MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για να ισορροπεί ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται πολλές ομοεπίπεδες δυνάμεις πρέπει να ισχύουν οι σχέσεις:
2. Η ομογενής σφαίρα του παρακάτω σχήματος ακτίνας \[R\] βρίσκεται σε κεκλιμένο επίπεδο γωνίας \[φ\] και ισορροπεί με τη βοήθεια κυβικού εμποδίου ακμής \[h = \frac{R}{2}\]. Η σφαίρα υπερπηδά το εμπόδιο αν η γωνία \[φ\] γίνει μεγαλύτερη από:
3. Δίσκος στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ο δίσκος ξεκινά να στρέφεται την \[t=0\] με σταθερή γωνιακή επιτάχυνση \[α_{γων}=4\, \frac{m}{s^2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
4. Ομογενής σφαιρικός φλοιός εκτελεί στροφική κίνηση γύρω από οριζόντιο άξονα που διέρχεται από μια διάμετρό του. Θεωρούμε θετική φορά περιστροφής την αντίθετη της φοράς των δεικτών του ρολογιού. Η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Στο διπλανό σχήμα φαίνεται μια ομογενής δοκός ΑΒ μήκους \[\ell=1m\] και βάρους \[50Ν\] η οποία στηρίζεται στο σημείο Ο, όπου \[(ΟΑ)=20cm\]. Ποιο είναι το μέτρο της δύναμης που πρέπει να ασκείται στο σημείο Α ώστε η δοκός να διατηρείται οριζόντια;
6. Η ράβδος ΑΒ ισορροπεί στηριζόμενη στο υποστήριγμα που διέρχεται από το μέσο της Κ. Σε απόσταση \[d\] από το Κ προς τα δεξιά υπάρχει σώμα μάζας \[m\] που είναι τοποθετημένο πάνω στη ράβδο. Σε απόσταση \[2d\] προς τα αριστερά από το Κ υπάρχει ελατήριο το οποίο συγκρατεί την ράβδο σε οριζόντια θέση.
A) Το ελατήριο είναι:

   α)σε επιμήκυνση.

   β) στο φυσικό του μήκος.

   γ)σε συσπείρωση.

B) Αν \[K=100\, \frac{N}{m}\] , \[m=10\, kg\] και \[g=10\, \frac{m}{s^2}\] , η παραμόρφωση του ελατηρίου είναι:

  α) \[Δl=0, 5\, m \]

  β) \[Δl=0\, m \]

  γ) \[ Δl=1\, m \].

7. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο. Ένα σημείο Α του τροχού έχει κάθε στιγμή γραμμική ταχύτητα ίση κατά μέτρο με την ταχύτητα του κέντρου μάζας του τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Α:
8. Μια ράβδος δέχεται τη δράση τεσσάρων ομοεπίπεδων δυνάμεων οι οποίες αποτελούν δυο ζεύγη δυνάμεων και ισορροπεί ακίνητη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Η ομογενής δοκός ΚΛ μήκους \[\ell\] του παρακάτω σχήματος έχει βάρος \[w_ρ\] και ακουμπά σε δύο σημειακά στηρίγματα Ζ, Θ για τα οποία ισχύει \[ΚΖ=ΘΛ=\frac{\ell}{3}\]. Στο άκρο της τοποθετούμε σημειακό αντικείμενο βάρους \[w\] και έτσι η δοκός μόλις που ισορροπεί. Οι σχέσεις των μέτρων των βαρών \[w_ρ\, ,\, w\] είναι:
10. Δύο στερεά σώματα (1) και (2) στρέφονται γύρω από σταθερούς άξονες και οι γραφικές παραστάσεις των γωνιακών τους ταχυτήτων με το χρόνο φαίνονται στα παρακάτω διαγράμματα στο ίδιο σύστημα αξόνων.
Α) Για τις γωνιακές επιταχύνσεις \[α_{γων_1 },\,  α_{γων_2 }\]  των δύο στερεών ισχύει:

α) \[α_{γων_1}=α_{γων_2 }\],                 β) \[α_{γων_1 }=1,5α_{γων_2}\],

γ) \[α_{γων_1 }=2α_{γων_2 }\],               δ) \[α_{γων_2 }=1,5α_{γων_1 }\].

