MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος αρχίζει να κυλίεται χωρίς να ολισθαίνει την \[t=0\] σε οριζόντιο έδαφος και η επιτάχυνση του κέντρου μάζας του είναι σταθερή. Μια χρονική στιγμή \[t_1\] η γωνιακή ταχύτητα του τροχού έχει μέτρο \[ω_1\] και η ταχύτητα του κέντρου μάζας του τροχού έχει μέτρο \[υ_{1_{cm}}\] και έχει τη φορά που φαίνεται στο σχήμα. Τα σημεία Γ και Δ είναι τα άκρα της οριζόντιας διαμέτρου του τροχού. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
2. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\]. Όταν το σημείο Ζ έχει ταχύτητα \[υ_Ζ=υ_{cm}\] η γωνία \[θ\] είναι:
3. Ομογενής κύλινδρος ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει με σταθερή επιτάχυνση \[α_{cm}\] λόγω μεταφορικής κίνησης και γωνιακή επιτάχυνση \[α_{γων}\]. Κάποια χρονική στιγμή τα μέτρα της ταχύτητας λόγω μεταφορικής κίνησης και της γωνιακής ταχύτητας είναι \[υ_{cm}\] και \[ω\] αντίστοιχα. Ποιες από τις επόμενες σχέσεις είναι σωστές;
4. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο και η γωνιακή του ταχύτητα είναι σταθερή και έχει μέτρο \[ω\]. Ποιες από τις επόμενες προτάσεις είναι σωστές;
5. Οι δίσκοι (1) και (2) συνδέονται με ιμάντα και ο καθένας μπορεί να στρέφεται γύρω από σταθερό άξονα που είναι κάθετος στο επίπεδο των βάσεών τους. Ο ιμάντας δεν ολισθαίνει στις περιφέρειές τους. Ποιες από τις επόμενες προτάσεις είναι σωστές;
6. Για ένα ακίνητο στερεό σώμα την t=0, για να μην αρχίσει να κινείται αμέσως μετά την t=0, θα πρέπει την t=0 να ισχύει:
7. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Η ταχύτητα του κέντρου μάζας του είναι σταθερή και έχει μέτρο \[υ_{cm}\]. Τη στιγμή που η επιβατική ακτίνα του σημείου Ζ της περιφέρειας σχηματίζει γωνία \[θ=60^0\] (βλ. σχήμα) με την κατακόρυφη διάμετρο του τροχού, το μέτρο της ταχύτητας του Ζ είναι:
8. Μια ράβδος ΑΒ βρίσκεται πάνω σε οριζόντιο δάπεδο. Δυο οριζόντιες δυνάμεις \[\vec{F}_1\] και \[\vec{F}_2\] που ασκούνται στα άκρα της ράβδου αποτελούν ζεύγος δυνάμεων. Οι φορείς των δυνάμεων σχηματίζουν με τη ράβδο γωνία \[φ\]. Αν διπλασιάσουμε το μέτρο της κάθε δύναμης, η ροπή του ζεύγους ως προς το μέσο της ράβδου
9. Στον ομογενή δίσκο ακτίνας \[R\] του παρακάτω σχήματος έχουμε δημιουργήσει αυλάκι με κέντρο το κέντρο του δίσκου και ακτίνας \[r=\frac{R}{2}\]. Στην περιφέρεια που δημιουργεί το αυλάκι τυλίγουμε πολλές φορές λεπτό και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκώ σταθερή δύναμη \[F\] και ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει ενώ το νήμα ξετυλίγεται χωρίς να ολισθαίνει στο αυλάκι. Αν μέχρι τη στιγμή \[t_1\] το νήμα έχει ξετυλιχθεί κατά \[\ell\]:

Α) Το κέντρο μάζας του δίσκου μέχρι τη στιγμή \[t_1\]  έχει μετατοπιστεί κατά \[Δx_{cm}\]  που είναι ίσο με:

α) \[ \ell \],                              β) \[\frac{\ell}{2}\],               γ) \[2\ell\].

