MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Οι ομογενείς κατακόρυφοι τροχοί \[(1) \, , \, (2)\] του παρακάτω σχήματος έχουν ακτίνες \[R_1\, , \, R_2= \frac{R_1}{2}\], μπορούν να στρέφονται γύρω από οριζόντιους άξονες που διέρχονται απ’ τα κέντρα τους χωρίς τριβές και τα νήματα είναι αβαρή. Το σώμα Σ έχει βάρος μέτρου \[w\]. Για να ισορροπεί το σύστημα τροχοί-σώμα Σ ασκώ στο κατώτερο σημείο της περιφέρειας του τροχού \[(2)\] σταθερή δύναμη που σχηματίζει \[φ=60^0\] με την οριζόντια διεύθυνση. Το μέτρο της δύναμης \[F\] είναι:
2. Η ράβδος ΑΒ ισορροπεί στηριζόμενη στο υποστήριγμα που διέρχεται από το μέσο της Κ. Σε απόσταση \[d\] από το Κ προς τα δεξιά υπάρχει σώμα μάζας \[m\] που είναι τοποθετημένο πάνω στη ράβδο. Σε απόσταση \[2d\] προς τα αριστερά από το Κ υπάρχει ελατήριο το οποίο συγκρατεί την ράβδο σε οριζόντια θέση.
A) Το ελατήριο είναι:

   α)σε επιμήκυνση.

   β) στο φυσικό του μήκος.

   γ)σε συσπείρωση.

B) Αν \[K=100\, \frac{N}{m}\] , \[m=10\, kg\] και \[g=10\, \frac{m}{s^2}\] , η παραμόρφωση του ελατηρίου είναι:

  α) \[Δl=0, 5\, m \]

  β) \[Δl=0\, m \]

  γ) \[ Δl=1\, m \].

3. Ο ομογενής τροχός του παρακάτω σχήματος εκτελεί ομαλή μεταφορική κίνηση με φορά προς τα δεξιά και ομαλή στροφική δεξιόστροφα πάνω σε οριζόντιο δάπεδο. Η ταχύτητα του ανώτερου σημείου Β του τροχού έχει σταθερό μέτρο \[υ_Β=1,5υ_{cm}\] όπου \[υ_{cm}\] το μέτρο της ταχύτητας του κέντρου μάζας.

Α) α) Ο τροχός κυλίεται χωρίς να ολισθαίνει στο δάπεδο.

β) Ο τροχός μόνο ολισθαίνει στο δάπεδο.

γ) Ο τροχός κυλίεται στο δάπεδο με ολίσθηση.

Β) Το σημείο επαφής Α με το έδαφος  έχει κάθε στιγμή ταχύτητα:

α) μέτρου \[υ_{cm}\]  με φορά προς τα δεξιά.

β) μέτρου  \[\frac{υ_{cm}}{2}\]  με φορά προς τ’ αριστερά.

γ) μέτρου  \[\frac{ υ_{cm} }{ 2 }\]  με φορά προς τα δεξιά.

δ) μηδενική.

4. Η ομογενής ράβδος του σχήματος έχει μήκος \[\ell\] και βάρος \[w\]. Η ράβδος είναι αρθρωμένη σε τοίχο και ισορροπεί οριζόντια δεμένη στο άλλο της άκρο με κατακόρυφο νήμα. Ένα βαρίδι ίδιου βάρους με τη ράβδο μπορεί να μετακινείται κατά μήκος της ράβδου. Ποιο από τα παρακάτω σχήματα αποδίδει σωστά τη γραφική παράσταση του μέτρου της τάσης του νήματος σε συνάρτηση με την απόσταση \[x\] του βαριδίου από την άρθρωση.
5. Η ομογενής σφαίρα του παρακάτω σχήματος ακτίνας \[R\] βρίσκεται σε κεκλιμένο επίπεδο γωνίας \[φ\] και ισορροπεί με τη βοήθεια κυβικού εμποδίου ακμής \[h = \frac{R}{2}\]. Η σφαίρα υπερπηδά το εμπόδιο αν η γωνία \[φ\] γίνει μεγαλύτερη από:
6. Η ελάχιστη τιμή της οριζόντιας δύναμης \[\vec{F}\] που πρέπει να ασκήσουμε στο υψηλότερο σημείο του τροχού (όπως φαίνεται στο σχήμα) ώστε να καταφέρει να υπερπηδήσει το εμπόδιο που έχει ύψος \[h=\frac{R}{2}\], αν ο τροχός έχει βάρος \[w\], είναι:
7. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος στρέφεται δεξιόστροφα με σταθερή γωνιακή ταχύτητα και ταυτόχρονα μεταφέρεται προς τα δεξιά με σταθερή ταχύτητα μέτρου \[υ_{cm}\]. Το σημείο επαφής του τροχού με το έδαφος έχει κάθε στιγμή ταχύτητα μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\] και φορά προς τ’ αριστερά.