Β) Η χρονική στιγμή \[t_2\]  μέχρι την οποία τα δύο στερεά έχουν στραφεί κατά ίσες γωνίες απ’ τη στιγμή \[t_0=0\] είναι:

α) \[2t_1\],                                    β) \[1,5t_1\],                     γ) \[4t_1\].

11. Το παρακάτω σύστημα δύο κάθετων ομογενών ράβδων \[(1)\, ,\, (2)\] μήκους \[\ell_1\, ,\, \ell_2\] αντίστοιχα και μαζών \[m_1\] και \[m_2=3m_1\] μπορεί να στρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που περνά απ’ το άκρο Ο της ράβδου \[(1)\] και είναι κάθετος στο κατακόρυφο επίπεδο που δημιουργούν οι δύο ράβδοι. Οι ράβδοι είναι κολλημένες στο κοινό άκρο τους Α. Στο άκρο Β της ράβδου \[(2)\] έχουμε κολλήσει σημειακό σφαιρίδιο μάζας \[m_Σ=2m_1\]. Το σύστημα ράβδοι-σφαιρίδιο ισορροπούν με τη βοήθεια αβαρούς νήματος. Αν \[g\] είναι το μέτρο της επιτάχυνσης της βαρύτητας τότε η δύναμη που δέχεται η ράβδος \[(1)\] από τον άξονα περιστροφής στο άκρο της Ο είναι:
12. Σε ένα στερεό που ισορροπεί ασκούνται τρεις μη παράλληλες ομοεπίπεδες δυνάμεις. Στην περίπτωση αυτή
13. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος στρέφεται δεξιόστροφα με σταθερή γωνιακή ταχύτητα και ταυτόχρονα μεταφέρεται προς τα δεξιά με σταθερή ταχύτητα μέτρου \[υ_{cm}\]. Το σημείο επαφής του τροχού με το έδαφος έχει κάθε στιγμή ταχύτητα μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\] και φορά προς τ’ αριστερά.

Α) Αν σε χρόνο \[Δt\] ένα σημείο της περιφέρειας του τροχού διαγράφει μήκος τόξου \[Δs\] και στον ίδιο χρόνο το κέντρο μάζας του μεταφέρεται κατά \[Δx_{cm}\]  τότε το πηλίκο  \[\frac{  Δs  }{  Δx_{cm} } \]  είναι:

α) \[\frac{3}{2}\],              β) \[\frac{2}{3}\],              γ) \[1\],                 δ) \[2\].

Β) Το μέτρο της ταχύτητας του σημείου Γ της περιφέρειάς που απέχει \[R\] απ’ το έδαφος έχει ταχύτητα:

α) \[  \sqrt{2} υ_{cm} \],       β) \[\frac{ \sqrt{13} }{ 2 } υ_{cm}\],            γ) \[ \frac{ \sqrt{5} }{2} υ_{cm}\].