Β) Το ελεύθερο άκρο του νήματος μέχρι τη στιγμή \[t_1\]  μετατοπίζεται κατά \[Δx_A\]  που είναι ίσο με:

α) \[3\ell\],                            β) \[2\ell\],                γ) \[\ell\].

10. Ομογενής δίσκος αρχίζει να στρέφεται γύρω από σταθερό άξονα περιστροφής τη χρονική στιγμή t=0. Η μεταβολή της γωνιακής του επιτάχυνσης με το χρόνο φαίνεται στο παρακάτω διάγραμμα.
Α) Τη χρονική διάρκεια από \[t_2\]  ως \[t_3\]:

α) ο δίσκος αυξάνει το μέτρο της γωνιακής ταχύτητάς του με σταθερό ρυθμό,

β) ο δίσκος μειώνει το μέτρο της γωνιακής ταχύτητάς του με σταθερό ρυθμό,

γ) η στροφική του δίσκου είναι επιβραδυνόμενη αλλά όχι ομαλά,

δ) η στροφική του δίσκου είναι επιταχυνόμενη αλλά όχι ομαλά.

Β) Ο δίσκος αποκτά μέγιστη γωνιακή ταχύτητα:

α) τη χρονική στιγμή \[t_1\],

β) τη χρονική στιγμή \[t_2\],

γ) τη χρονική στιγμή \[t_3\].

11. Σε λεπτό ομογενή κύλινδρο κέντρου Κ έχουμε δημιουργήσει κυκλικό αυλάκι ίδιου κέντρου Κ και ακτίνας \[\frac{R}{2}\]. Γύρω απ’ το αυλάκι έχουμε τυλίξει μεγάλου μήκους νήμα. Η τροχαλία έχει ακτίνα \[r=\frac{R}{3}\] και μπορεί να στρέφεται γύρω από άξονα που είναι κάθετη στο επίπεδό της και περνά απ’ το κέντρο της. Την \[t=0\] αφήνουμε το σύστημα ελεύθερο και το σώμα Σ αρχίζει να κατέρχεται, ο κύλινδρος αρχίζει να κυλίεται χωρίς να ολισθαίνει και η τροχαλία αρχίζει να περιστρέφεται. Οι επιταχύνσεις και οι γωνιακές επιταχύνσεις των σωμάτων μένουν σταθερές. Αν σε χρόνο \[Δt\] ο κύλινδρος έχει εκτελέσει \[Ν_1\] περιστροφές στον ίδιο χρόνο η τροχαλία έχει εκτελέσει \[N_2\] περιστροφές και ισχύει:
12. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
A) Απ’ την \[t=0\] ως τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει μετατοπιστεί κατά \[Δx_{cm}\] που είναι ίσο με:

α) \[\frac{\ell}{2}\],               β) \[\ell\],                  γ) \[2\ell\].

B) Απ’ την \[t=0\] ως τη χρονική στιγμή \[t_1\] το άκρο Α του νήματος έχει μετατοπιστεί κατά \[Δx_A\] που είναι ίσο με:

α) \[2\ell\],                β) \[\ell\],                  γ) \[\frac{\ell}{2}\].

13. Μια λεπτή ομογενής σανίδα βάρους \[w\] και μήκους \[\ell\] διατηρείται οριζόντια έχοντας δεμένα στα δυο άκρα της ένα νήμα και ένα δυναμόμετρο. Σε ένα σημείο της σανίδας που απέχει \[\frac{\ell}{4}\] από το άκρο Α, τοποθετούμε 2 όμοια σώματα (Σ), βάρους \[w\] το καθένα.

