MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο με σταθερή επιτάχυνση μέτρου \[α_{cm}\] και σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
2. Οι ομογενείς κατακόρυφοι τροχοί \[(1) \, , \, (2)\] του παρακάτω σχήματος έχουν ακτίνες \[R_1\, , \, R_2= \frac{R_1}{2}\], μπορούν να στρέφονται γύρω από οριζόντιους άξονες που διέρχονται απ’ τα κέντρα τους χωρίς τριβές και τα νήματα είναι αβαρή. Το σώμα Σ έχει βάρος μέτρου \[w\]. Για να ισορροπεί το σύστημα τροχοί-σώμα Σ ασκώ στο κατώτερο σημείο της περιφέρειας του τροχού \[(2)\] σταθερή δύναμη που σχηματίζει \[φ=60^0\] με την οριζόντια διεύθυνση. Το μέτρο της δύναμης \[F\] είναι:
3. Στο παρακάτω σχήμα η διπλή τροχαλία αποτελείται από δύο κατακόρυφους ομογενείς και ομόκεντρους δίσκους κέντρου Κ που μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα κάθετο στο επίπεδο των δύο δίσκων που διέρχεται απ’ το κοινό κέντρο Κ χωρίς τριβές και έχουν ακτίνες \[R_1 \, , \, R_2=\frac{R_1}{2}\]. Το ελατήριο είναι ιδανικό, έχει σταθερά \[k\] και επιμήκυνση \[Δ\ell\] ενώ η ράβδος έχει μήκος \[\ell\], βάρος \[w_ρ\] και είναι αρθρωμένη στο άκρο της Α και μπορεί να στρέφεται γύρω απ’ την άρθρωση αυτή σε κατακόρυφο επίπεδο χωρίς τριβές. Το σώμα Σ έχει βάρος \[w_Σ\]. Το σύστημα όλων των παραπάνω σωμάτων ισορροπεί. Για τη γωνία \[φ\] δίνεται \[ημφ=0,6\, ,\, συνφ=0,8\]. Η απόσταση ΑΔ είναι \[ΑΔ=\frac{2\ell}{3}\]. Για τη δυναμική ενέργεια \[U_{ελ}\] του παραμορφωμένου ελατηρίου ισχύει:
4. Η ράβδος ΑΒ ισορροπεί στηριζόμενη στο υποστήριγμα που διέρχεται από το μέσο της Κ. Σε απόσταση \[d\] από το Κ προς τα δεξιά υπάρχει σώμα μάζας \[m\] που είναι τοποθετημένο πάνω στη ράβδο. Σε απόσταση \[2d\] προς τα αριστερά από το Κ υπάρχει ελατήριο το οποίο συγκρατεί την ράβδο σε οριζόντια θέση.
A) Το ελατήριο είναι:

   α)σε επιμήκυνση.

   β) στο φυσικό του μήκος.

   γ)σε συσπείρωση.

B) Αν \[K=100\, \frac{N}{m}\] , \[m=10\, kg\] και \[g=10\, \frac{m}{s^2}\] , η παραμόρφωση του ελατηρίου είναι:

  α) \[Δl=0, 5\, m \]

  β) \[Δl=0\, m \]

  γ) \[ Δl=1\, m \].

5. Δύο στερεά σώματα (1) και (2) στρέφονται γύρω από σταθερούς άξονες και οι γραφικές παραστάσεις των γωνιακών τους ταχυτήτων με το χρόνο φαίνονται στα παρακάτω διαγράμματα στο ίδιο σύστημα αξόνων.
Α) Για τις γωνιακές επιταχύνσεις \[α_{γων_1 },\,  α_{γων_2 }\]  των δύο στερεών ισχύει:

α) \[α_{γων_1}=α_{γων_2 }\],                 β) \[α_{γων_1 }=1,5α_{γων_2}\],

γ) \[α_{γων_1 }=2α_{γων_2 }\],               δ) \[α_{γων_2 }=1,5α_{γων_1 }\].

Β) Η χρονική στιγμή \[t_2\]  μέχρι την οποία τα δύο στερεά έχουν στραφεί κατά ίσες γωνίες απ’ τη στιγμή \[t_0=0\] είναι:

α) \[2t_1\],                                    β) \[1,5t_1\],                     γ) \[4t_1\].

6. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομογενείς κατακόρυφους δίσκους \[(1)\, ,\, (2)\] ακτίνων \[R_1\] και \[R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται απ’ το κοινό κέντρο Κ των δύο δίσκων κάθετα στο επίπεδό τους χωρίς τριβές. Μέσω αβαρών νημάτων έχουμε κρεμάσει από την περιφέρεια του δίσκου \[(1)\] σώμα βάρους \[w_1\] και απ’ την περιφέρεια του δίσκου \[(2)\] σώμα βάρους \[w_2=6w_1\]. Αν το σύστημα διπλή τροχαλία-σώματα ισορροπεί με την βοήθεια της \[F\] και η διπλή τροχαλία αυτή έχει βάρος μέτρου \[2w_1\], τότε η δύναμη \[F_K\] που δέχεται απ’ τον άξονά της έχει μέτρο:
7. Η ομογενής ράβδος του σχήματος έχει μήκος \[\ell\] και βάρος \[w\]. Η ράβδος είναι αρθρωμένη σε τοίχο και ισορροπεί οριζόντια δεμένη στο άλλο της άκρο με κατακόρυφο νήμα. Ένα βαρίδι ίδιου βάρους με τη ράβδο μπορεί να μετακινείται κατά μήκος της ράβδου. Ποιο από τα παρακάτω σχήματα αποδίδει σωστά τη γραφική παράσταση του μέτρου της τάσης του νήματος σε συνάρτηση με την απόσταση \[x\] του βαριδίου από την άρθρωση.
8. Ο τροχός του παρακάτω σχήματος στρέφεται κατά τη φορά των δεικτών του ρολογιού γύρω από οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Η στροφική κίνηση είναι ομαλά μεταβαλλόμενη και το μέτρο της γωνιακής της ταχύτητας συνεχώς μειώνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Ένα στερεό σώμα που αρχικά είναι ακίνητο έχει τη δυνατότητα να περιστρέφεται γύρω από το σταθερό (ακλόνητο) κατακόρυφο άξονα \[z’z\]. Στο στερεό ασκείται οριζόντια δύναμη \[\vec{F}\] που απέχει απόσταση \[R\] από τον άξονα \[z'z\], όπως φαίνεται στο σχήμα.
10. Οριζόντια ομογενής ράβδος, μήκους \[L\] και βάρους \[w\], ισορροπεί κρεμασμένη από την οροφή μέσω δυο δυναμόμετρων \[Δ_1\] και \[Δ_2\] όπως φαίνεται στο σχήμα. Αν \[F_1\] είναι η ένδειξη του δυναμόμετρου \[Δ_1\] και \[F_2\] η ένδειξη του δυναμόμετρου \[Δ_2\], τότε η τιμή του λόγου \[\frac{F_1}{F_2}\] είναι
11. Η ελάχιστη τιμή της οριζόντιας δύναμης \[\vec{F}\] που πρέπει να ασκήσουμε στο υψηλότερο σημείο του τροχού (όπως φαίνεται στο σχήμα) ώστε να καταφέρει να υπερπηδήσει το εμπόδιο που έχει ύψος \[h=\frac{R}{2}\], αν ο τροχός έχει βάρος \[w\], είναι:
12. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν. Δίνονται τρεις ομοεπίπεδες δυνάμεις \[\vec{F}_1,\, \vec{F}_2\] και \[\vec{F}_3\], οι οποίες έχουν ίσα μέτρα και ένα σημείο Ο του επιπέδου τους. Οι αποστάσεις (ΟΑ), (ΟΒ) και (ΟΓ) είναι ίσες μεταξύ τους.
13. Ένας ομογενής δίσκος βρίσκεται πάνω σε λείο οριζόντιο επίπεδο δάπεδο όπως φαίνεται στο σχήμα. Ο δίσκος είναι ελεύθερος να κινηθεί. Μια οριζόντια δύναμη \[\vec{F}\] ασκείται εφαπτομενικά στο δίσκο. Ο δίσκος θα εκτελέσει
14. Η αβαρής δοκός ΑΓ μιας παιδικής χαράς στηρίζεται με κατακόρυφο στήριγμα στο σημείο Μ το οποίο δεν ισαπέχει από τα άκρα της δοκού. Ένα παιδί (Π) βάρους \[w\], κάθεται στο άκρο Α της δοκού, οπότε για να ισορροπήσει η δοκός σε οριζόντια θέση, πρέπει στο άλλο άκρο Γ να καθίσει παιδί (Π1), βάρους \[w_1\]. Αν το παιδί (Π) καθίσει στο άλλο άκρο Γ, για να ισορροπήσει εκ νέου η δοκός πρέπει στο άκρο Α να καθίσει παιδί (Π2) βάρους \[w_2\]. Το βάρος του παιδιού (Π) είναι
15. Για να ισορροπεί ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται πολλές ομοεπίπεδες δυνάμεις πρέπει να ισχύουν οι σχέσεις:
16. Σε ένα εργοτάξιο μια αβαρής σκάλα ΑΓ ισορροπεί, στηριζόμενη σε λείο κατακόρυφο τοίχο και σε οριζόντιο δάπεδο. Ένας εργάτης ανεβαίνει στη σκάλα απέχοντας από τη βάση Γ απόσταση \[x\]. Μεταξύ δαπέδου και σκάλας υπάρχει δύναμη στατικής τριβής. Για το χρονικό διάστημα που υπάρχει ισορροπία, η δύναμη της στατικής τριβής είναι
17. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και το μέτρο της ταχύτητας του κέντρου μάζας του αυξάνεται. Σε ποιο απ’ τα παρακάτω σχήματα φαίνεται το διάνυσμα της επιτάχυνσης \[\vec{α}_A\] του σημείου επαφής Α του τροχού με το έδαφος;
18. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο. Ένα σημείο Α του τροχού έχει κάθε στιγμή γραμμική ταχύτητα ίση κατά μέτρο με την ταχύτητα του κέντρου μάζας του τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Α:
19. Η ομογενής λεία ράβδος ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και βάρος \[w_ρ\], το σημειακό σώμα Σ βάρος \[w_Σ=2w_ρ\] και αρχίζει να κινείται πάνω στη ράβδο και κατά τη διεύθυνσή της από το άκρο της Κ προς το άκρο της Λ υπό την επίδραση σταθερής δύναμης μέτρου \[F=w_ρ\] που σχηματίζει γωνία \[φ=30^0\] με τη διεύθυνση της ράβδου. Η ράβδος αρχίζει να ανατρέπεται όταν το σώμα Σ απέχει απ’ το άκρο Λ απόσταση:
20. Η ράβδος ΑΒ είναι ομογενής, έχει βάρος \[w\] και ισορροπεί όπως φαίνεται στο σχήμα.
21. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετούμε το καρούλι πάνω σε δύο οριζόντιους υπερυψωμένους δοκούς ώστε η περιφέρεια του κυλίνδρου να ακουμπά σ’ αυτούς ενώ οι περιφέρειες των δίσκων βρίσκονται στον αέρα χωρίς ν’ ακουμπούν ούτε στις δοκούς ούτε στο έδαφος. Στο σχήμα β φαίνεται πρόσοψη του καρουλιού. Το καρούλι αρχίζει να κινείται και ο κύλινδρος εκτελεί Κ.Χ.Ο. με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] και ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\].
A) Το μέτρο της ταχύτητας του κέντρου μάζας του δίσκου είναι:

α) \[ωR\],                          β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[υ_{cm}\],                      β) \[\frac{3}{2} υ_{cm}\],                γ) \[2υ_{cm}\].

Γ) Το ανώτερο σημείο Η του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[υ_{cm} \left( \frac{R}{r} + 1 \right)\],         β) \[ υ_{cm} \left(\frac{R}{r}-1 \right)\],           γ) \[2υ_{cm}\].

Δ) Το κατώτερο σημείο Ε του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[υ_{cm} \left( \frac{R}{r}-1 \right)\]  και φορά προς τ’ αριστερά.

β) \[ υ_{cm} \left( \frac{R}{r}-1 \right)\]  και φορά προς τα δεξιά.

γ) μηδέν.

22. Δίσκος στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ο δίσκος ξεκινά να στρέφεται την \[t=0\] με σταθερή γωνιακή επιτάχυνση \[α_{γων}=4\, \frac{m}{s^2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
23. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει και το κέντρο μάζας του έχει σταθερή ταχύτητα. Δύο σημεία Β, Γ απέχουν απ’ το κέντρο του τροχού αποστάσεις \[\frac{R}{2}\] και \[\frac{R}{8}\] αντίστοιχα και βρίσκονται πάνω στην ίδια διάμετρο του τροχού. Τη στιγμή που η διάμετρος αυτή γίνεται οριζόντια ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_Γ}{υ_Β}\] την ίδια στιγμή είναι:
24. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος στρέφεται δεξιόστροφα με σταθερή γωνιακή ταχύτητα και ταυτόχρονα μεταφέρεται προς τα δεξιά με σταθερή ταχύτητα μέτρου \[υ_{cm}\]. Το σημείο επαφής του τροχού με το έδαφος έχει κάθε στιγμή ταχύτητα μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\] και φορά προς τ’ αριστερά.