14. Στο παρακάτω σχήμα η διπλή τροχαλία αποτελείται από δύο κατακόρυφους ομογενείς και ομόκεντρους δίσκους κέντρου Κ που μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα κάθετο στο επίπεδο των δύο δίσκων που διέρχεται απ’ το κοινό κέντρο Κ χωρίς τριβές και έχουν ακτίνες \[R_1 \, , \, R_2=\frac{R_1}{2}\]. Το ελατήριο είναι ιδανικό, έχει σταθερά \[k\] και επιμήκυνση \[Δ\ell\] ενώ η ράβδος έχει μήκος \[\ell\], βάρος \[w_ρ\] και είναι αρθρωμένη στο άκρο της Α και μπορεί να στρέφεται γύρω απ’ την άρθρωση αυτή σε κατακόρυφο επίπεδο χωρίς τριβές. Το σώμα Σ έχει βάρος \[w_Σ\]. Το σύστημα όλων των παραπάνω σωμάτων ισορροπεί. Για τη γωνία \[φ\] δίνεται \[ημφ=0,6\, ,\, συνφ=0,8\]. Η απόσταση ΑΔ είναι \[ΑΔ=\frac{2\ell}{3}\]. Για τα βάρη \[w_Σ\, ,\, w_ρ\] ισχύει:
15. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο με σταθερή επιτάχυνση μέτρου \[α_{cm}\] και σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
16. Σφαίρα εκτελεί στροφική κίνηση γύρω από κατακόρυφο άξονα περιστροφής που ταυτίζεται με μια διάμετρό της. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής της ταχύτητας με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Η ράβδος ΑΒ είναι ομογενής, έχει βάρος \[w\] και ισορροπεί όπως φαίνεται στο σχήμα.
18. Η ομογενής λεία ράβδος ΚΛ του παρακάτω σχήματος έχει μήκος \[\ell\] και βάρος \[w_ρ\], το σημειακό σώμα Σ βάρος \[w_Σ=2w_ρ\] και αρχίζει να κινείται πάνω στη ράβδο και κατά τη διεύθυνσή της από το άκρο της Κ προς το άκρο της Λ υπό την επίδραση σταθερής δύναμης μέτρου \[F=w_ρ\] που σχηματίζει γωνία \[φ=30^0\] με τη διεύθυνση της ράβδου. Η ράβδος αρχίζει να ανατρέπεται όταν το σώμα Σ απέχει απ’ το άκρο Λ απόσταση:
19. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και το μέτρο της ταχύτητας του κέντρου μάζας του αυξάνεται. Σε ποια απ’ τα παρακάτω σχήματα φαίνεται το διάνυσμα της επιτάχυνσης \[\vec{α}_Β\] του ανώτερου σημείου Β του τροχού;
20. Οριζόντια ομογενής ράβδος, μήκους \[L\] και βάρους \[w\], ισορροπεί κρεμασμένη από την οροφή μέσω δυο δυναμόμετρων \[Δ_1\] και \[Δ_2\] όπως φαίνεται στο σχήμα. Αν \[F_1\] είναι η ένδειξη του δυναμόμετρου \[Δ_1\] και \[F_2\] η ένδειξη του δυναμόμετρου \[Δ_2\], τότε η τιμή του λόγου \[\frac{F_1}{F_2}\] είναι
21. Τροχός στρέφεται γύρω από σταθερό οριζόντιο άξονα εκτελώντας ομαλά μεταβαλλόμενη κίνηση κατά τη φορά των δεικτών του ρολογιού. Ο άξονας περιστροφής είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
22. Ένα στερεό σώμα που αρχικά είναι ακίνητο έχει τη δυνατότητα να περιστρέφεται γύρω από το σταθερό (ακλόνητο) κατακόρυφο άξονα \[z’z\]. Στο στερεό ασκείται οριζόντια δύναμη \[\vec{F}\] που απέχει απόσταση \[R\] από τον άξονα \[z'z\], όπως φαίνεται στο σχήμα.
23. Η ομογενής ράβδος του σχήματος έχει μήκος \[\ell\] και βάρος \[w\]. Η ράβδος είναι αρθρωμένη σε τοίχο και ισορροπεί οριζόντια δεμένη στο άλλο της άκρο με κατακόρυφο νήμα. Ένα βαρίδι ίδιου βάρους με τη ράβδο μπορεί να μετακινείται κατά μήκος της ράβδου. Ποιο από τα παρακάτω σχήματα αποδίδει σωστά τη γραφική παράσταση του μέτρου της τάσης του νήματος σε συνάρτηση με την απόσταση \[x\] του βαριδίου από την άρθρωση.
24. Οι ομογενείς κατακόρυφοι τροχοί \[(1) \, , \, (2)\] του παρακάτω σχήματος έχουν ακτίνες \[R_1\, , \, R_2= \frac{R_1}{2}\], μπορούν να στρέφονται γύρω από οριζόντιους άξονες που διέρχονται απ’ τα κέντρα τους χωρίς τριβές και τα νήματα είναι αβαρή. Το σώμα Σ έχει βάρος μέτρου \[w\]. Για να ισορροπεί το σύστημα τροχοί-σώμα Σ ασκώ στο κατώτερο σημείο της περιφέρειας του τροχού \[(2)\] σταθερή δύναμη που σχηματίζει \[φ=60^0\] με την οριζόντια διεύθυνση. Το μέτρο της δύναμης \[F\] είναι:
25. Το παρακάτω στερεό (σχ. α) είναι ένα καρούλι. Αυτό αποτελείται από έναν ομογενή κύλινδρο που στα άκρα του έχουμε κολλήσει δύο όμοιους ομογενείς δίσκους έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στον άξονα του κυλίνδρου. Η ακτίνα του κυλίνδρου είναι \[r\] ενώ του κάθε δίσκου είναι \[R\]. Τοποθετούμε το καρούλι πάνω σε δύο οριζόντιους υπερυψωμένους δοκούς ώστε η περιφέρεια του κυλίνδρου να ακουμπά σ’ αυτούς ενώ οι περιφέρειες των δίσκων βρίσκονται στον αέρα χωρίς ν’ ακουμπούν ούτε στις δοκούς ούτε στο έδαφος. Στο σχήμα β φαίνεται πρόσοψη του καρουλιού. Το καρούλι αρχίζει να κινείται και ο κύλινδρος εκτελεί Κ.Χ.Ο. με σταθερή γωνιακή ταχύτητα μέτρου \[ω\] και ταχύτητα κέντρου μάζας μέτρου \[υ_{cm}\].
A) Το μέτρο της ταχύτητας του κέντρου μάζας του δίσκου είναι:

