1. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του. Η γωνία που διαγράφει ο τροχός με το χρόνο δίνεται απ’ τη σχέση \[θ=4t^2\] (S.I.). Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; 3. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:
Α) Aν το κέντρο μάζας τη στιγμή \[t_1\] έχει ταχύτητα μέτρου \[υ_{cm}\], το άκρο Α έχει ταχύτητα μέτρου:
α) \[\frac{3}{2} υ_{cm} \], β) \[2υ_{cm}\], γ) \[υ_{cm}\].
Β) Αν το κέντρο μάζας του δίσκου έχει επιτάχυνση μέτρου \[α_{cm}\], τότε το ελεύθερο άκρο Α του νήματος έχει επιτάχυνση μέτρου:
α) \[α_{cm}\], β) \[\frac{3}{2} α_{cm}\], γ) \[2α_{cm}\].
4. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω σε οριζόντιο έδαφος. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
5. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γραφική παράσταση της γωνιακής ταχύτητας του τροχού με το χρόνο δίνεται απ’ το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Ο τροχός του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο και το cm του έχει σταθερή επιτάχυνση \[\vec{α}_{cm} \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Το διάγραμμα της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω σχήμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Στερεό σώμα εκτελεί στροφική κίνηση και η γωνιακή του ταχύτητα δίνεται απ’ τη σχέση \[ω=5+2t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές; 10. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Θεωρούμε θετική φορά για τη στροφική κίνηση την αντίθετη απ’ τη φορά κίνησης των δεικτών του ρολογιού. Η γραφική παράσταση της συνάρτησης της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
13. Τροχός ακτίνας \[R=0,5\, m\] στρέφεται γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ τα κέντρα τους. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=4t\] (S.I.). Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 14. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
Α) Αν τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας του άκρου Α τη στιγμή \[t_1\] είναι:
α) \[υ_{1_{cm} }\], β) \[\frac{ υ_{1_{cm} } }{2} \], γ) \[2υ_{1_{cm} }\].
Β) Αν το μέτρο της επιτάχυνσης του κέντρου μάζας είναι \[α_{cm}\], το μέτρο της επιτάχυνσης του άκρου Α είναι:
α) \[α_{cm}\], β) \[2α_{cm}\], γ) \[\frac{α_{cm} }{2} \].
17. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της μεταβολής των γωνιακών ταχυτήτων δύο σφαιρικών φλοιών (1) και (2) με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο έδαφος. Ποιες από τις επόμενες προτάσεις είναι σωστές; 24. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει και η μεταφορική του κίνηση είναι ομαλά επιταχυνόμενη. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; 26. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 27. Οι δίσκοι (1) και (2) συνδέονται με ιμάντα και ο καθένας μπορεί να στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στο επίπεδο των βάσεών τους. Ο ιμάντας δεν ολισθαίνει στις περιφέρειές τους. Ποιες από τις επόμενες προτάσεις είναι σωστές;
29. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].
Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\] ενώ ο (2) μέτρου \[α_{γων_2 }\].
A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[ \frac{α_{γων_1 } }{α_{γων_2} } =\frac{R_1}{R_2} \],
β) \[ \frac{ α_{γων_1 } }{α_{γων_2 } } =\frac{R_2}{R_1} \] ,
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \]. Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \, α_{κ_2 }\] αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1} }{ α_{κ_2} } =1\],
β) \[ \frac{ α_{κ_1 } }{ α_{κ_2 } } =\frac{ R_1 }{ R_2 }\],
γ) \[ \frac{ α_{κ_1} }{ α_{κ_2 } } =\frac{ R_2 }{ R_1 } \] .