Α. Η ένδειξη του δυναμόμετρου είναι ίση με:

α) \[w\]

β) \[2w\]

γ) \[3w\]

δ) \[4w\]

Β. Αν διπλασιάσουμε το πλήθος των σωμάτων (Σ) η ένδειξη του δυναμόμετρου θα:

α) διπλασιαστεί

β) τετραπλασιαστεί

γ) αυξηθεί κατά \[1,5\] φορές

14. Η ράβδος ΟΑ του παρακάτω σχήματος α εκτελεί στροφική κίνηση γύρω από κατακόρυφο άξονα κάθετο στη ράβδο που διέρχεται απ’ το άκρο της Ο. Στο σχήμα β φαίνεται η μεταβολή της γωνιακής ταχύτητας της ράβδου με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Ένα ελεύθερο στερεό σώμα ισορροπεί ακίνητο καθώς δέχεται τη δράση δυο ομοεπίπεδων δυνάμεων.

α) Ισχύει ότι οι δυο αυτές δυνάμεις πρέπει να έχουν τον ίδιο φορέα, ίσα μέτρα και αντίθετες κατευθύνσεις;
β) Αν οι δυο αυτές δυνάμεις γίνουν παράλληλες χωρίς να αλλάξει η φορά και το μέτρο τους θα συνεχίσει να ισορροπεί το στερεό σώμα;

16. Μια αβαρής ράβδος ΑΓ μήκους \[\ell\], κρέμεται από τα δυο άκρα της με δυο κατακόρυφα νήματα και διατηρείται οριζόντια. Ένα σώμα Σ βάρους \[w\] ισορροπεί σε απόσταση \[\frac{\ell}{4}\] από το άκρο Α της ράβδου. Οι τάσεις \[\vec{Τ}_1\] και \[\vec{Τ}_2\] των νημάτων που ασκούνται στα άκρα Α και Γ της ράβδου έχουν μέτρα που συνδέονται με τη σχέση
17. Στερεό σώμα εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Θεωρούμε θετική φορά για τη στροφική κίνηση την αντίθετη απ’ τη φορά κίνησης των δεικτών του ρολογιού. Η γραφική παράσταση της συνάρτησης της γωνιακής ταχύτητας του στερεού με το χρόνο δίνεται στο παρακάτω διάγραμμα. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Ο τροχός του παρακάτω σχήματος εκτελεί στροφική κίνηση γύρω από σταθερό κατακόρυφο άξονα \[z' z\] που είναι κάθετος στη βάση του με τη φορά που φαίνεται στο σχήμα. Το μέτρο της γωνιακής του ταχύτητας μειώνεται με το χρόνο. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
19. Ο ομογενής τροχός του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο. Τα σημεία Β, Γ, Δ κάποια χρονική στιγμή βρίσκονται στην ίδια κατακόρυφη διάμετρο και την ίδια στιγμή έχουν ταχύτητες μέτρων \[υ_Β,\, υ_Γ,\, υ_Δ\] αντίστοιχα. Ποια από τις παρακάτω σχέσεις είναι σωστή;
20. Σε ομογενή ράβδο ΚΛ μήκους \[\ell\] του παρακάτω σχήματος που βρίσκεται σε οριζόντιο δάπεδο ασκούνται δύο δυνάμεις παράλληλες, ίδιου μέτρου \[F_1=F_2=F\] και αντίθετης φοράς που σχηματίζουν με τη ράβδο γωνία \[φ\] με \[ημφ=0,8\], συνφ=0,6. Το μέτρο της συνισταμένης ροπής των δύο αυτών δυνάμεων είναι:
21. Ο ομογενής δίσκος του παρακάτω σχήματος στρέφεται γύρω από κατακόρυφο άξονα που είναι κάθετος στο επίπεδό του και περνά απ’ το κέντρο του. Στο σχήμα φαίνονται οι κατευθύνσεις της γωνιακής ταχύτητας του δίσκου και της επιτρόχιας επιτάχυνσης ενός σημείου Α της περιφέρειάς του. Ποια από τις παρακάτω προτάσεις είναι η σωστή;
22. Το βαρούλκο του παρακάτω σχήματος αποτελείται από έναν κύλινδρο ακτίνας \[r\], ενώ το χερούλι του μπορεί να διαγράφει κύκλο ακτίνας \[R=2r\]. Το νήμα είναι αβαρές. Το μέτρο της ελάχιστης δύναμης που πρέπει να ασκούμε στο χερούλι ώστε το σώμα βάρους \[w\] να ισορροπεί ισούται με
23. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος με σταθερή μεταφορική ταχύτητα \[υ\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν.
25. Οι οδοντωτοί τροχοί (1), (2) του παρακάτω σχήματος μπορούν να στρέφονται γύρω από σταθερό άξονα ο καθένας που είναι κάθετος στο επίπεδο των βάσεών του και διέρχεται απ’ το κέντρο του. Οι τροχοί έρχονται σε επαφή ώστε τα δοντάκια τους να συμπλέκονται. Για τις ακτίνες των δύο τροχών ισχύει \[R_1=2R_2\].