Α) Αν σε χρόνο \[Δt\] ένα σημείο της περιφέρειας του τροχού διαγράφει μήκος τόξου \[Δs\] και στον ίδιο χρόνο το κέντρο μάζας του μεταφέρεται κατά \[Δx_{cm}\]  τότε το πηλίκο  \[\frac{  Δs  }{  Δx_{cm} } \]  είναι:

α) \[\frac{3}{2}\],              β) \[\frac{2}{3}\],              γ) \[1\],                 δ) \[2\].

Β) Το μέτρο της ταχύτητας του σημείου Γ της περιφέρειάς που απέχει \[R\] απ’ το έδαφος έχει ταχύτητα:

α) \[  \sqrt{2} υ_{cm} \],       β) \[\frac{ \sqrt{13} }{ 2 } υ_{cm}\],            γ) \[ \frac{ \sqrt{5} }{2} υ_{cm}\].

25. Μια αβαρής ράβδος ΑΓ μήκους \[\ell\] διατηρείται οριζόντια με τη βοήθεια των νημάτων που είναι δεμένα στα άκρα της Α και Γ. Ένα κιβώτιο ισορροπεί στο μέσο της ράβδου και η τάση του νήματος στο άκρο Α είναι \[\vec{F}_1\]. Όταν το κιβώτιο μετακινηθεί κατά \[\frac{\ell}{4}\] προς το άκρο Α η τάση \[\vec{F}_1'\] του ίδιου νήματος έχει μέτρο:
26. Στο διπλανό σχήμα φαίνεται μια ομογενής δοκός ΑΒ μήκους \[\ell=1m\] και βάρους \[50Ν\] η οποία στηρίζεται στο σημείο Ο, όπου \[(ΟΑ)=20cm\]. Ποιο είναι το μέτρο της δύναμης που πρέπει να ασκείται στο σημείο Α ώστε η δοκός να διατηρείται οριζόντια;
27. Μια ράβδος δέχεται τη δράση τεσσάρων ομοεπίπεδων δυνάμεων οι οποίες αποτελούν δυο ζεύγη δυνάμεων και ισορροπεί ακίνητη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και το μέτρο της ταχύτητας του κέντρου μάζας του αυξάνεται. Σε ποια απ’ τα παρακάτω σχήματα φαίνεται το διάνυσμα της επιτάχυνσης \[\vec{α}_Β\] του ανώτερου σημείου Β του τροχού;
29. Οι δύο ομογενείς ίδιες ράβδοι \[(1)\, , \, (2)\] έχουν μήκος \[\ell\] η καθεμιά και μάζα \[m\] ενώ το σημειακό σφαιρίδιο Σ έχει μάζα και αυτό \[m\]. Οι δύο ράβδοι είναι κολλημένες στο σημείο Β ενώ το σύστημά τους είναι αρθρωμένο απ’ το άκρο Α της ράβδου \[(1)\] και μπορεί να στρέφεται χωρίς τριβές γύρω απ’ αυτό σε κατακόρυφο επίπεδο. Η επιτάχυνση της βαρύτητας έχει μέτρο \[g\]. Για να ισορροπεί το σύστημα ράβδοι-σώμα ασκώ στο σημείο Β ασκώ στο σημείο Β κατακόρυφη δύναμη \[F\] όπως φαίνεται στο σχήμα. Η δύναμη \[F_A\] που δέχεται η ράβδος \[(1)\] απ’ την άρθρωση Α έχει μέτρο:
30. Στο παρακάτω σχήμα η διπλή τροχαλία αποτελείται από δύο κατακόρυφους ομογενείς και ομόκεντρους δίσκους κέντρου Κ που μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα κάθετο στο επίπεδο των δύο δίσκων που διέρχεται απ’ το κοινό κέντρο Κ χωρίς τριβές και έχουν ακτίνες \[R_1 \, , \, R_2=\frac{R_1}{2}\]. Το ελατήριο είναι ιδανικό, έχει σταθερά \[k\] και επιμήκυνση \[Δ\ell\] ενώ η ράβδος έχει μήκος \[\ell\], βάρος \[w_ρ\] και είναι αρθρωμένη στο άκρο της Α και μπορεί να στρέφεται γύρω απ’ την άρθρωση αυτή σε κατακόρυφο επίπεδο χωρίς τριβές. Το σώμα Σ έχει βάρος \[w_Σ\]. Το σύστημα όλων των παραπάνω σωμάτων ισορροπεί. Για τη γωνία \[φ\] δίνεται \[ημφ=0,6\, ,\, συνφ=0,8\]. Η απόσταση ΑΔ είναι \[ΑΔ=\frac{2\ell}{3}\]. Για τα βάρη \[w_Σ\, ,\, w_ρ\] ισχύει:

    +30

    CONTACT US
    CALL US