MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στην περιφέρεια του δίσκου του παρακάτω σχήματος έχουμε τυλίξει σε πολλές στροφές αβαρές και μη εκτατό νήμα που δένουμε το ένα άκρο του σε ακλόνητο τοίχο. Αφήνουμε το δίσκο ελεύθερο και αυτός αρχίζει να κατέρχεται με σταθερή επιτάχυνση και ταυτόχρονα να στρέφεται έτσι ώστε το νήμα να μένει συνεχώς παράλληλο στο κεκλιμένο επίπεδο. Αν η ταχύτητα της μεταφορικής κίνησης του δίσκου κάποια στιγμή είναι \[υ_1\], τότε η ταχύτητα του σημείου επαφής του δίσκου με το κεκλιμένο επίπεδο είναι:
2. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].

Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται

α) η οριζόντια δύναμη μέτρου \[F_2\]  που είναι αντίθετη με την \[F_1\]  ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν

β) η οριζόντια δύναμη \[F_3\]  ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν

Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:

α) \[\frac{F_1}{3}\]         β) \[3F_1\]       γ) \[\frac{F_1}{4}\]        δ) \[\frac{3F_1}{4}\]

3. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν.
4. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] πάνω σε οριζόντιο έδαφος. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
5. Οι δίσκοι (1) και (2) συνδέονται με ιμάντα και ο καθένας μπορεί να στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στο επίπεδο των βάσεών τους. Ο ιμάντας δεν ολισθαίνει στις περιφέρειές τους. Ποιες από τις επόμενες προτάσεις είναι σωστές;
6. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Τη στιγμή που η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{cm}\], ένα σημείο της περιφέρειας του τροχού που την ίδια στιγμή απέχει \[R\] απ’ το έδαφος έχει ταχύτητα μέτρου:
7. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Οι δύο τροχοί (1), (2) του παρακάτω σχήματος είναι συνδεδεμένοι με ιμάντα και στρέφονται ομαλά επιταχυνόμενοι γύρω από σταθερούς άξονες που είναι ο καθένας κάθετος στις βάσεις του κάθε δίσκου και διέρχεται απ’ το κέντρο του χωρίς ο ιμάντας να ολισθαίνει στις περιφέρειές τους. Η φορά περιστροφής του δίσκου (1) φαίνεται στο παρακάτω σχήμα. Για τις ακτίνες των δύο δίσκων ισχύει \[R_1=2R_2\].
A) Αν η γωνιακή ταχύτητα του τροχού (1) έχει τη χρονική στιγμή \[t_1\] μέτρο \[ω_1\] τότε ο τροχός (2) την ίδια στιγμή:

α) έχει γωνιακή ταχύτητα μέτρου \[ω_2=ω_1\]  και στρέφεται αντίρροπα των δεικτών του ρολογιού.

β) έχει γωνιακή ταχύτητα μέτρου \[ω_2=2ω_1\]  και στρέφεται αντίρροπα της φοράς των δεικτών του ρολογιού.

γ) έχει γωνιακή ταχύτητα μέτρου \[ω_2=2ω_1\]  και στρέφεται ομόρροπα με τους δείκτες του ρολογιού.

Β) Για τα μέτρα των επιτρόχιων επιταχύνσεων των περιφερειών \[α_{επ_1 },\, α_{επ_2 }\]  των δύο τροχών ισχύει:
α) \[α_{επ_1 }=α_{επ_2 }\],                     
β) \[α_{επ_1}=2α_{επ_2}\],                   
γ) \[α_{επ_1}=\frac{  α_{επ_2}  }{ 2  }\].

9. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η γραφική παράσταση της γωνιακής ταχύτητας του τροχού με το χρόνο δίνεται απ’ το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Ράβδος την \[t=0\] αρχίζει να στρέφεται γύρω από σταθερό άξονα περιστροφής. Ο ρυθμός μεταβολής της γωνιακής ταχύτητάς της είναι σταθερός και ομόρροπος της γωνιακής της ταχύτητας. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Ο αριθμός των περιστροφών που έχει εκτελέσει η ράβδος μέχρι τη χρονική στιγμή \[t\] είναι ανάλογος του:
11. Για ένα ακίνητο στερεό σώμα την t=0, για να μην αρχίσει να κινείται αμέσως μετά την t=0, θα πρέπει την t=0 να ισχύει:
12. Η διπλή τροχαλία του σχήματος είναι ελεύθερη και αποτελείται από δύο συγκολλημένους ομοαξονικούς δίσκους με ακτίνες \[R\] και \[2R\]. Στον δίσκο με ακτίνα \[R\] είναι τυλιγμένο αρκετές φορές νήμα το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο στην οροφή. Στον μεγάλο δίσκο ακτίνας \[2R\] είναι τυλιγμένο νήμα το οποίο τυλίγεται γύρω από την τροχαλία ακτίνας \[R\]. Η τροχαλία συγκρατείται από ακλόνητο άξονα περιστροφής και μπορεί να στρέφεται χωρίς τριβές. Το άκρο Α του νήματος με κατάλληλη δύναμη έχει ταχύτητα \[υ\] προς τα κάτω με αποτέλεσμα η διπλή τροχαλία να μεταφέρεται προς τα πάνω και να στρέφεται με φορά αντίθετη των δεικτών του ρολογιού. Αν τα νήματα είναι αβαρή, μη εκτατά και δεν ολισθαίνουν στις τροχαλίες, η ταχύτητα που κινείται το σημείο Β είναι:
13. Στερεό σώμα εκτελεί στροφική κίνηση και η γωνιακή του ταχύτητα δίνεται απ’ τη σχέση \[ω=5+2t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος έχει μικρό κυκλικό αυλάκι με κέντρο το κέντρο του τροχού και ακτίνα \[r=\frac{R}{2}\]. Στο αυλάκι ακουμπάμε λεπτή οριζόντια ράβδο και με κατάλληλο μηχανισμό ο τροχός αρχίζει να κυλίεται χωρίς να ολισθαίνει και ταυτόχρονα μεταφέρεται η ράβδος χωρίς να ολισθαίνει στο αυλάκι και παραμένοντας συνεχώς οριζόντια. Τη στιγμή που το κέντρο μάζας του τροχού έχει ταχύτητα μέτρου \[υ_{1_{cm} }\], το μέτρο της ταχύτητας της ράβδου είναι:
15. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο με σταθερή γωνιακή ταχύτητα \[\vec{ω}\] και το κέντρο μάζας του έχει σταθερή ταχύτητα \[\vec{υ}_{cm}\] ενώ ένα σημείο Ζ που απέχει \[r\] απ’ το κέντρο Κ του τροχού έχει γραμμική ταχύτητα \[\vec{υ}_{γρ_Ζ }\]. Σύμφωνα με την αρχή της επαλληλίας των κινήσεων η ταχύτητα του σημείου Ζ είναι:
16. Τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο και το κέντρο μάζας του τροχού εκτελεί ομαλή κίνηση. Κάποια χρονική στιγμή \[t_1\] ένα σημείο Α του τροχού έχει μηδενική ταχύτητα. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Για να μεγιστοποιηθεί το μέτρο της ταχύτητας του Α για πρώτη φορά μετά τη χρονική στιγμή \[t_1\] πρέπει το σημείο Α να διαγράψει μήκος τόξου:
17. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Θεωρούμε θετική φορά για τη στροφική κίνηση την αντίθετη απ’ τη φορά κίνησης των δεικτών του ρολογιού. Η γραφική παράσταση της συνάρτησης της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν το μέτρο της επιτάχυνσης του κυλίνδρου είναι \[α_{cm}\] τότε το μέτρο της επιτάχυνσης \[α_Σ\] του σώματος Σ είναι:
19. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; Σε έναν κύβο το κέντρο μάζας του ταυτίζεται με το σημείο τομής των διαγωνίων του. Αυτό σημαίνει ότι:
21. Δύο τροχοί (1), (2) εκτελούν στροφικές κινήσεις γύρω από σταθερούς άξονες περιστροφής που είναι κάθετοι στις βάσεις τους και περνούν απ’ τα κέντρα τους. Στα παρακάτω διαγράμματα φαίνονται οι μεταβολές των γωνιακών τους ταχυτήτων με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Σφαιρίδιο εκτελεί κυκλική κίνηση σταθερής ακτίνας \[R\] και η αλγεβρική τιμή της στροφορμής του μεταβάλλεται με το χρόνο όπως φαίνεται στο παρακάτω διάγραμμα. Από \[0\] ως \[t_1\] το μέτρο της συνισταμένης ροπής που δέχεται το σφαιρίδιο ως προς τον άξονα περιστροφής του είναι \[Στ_1\] ενώ απ’ την \[t_1\] ως την \[t_2\] είναι \[Στ_2\]. Αντίστοιχα οι επιτρόχιες επιταχύνσεις του σφαιριδίου στα δύο παραπάνω χρονικά διαστήματα έχουν μέτρο \[α_1\, , \, α_2\]. Για τα παραπάνω μεγέθη ισχύουν:
23. Ο τροχός του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο και το cm του έχει σταθερή επιτάχυνση \[\vec{α}_{cm} \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Σε ομογενή ράβδο ΚΛ μήκους \[\ell\] του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκούνται δύο δυνάμεις παράλληλες, ίδιου μέτρου \[F_1=F_2=F\] και αντίθετης φοράς που σχηματίζουν με τη ράβδο γωνία \[φ\] με \[ημφ=0,8\], συνφ=0,6. Το μέτρο της συνισταμένης ροπής των δύο αυτών δυνάμεων είναι:
25. Η ομογενής σφαίρα του παρακάτω σχήματος έχει ακτίνα \[R\] και βάρος \[w\], βρίσκεται σε οριζόντιο επίπεδο και πρόκειται να ανέβει ένα τραχύ σκαλοπάτι ύψους \[h = \frac{R}{4}\]. Για το σκοπό αυτό ασκούμε μια οριζόντια δύναμη \[F_1\] στο κέντρο της Κ με την κατεύθυνση του σχήματος. Επαναλαμβάνουμε το ίδιο πείραμα ασκώντας μια ομόρροπη οριζόντια δύναμη \[F_2\] στο ανώτερο σημείο της Α. Ο λόγος των μέτρων των δύο ελάχιστων δυνάμεων \[ F_{1,min} \, , \, F_{2,min} \] ώστε να αρχίσει η υπερπήδηση της σφαίρας είναι \[\frac{F_{1,min} } { F_{2,min} }\]:
26. Δύο σφαίρες (1), (2) εκτελούν στροφική κίνηση γύρω από σταθερούς άξονες περιστροφής που ταυτίζονται με μια διάμετρο της καθεμιάς αντίστοιχα. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής ταχύτητας της κάθε σφαίρας με το χρόνο στο ίδιο σύστημα αξόνων. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Σε μια ράβδο ΑΓ που ισορροπεί πάνω σε οριζόντιο επίπεδο ασκείται ζεύγος δυνάμεων \[\vec{F}_1\] και \[\vec{F}_2\], όπως φαίνεται στο σχήμα. Το μέτρο της ροπής του ζεύγους είναι
28. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετώ το καρούλι πάνω στις δοκούς έτσι ώστε οι περιφέρειες των δίσκων ν’ ακουμπούν σ’ αυτές, ενώ ο κύλινδρος να στηρίζεται μόνο στους δίσκους χωρίς να έρχεται σε επαφή με το έδαφος ή τις δοκούς. Το καρούλι αρχίζει να κινείται και το κέντρο μάζας του έχει σταθερή ταχύτητα μέτρου \[υ_{cm}\] και το καρούλι στρέφεται με γωνιακή ταχύτητα μέτρου \[ω\] (σχ. β).
A) Το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι:

α) \[ ωR\],              β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],           β) \[υ_{cm} \left( \frac{r}{R}+1 \right)\],       γ) \[υ_{cm} \left( \frac{R}{r}-1 \right)\].

Γ) Το ανώτερο σημείο Η της περιφέρειας του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[2υ_{cm}\],                    β) \[ω\left( \frac{R}{r}+1 \right)\],                γ) \[ ω \left( \frac{R}{r}-1\right) \].

Δ) Το σημείο Ε της περιφέρειας του ενός δίσκου που βρίσκεται σε επαφή με το έδαφος έχει επιτάχυνση μέτρου:

α) \[0\],                             β) \[ω^2 R\],                     γ) \[ω^2 r\].

29. Σε ένα ελεύθερο στερεό σώμα, μάζας \[m\], ασκείται ζεύγος δυνάμεων, όπως φαίνεται στο σχήμα. Η επιτάχυνση του κέντρου μάζας Κ του σώματος είναι:
30. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Η μεταβολή της γωνιακής του ταχύτητας με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US