σχήμα), το μέτρο της ταχύτητας του Ζ είναι:

    +30

    CONTACT US
    CALL US