Α) Αν σε χρόνο \[Δt\] ένα σημείο της περιφέρειας του τροχού διαγράφει μήκος τόξου \[Δs\] και στον ίδιο χρόνο το κέντρο μάζας του μεταφέρεται κατά \[Δx_{cm}\]  τότε το πηλίκο  \[\frac{  Δs  }{  Δx_{cm} } \]  είναι:

α) \[\frac{3}{2}\],              β) \[\frac{2}{3}\],              γ) \[1\],                 δ) \[2\].

Β) Το μέτρο της ταχύτητας του σημείου Γ της περιφέρειάς που απέχει \[R\] απ’ το έδαφος έχει ταχύτητα:

α) \[  \sqrt{2} υ_{cm} \],       β) \[\frac{ \sqrt{13} }{ 2 } υ_{cm}\],            γ) \[ \frac{ \sqrt{5} }{2} υ_{cm}\].

8. Το παρακάτω σύστημα δύο κάθετων ομογενών ράβδων \[(1)\, ,\, (2)\] μήκους \[\ell_1\, ,\, \ell_2\] αντίστοιχα και μαζών \[m_1\] και \[m_2=3m_1\] μπορεί να στρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που περνά απ’ το άκρο Ο της ράβδου \[(1)\] και είναι κάθετος στο κατακόρυφο επίπεδο που δημιουργούν οι δύο ράβδοι. Οι ράβδοι είναι κολλημένες στο κοινό άκρο τους Α. Στο άκρο Β της ράβδου \[(2)\] έχουμε κολλήσει σημειακό σφαιρίδιο μάζας \[m_Σ=2m_1\]. Το σύστημα ράβδοι-σφαιρίδιο ισορροπούν με τη βοήθεια αβαρούς νήματος. Αν \[g\] είναι το μέτρο της επιτάχυνσης της βαρύτητας τότε η δύναμη που δέχεται η ράβδος \[(1)\] από τον άξονα περιστροφής στο άκρο της Ο είναι:
9. Για να ισορροπεί ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται πολλές ομοεπίπεδες δυνάμεις πρέπει να ισχύουν οι σχέσεις:
10. Δύο στερεά σώματα (1) και (2) στρέφονται γύρω από σταθερούς άξονες και οι γραφικές παραστάσεις των γωνιακών τους ταχυτήτων με το χρόνο φαίνονται στα παρακάτω διαγράμματα στο ίδιο σύστημα αξόνων.
Α) Για τις γωνιακές επιταχύνσεις \[α_{γων_1 },\,  α_{γων_2 }\]  των δύο στερεών ισχύει:

α) \[α_{γων_1}=α_{γων_2 }\],                 β) \[α_{γων_1 }=1,5α_{γων_2}\],

γ) \[α_{γων_1 }=2α_{γων_2 }\],               δ) \[α_{γων_2 }=1,5α_{γων_1 }\].

Β) Η χρονική στιγμή \[t_2\]  μέχρι την οποία τα δύο στερεά έχουν στραφεί κατά ίσες γωνίες απ’ τη στιγμή \[t_0=0\] είναι:

α) \[2t_1\],                                    β) \[1,5t_1\],                     γ) \[4t_1\].

11. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και το μέτρο της ταχύτητας του κέντρου μάζας του αυξάνεται. Σε ποιο απ’ τα παρακάτω σχήματα φαίνεται το διάνυσμα της επιτάχυνσης \[\vec{α}_A\] του σημείου επαφής Α του τροχού με το έδαφος;
12. Στο παρακάτω σχήμα η διπλή τροχαλία αποτελείται από δύο κατακόρυφους ομογενείς και ομόκεντρους δίσκους κέντρου Κ που μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα κάθετο στο επίπεδο των δύο δίσκων που διέρχεται απ’ το κοινό κέντρο Κ χωρίς τριβές και έχουν ακτίνες \[R_1 \, , \, R_2=\frac{R_1}{2}\]. Το ελατήριο είναι ιδανικό, έχει σταθερά \[k\] και επιμήκυνση \[Δ\ell\] ενώ η ράβδος έχει μήκος \[\ell\], βάρος \[w_ρ\] και είναι αρθρωμένη στο άκρο της Α και μπορεί να στρέφεται γύρω απ’ την άρθρωση αυτή σε κατακόρυφο επίπεδο χωρίς τριβές. Το σώμα Σ έχει βάρος \[w_Σ\]. Το σύστημα όλων των παραπάνω σωμάτων ισορροπεί. Για τη γωνία \[φ\] δίνεται \[ημφ=0,6\, ,\, συνφ=0,8\]. Η απόσταση ΑΔ είναι \[ΑΔ=\frac{2\ell}{3}\]. Για τη δυναμική ενέργεια \[U_{ελ}\] του παραμορφωμένου ελατηρίου ισχύει:
13. Μια ράβδος δέχεται τη δράση τεσσάρων ομοεπίπεδων δυνάμεων οι οποίες αποτελούν δυο ζεύγη δυνάμεων και ισορροπεί ακίνητη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο κατακόρυφους ομογενείς δίσκους \[(1)\, ,\, (2)\] με ακτίνες \[R_1\, ,\, R_2 = \frac{R_1}{2}\] αντίστοιχα και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κοινό κέντρο Κ των δύο δίσκων και είναι κάθετος στο επίπεδό τους. Τα νήματα είναι αβαρή. Η ομογενής ράβδος έχει μήκος \[\ell\], βάρος \[w_ρ\], είναι αρθρωμένη στο άκρο της Ο και μπορεί να στρέφεται χωρίς τριβές γύρω από την άρθρωση αυτή πάνω σε κατακόρυφο επίπεδο. Το τμήμα ΟΖ έχει μήκος \[\frac{3\ell}{4}\] και το βάρος του σώματος Σ είναι \[w_Σ\]. Το σύστημα διπλή τροχαλία-σώμα-ράβδος ισορροπεί με την ράβδο να σχηματίζει γωνία \[φ\] με την κατακόρυφο με \[ημφ=0,6\] και \[συνφ=0,8\]. Για τα βάρη του σώματος και της ράβδου ισχύει:
15. Στο διπλανό σχήμα φαίνεται μια ομογενής δοκός ΑΒ μήκους \[\ell=1m\] και βάρους \[50Ν\] η οποία στηρίζεται στο σημείο Ο, όπου \[(ΟΑ)=20cm\]. Ποιο είναι το μέτρο της δύναμης που πρέπει να ασκείται στο σημείο Α ώστε η δοκός να διατηρείται οριζόντια;
16. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν. Δίνονται τρεις ομοεπίπεδες δυνάμεις \[\vec{F}_1,\, \vec{F}_2\] και \[\vec{F}_3\], οι οποίες έχουν ίσα μέτρα και ένα σημείο Ο του επιπέδου τους. Οι αποστάσεις (ΟΑ), (ΟΒ) και (ΟΓ) είναι ίσες μεταξύ τους.
17. Μια ομογενής ράβδος ΚΛ στηρίζεται σε λείο κατακόρυφο τοίχο και ταυτόχρονα είναι δεμένη με ένα νήμα. Δυο μαθητές (α) και (β) εκφράζουν αντίστοιχα την άποψη ότι η ράβδος: α. μπορεί να ισορροπήσει β. δεν μπορεί να ισορροπήσει. Εσείς με ποια άποψη συμφωνείτε;
18. Η ομογενής ράβδος ΑΓ του σχήματος στηρίζεται με το ένα άκρο της σε οριζόντιο δάπεδο και με το άλλο σε λείο κατακόρυφο τοίχο. Αν ο συντελεστής στατικής τριβής μεταξύ της ράβδου και του δαπέδου είναι \[μ_s\] τότε η ελάχιστη τιμή της εφαπτομένης της γωνίας \[φ\] για την οποία η ράβδος δεν ολισθαίνει πάνω στο δάπεδο δίνεται από τη σχέση:
19. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο. Ένα σημείο Α του τροχού έχει κάθε στιγμή γραμμική ταχύτητα ίση κατά μέτρο με την ταχύτητα του κέντρου μάζας του τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Α:
20. Τροχός στρέφεται γύρω από σταθερό οριζόντιο άξονα εκτελώντας ομαλά μεταβαλλόμενη κίνηση κατά τη φορά των δεικτών του ρολογιού. Ο άξονας περιστροφής είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Σε ένα στερεό που ισορροπεί ασκούνται τρεις μη παράλληλες ομοεπίπεδες δυνάμεις. Στην περίπτωση αυτή
22. Η ομογενής δοκός ΚΛ μήκους \[\ell\] του παρακάτω σχήματος έχει βάρος \[w_ρ\] και ακουμπά σε δύο σημειακά στηρίγματα Ζ, Θ για τα οποία ισχύει \[ΚΖ=ΘΛ=\frac{\ell}{3}\]. Στο άκρο της τοποθετούμε σημειακό αντικείμενο βάρους \[w\] και έτσι η δοκός μόλις που ισορροπεί. Οι σχέσεις των μέτρων των βαρών \[w_ρ\, ,\, w\] είναι:
23. Στην επιφάνεια ενός κυλίνδρου έχει τυλιχθεί ένα νήμα. Ο κύλινδρος στηρίζεται πάνω σε λείο κεκλιμένο επίπεδο ενώ το νήμα που είναι παράλληλο σε αυτό έχει το άλλο άκρο του δεμένο σε ακλόνητο στήριγμα.
24. Μια ομογενής ράβδος ΑΓ βάρους \[w\] είναι αρθρωμένη σε κατακόρυφο τοίχο και διατηρείται οριζόντια με τη βοήθεια ενός κατακόρυφου νήματος που είναι δεμένο στο άλλο άκρο όπως φαίνεται στο σχήμα. Η δύναμη που ασκείται στη ράβδο από την άρθρωση είναι η δύναμη:
25. Η ομογενής λεία ράβδος ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και βάρος \[w_ρ\], το σημειακό σώμα Σ βάρος \[w_Σ=2w_ρ\] και αρχίζει να κινείται πάνω στη ράβδο και κατά τη διεύθυνσή της από το άκρο της Κ προς το άκρο της Λ υπό την επίδραση σταθερής δύναμης μέτρου \[F=w_ρ\] που σχηματίζει γωνία \[φ=30^0\] με τη διεύθυνση της ράβδου. Η ράβδος αρχίζει να ανατρέπεται όταν το σώμα Σ απέχει απ’ το άκρο Λ απόσταση:
26. Η αβαρής δοκός ΑΓ μιας παιδικής χαράς στηρίζεται με κατακόρυφο στήριγμα στο σημείο Μ το οποίο δεν ισαπέχει από τα άκρα της δοκού. Ένα παιδί (Π) βάρους \[w\], κάθεται στο άκρο Α της δοκού, οπότε για να ισορροπήσει η δοκός σε οριζόντια θέση, πρέπει στο άλλο άκρο Γ να καθίσει παιδί (Π1), βάρους \[w_1\]. Αν το παιδί (Π) καθίσει στο άλλο άκρο Γ, για να ισορροπήσει εκ νέου η δοκός πρέπει στο άκρο Α να καθίσει παιδί (Π2) βάρους \[w_2\]. Το βάρος του παιδιού (Π) είναι
27. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Απ’ τη χρονική στιγμή \[0\] ως τη στιγμή \[t_1\] το cm έχει διανύσει απόσταση \[x_1\] και ο τροχός έχει στραφεί κατά γωνία \[Δθ_1\]. Τη στιγμή \[t_1\] ο τροχός έχει ταχύτητα μεταφορικής κίνησης μέτρου \[υ_{1_{cm} }\], επιτάχυνση μέτρου \[α_{1_{cm} }\] ενώ ταυτόχρονα έχει γωνιακή ταχύτητα \[ω_1\] και γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\] ενώ η γραμμική ταχύτητα του σημείου Ζ την ίδια στιγμή έχει μέτρο \[υ_{γρ_{1_Ζ }}\] και επιτρόχια επιτάχυνση λόγω της στροφικής κίνησης του τροχού \[α_{επ_{1_Ζ }}\]. Ποιες απ’ τις παρακάτω σχέσεις είναι σωστές;
28. Ο ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και το κέντρο μάζας του έχει σταθερή επιτάχυνση \[α_{cm}\]. Τη στιγμή \[t_1\] το μέτρο της ταχύτητας του τροχού είναι \[ω_1\] και το σημείο Γ που απέχει \[\frac{R}{2}\] απ’ το κέντρο του τροχού βρίσκεται στην κατακόρυφη διάμετρο του τροχού και χαμηλότερα απ’ το cm του. Τη στιγμή \[t_1\] το μέτρο της επιτάχυνσης του Γ είναι:
29. Δίσκος στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ο δίσκος ξεκινά να στρέφεται την \[t=0\] με σταθερή γωνιακή επιτάχυνση \[α_{γων}=4\, \frac{m}{s^2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
30. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και το μέτρο της ταχύτητας του κέντρου μάζας του αυξάνεται. Σε ποια απ’ τα παρακάτω σχήματα φαίνεται το διάνυσμα της επιτάχυνσης \[\vec{α}_Β\] του ανώτερου σημείου Β του τροχού;

    +30

    CONTACT US
    CALL US