MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Οι δίσκοι (1) και (2) συνδέονται με ιμάντα και ο καθένας μπορεί να στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στο επίπεδο των βάσεών τους. Ο ιμάντας δεν ολισθαίνει στις περιφέρειές τους. Ποιες από τις επόμενες προτάσεις είναι σωστές;
2. Ένα ελεύθερο στερεό σώμα ισορροπεί ακίνητο καθώς δέχεται τη δράση δυο ομοεπίπεδων δυνάμεων.

α) Ισχύει ότι οι δυο αυτές δυνάμεις πρέπει να έχουν τον ίδιο φορέα, ίσα μέτρα και αντίθετες κατευθύνσεις;
β) Αν οι δυο αυτές δυνάμεις γίνουν παράλληλες χωρίς να αλλάξει η φορά και το μέτρο τους θα συνεχίσει να ισορροπεί το στερεό σώμα;

3. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Τα σημεία Ζ, Η του τροχού βρίσκονται κάποια στιγμή στην κατακόρυφη διάμετρο και είναι συμμετρικά ως προς το κέντρο μάζας Κ του τροχού. Η διαφορά των μέτρων των ταχυτήτων τους είναι \[υ_Ζ-υ_Η=\frac{2}{3} υ_{cm}\] όπου \[υ_{cm}\] το μέτρο της ταχύτητας του κέντρου μάζας του τροχού την ίδια στιγμή. Η απόσταση των δύο σημείων Ζ, Η του τροχού από το κέντρο Κ είναι:
4. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής ταχύτητας με το χρόνο της στροφικής κίνησης ενός στερεού που γίνεται γύρω από σταθερό άξονα περιστροφής. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε επίπεδο έδαφος. Αν σε χρόνο \[Δt\] ο τροχός έχει στραφεί κατά \[Δθ\] ποια απ’ τις επόμενες προτάσεις είναι σωστή; Ένα σημείο Α που απέχει \[\frac R2\] απ’ το κέντρο του τροχού, λόγω της μεταφορικής του κίνησης διανύει στον ίδιο χρόνο απόσταση:
6. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει την \[t=0\] σε οριζόντιο έδαφος και η επιτάχυνση του κέντρου μάζας του είναι σταθερή. Μια χρονική στιγμή \[t_1\] η γωνιακή ταχύτητα του τροχού έχει μέτρο \[ω_1\] και η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{1_{cm}}\] και έχει τη φορά που φαίνεται στο σχήμα. Τα σημεία Γ και Δ είναι τα άκρα της οριζόντιας διαμέτρου του τροχού. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
7. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Κύλιση χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος εκτελεί ένας τροχός:
8. Σφαίρα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που διέρχεται από μια διάμετρό της. Η γωνιακή ταχύτητα της σφαίρας σε συνάρτηση με το χρόνο παριστάνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
9. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Σε έναν κύβο το κέντρο μάζας του ταυτίζεται με το σημείο τομής των διαγωνίων του. Αυτό σημαίνει ότι:
10. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο έδαφος. Τα μέτρα των ταχυτήτων των σημείων Β, Γ, Δ την ίδια στιγμή είναι αντίστοιχα \[υ_Β,\, υ_Γ,\, υ_Δ\]. Ποια από τις παρακάτω σχέσεις είναι σωστή;
11. Το στερεό σώμα του παρακάτω σχήματος α στρέφεται γύρω από τον σταθερό άξονα \[z' z\] αντίρροπα των δεικτών του ρολογιού. Η γωνιακή ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του. Η γωνία που διαγράφει ο τροχός με το χρόνο δίνεται απ’ τη σχέση \[θ=4t^2\] (S.I.). Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
13. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν σε χρόνο \[Δt\] ο κύλινδρος έχει εκτελέσει \[Ν_1\] περιστροφές στον ίδιο χρόνο η τροχαλία έχει εκτελέσει \[N_2\] περιστροφές και ισχύει:
14. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Το κέντρο μάζας του τροχού κινείται προς τα δεξιά και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Σημείο Β του τροχού βρίσκεται κάποια στιγμή στην κατακόρυφη διάμετρό του και απέχει απ’ το έδαφος απόσταση \[\frac{R}{3}\]. Η ταχύτητα του σημείου Β τότε έχει:
15. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:

Α) Το κέντρο μάζας του δίσκου μέχρι τη στιγμή \[t_1\]  έχει μετατοπιστεί κατά \[Δx_{cm}\]  που είναι ίσο με:

α) \[ \ell \],                              β) \[\frac{\ell}{2}\],               γ) \[2\ell\].

Β) Το ελεύθερο άκρο του νήματος μέχρι τη στιγμή \[t_1\]  μετατοπίζεται κατά \[Δx_A\]  που είναι ίσο με:

α) \[3\ell\],                            β) \[2\ell\],                γ) \[\ell\].

16. Για να αρχίσει να στρέφεται ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται δυνάμεις πρέπει
17. Ομογενής δίσκος αρχίζει να στρέφεται γύρω από σταθερό άξονα περιστροφής τη χρονική στιγμή t=0. Η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο φαίνεται στο παρακάτω διάγραμμα.
Α) Τη χρονική διάρκεια από \[t_2\]  ως \[t_3\]:

α) ο δίσκος αυξάνει το μέτρο της γωνιακής ταχύτητάς του με σταθερό ρυθμό,

β) ο δίσκος μειώνει το μέτρο της γωνιακής ταχύτητάς του με σταθερό ρυθμό,

γ) η στροφική του δίσκου είναι επιβραδυνόμενη αλλά όχι ομαλά,

δ) η στροφική του δίσκου είναι επιταχυνόμενη αλλά όχι ομαλά.