Την \[t=0\] οι τροχοί είναι ακόμα ακίνητοι και τότε ο τροχός (1) αποκτά σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\]  ενώ ο (2) μέτρου \[α_{γων_2 }\].

A) Για τα μέτρα των γωνιακών επιταχύνσεων των δύο τροχών ισχύει:
α) \[  \frac{α_{γων_1 }  }{α_{γων_2}  } =\frac{R_1}{R_2}  \],                       
β) \[  \frac{ α_{γων_1 }  }{α_{γων_2 }  } =\frac{R_2}{R_1} \] ,                       
γ) \[ \frac{α_{γων_1 } }{α_{γων_2 } } =1 \].

Β) Για τα μέτρα των κεντρομόλων επιταχύνσεων \[ α_{κ_1}, \,  α_{κ_2 }\]  αντίστοιχα των σημείων της περιφέρειας των δύο τροχών την ίδια χρονική στιγμή ισχύει:
α) \[ \frac{ α_{κ_1}  }{  α_{κ_2}  } =1\],                    
β) \[  \frac{  α_{κ_1 }  }{  α_{κ_2 }  } =\frac{ R_1 }{ R_2 }\],                   
γ) \[ \frac{  α_{κ_1}  }{  α_{κ_2 }  } =\frac{ R_2 }{ R_1 }  \] .

26. Τροχός στρέφεται γύρω από σταθερό άξονα εκτελώντας επιταχυνόμενη κίνηση. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Όλα τα κινούμενα σημεία του στερεού έχουν την ίδια στιγμή:
27. Στο σχήμα οι \[\vec{F}_1 \] και \[\vec{F}_2 \] αποτελούν ζεύγος δυνάμεων. Αν \[x_1,\, x_2\] είναι οι αποστάσεις των φορέων των δυνάμεων \[\vec{F}_1,\, \vec{F}_2\] αντίστοιχα από το Κ τότε η αλγεβρική τιμή της ροπής του ζεύγους ως προς το σημείο Κ είναι
28. Ράβδος την \[t=0\] αρχίζει να στρέφεται γύρω από σταθερό άξονα περιστροφής. Ο ρυθμός μεταβολής της γωνιακής ταχύτητάς της είναι σταθερός και ομόρροπος της γωνιακής της ταχύτητας. Ποια απ’ τις παρακάτω προτάσεις είναι σωστή; Ο αριθμός των περιστροφών που έχει εκτελέσει η ράβδος μέχρι τη χρονική στιγμή \[t\] είναι ανάλογος του:
29. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο με σταθερή γωνιακή ταχύτητα \[ω\]. Η σχέση που συνδέει την ίδια στιγμή τα μέτρα των ταχυτήτων των σημείων της κατακόρυφης διαμέτρου ΑΒ με την απόστασή τους \[x\] απ’ το σημείο Α του τροχού που την ίδια στιγμή είναι σε επαφή με το έδαφος είναι:
30. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ το κέντρο του Κ. Ο τροχός έχει ακτίνα \[R\]. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της γωνιακής του ταχύτητας με το χρόνο. Ποιες από τις ακόλουθες προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US