Β) Ο δίσκος αποκτά μέγιστη γωνιακή ταχύτητα:

α) τη χρονική στιγμή \[t_1\],

β) τη χρονική στιγμή \[t_2\],

γ) τη χρονική στιγμή \[t_3\].

18. Για ένα ακίνητο στερεό σώμα την t=0, για να μην αρχίσει να κινείται αμέσως μετά την t=0, θα πρέπει την t=0 να ισχύει:
19. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει και η μεταφορική του κίνηση είναι ομαλά επιταχυνόμενη. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
20. Στην ομογενή ράβδο ΚΛ του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκείται ένα ζεύγος δυνάμεων \[F_1\, ,\, F_2\] που η καθεμιά έχει μέτρο \[10\sqrt{3}\, N\]. Το μέτρο της ροπής του ζεύγους αυτής είναι \[30 \, N\cdot m\]. Το μήκος \[\ell\] της ράβδου είναι:
21. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ το κέντρο του Κ. Ο τροχός έχει ακτίνα \[R\]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του ταχύτητας με το χρόνο. Ποιες από τις ακόλουθες προτάσεις είναι σωστές;
22. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
23. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Τη στιγμή που η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{cm}\], ένα σημείο της περιφέρειας του τροχού που την ίδια στιγμή απέχει \[R\] απ’ το έδαφος έχει ταχύτητα μέτρου:
24. Σε λεπτό ομογενή κύλινδρο κέντρου Κ και ακτίνας \[R\] έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r\] και μπορεί να στρέφεται γύρω από οριζόντιο άξονα που είναι κάθετος στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν η επιτάχυνση του κέντρου μάζας του κυλίνδρου είναι \[α_{cm}\] τότε η επιτάχυνση \[\vec{α}_Σ\] του σώματος έχει μέτρο:
25. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος έχει μικρό κυκλικό αυλάκι με κέντρο το κέντρο του τροχού και ακτίνα \[r=\frac{R}{2}\]. Στο αυλάκι ακουμπάμε λεπτή οριζόντια ράβδο και με κατάλληλο μηχανισμό ο τροχός αρχίζει να κυλίεται χωρίς να ολισθαίνει και ταυτόχρονα μεταφέρεται η ράβδος χωρίς να ολισθαίνει στο αυλάκι και παραμένοντας συνεχώς οριζόντια. Τη στιγμή που το κέντρο μάζας του τροχού έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας της ράβδου είναι:
26. Ένα ελεύθερο στερεό σώμα που αρχικά ισορροπεί ακίνητο δέχεται από κάποια στιγμή και μετά τη δράση ενός ζεύγους δυνάμεων. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Το στερεό σώμα:
27. Στο παρακάτω σχήμα ο ομογενής δίσκος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει, ενώ στο ανώτερο άκρο της περιφέρειάς του έχουμε ακουμπήσει λεπτή σανίδα που μεταφέρεται με κατάλληλο μηχανισμό ώστε να μην ολισθαίνει πάνω στο δίσκο και να μένει συνεχώς οριζόντια.

Α) Αν τη στιγμή \[t_1\]  ο τροχός έχει γωνιακή ταχύτητα μέτρου \[ω\], την ίδια στιγμή το μέτρο της ταχύτητας της σανίδας  έχει μέτρο:

α) \[ωR\],                                     β) \[\frac{ωR}{2}\],                                  γ) \[2ωR\].

B) Αν σε χρόνο \[Δt\] το κέντρο μάζας του έχει μεταφερθεί κατά \[Δx_{cm}\], τότε η σανίδα μεταφέρεται στον ίδιο χρόνο κατά:

α) \[2Δx_{cm}\],                  β) \[Δx_{cm}\],                    γ) \[   \frac{    Δx_{cm}  }{  2   }   \].

28. Σε μια ράβδο ΑΓ που ισορροπεί πάνω σε οριζόντιο επίπεδο ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\], όπως φαίνεται στο σχήμα. Το μέτρο της ροπής του ζεύγους είναι
29. Οι δυο ομόκεντροι τροχοί του διπλανού σχήματος είναι κολλημένοι και μπορούν να περιστρέφονται γύρω από άξονα που διέρχεται από το κέντρο τους. Αν το σύστημα περιστρέφεται με σταθερή γωνιακή ταχύτητα με τη φορά των δεικτών του ρολογιού τότε για τα μέτρα των δυνάμεων ισχύει
30. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο και το κέντρο μάζας του τροχού εκτελεί ομαλή κίνηση. Κάποια χρονική στιγμή \[t_1\] ένα σημείο Α του τροχού έχει μηδενική ταχύτητα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να μεγιστοποιηθεί το μέτρο της ταχύτητας του Α για πρώτη φορά μετά τη χρονική στιγμή \[t_1\] πρέπει το σημείο Α να διαγράψει μήκος τόξου:

    +30

    CONTACT US
    CALL US