α) \[ωR\],                          β) \[ωr\],                           γ) \[ω(R-r)\].

Β) Το ανώτερο σημείο Ζ της περιφέρειας του κυλίνδρου έχει ταχύτητα μέτρου:

α) \[υ_{cm}\],                      β) \[\frac{3}{2} υ_{cm}\],                γ) \[2υ_{cm}\].

Γ) Το ανώτερο σημείο Η του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[υ_{cm} \left( \frac{R}{r} + 1 \right)\],         β) \[ υ_{cm} \left(\frac{R}{r}-1 \right)\],           γ) \[2υ_{cm}\].

Δ) Το κατώτερο σημείο Ε του ενός δίσκου έχει ταχύτητα μέτρου:

α) \[υ_{cm} \left( \frac{R}{r}-1 \right)\]  και φορά προς τ’ αριστερά.

β) \[ υ_{cm} \left( \frac{R}{r}-1 \right)\]  και φορά προς τα δεξιά.

γ) μηδέν.

26. Ο ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και το κέντρο μάζας του έχει σταθερή επιτάχυνση \[α_{cm}\]. Τη στιγμή \[t_1\] το μέτρο της ταχύτητας του τροχού είναι \[ω_1\] και το σημείο Γ που απέχει \[\frac{R}{2}\] απ’ το κέντρο του τροχού βρίσκεται στην κατακόρυφη διάμετρο του τροχού και χαμηλότερα απ’ το cm του. Τη στιγμή \[t_1\] το μέτρο της επιτάχυνσης του Γ είναι:
27. Μια ομογενής ράβδος ΚΛ στηρίζεται σε λείο κατακόρυφο τοίχο και ταυτόχρονα είναι δεμένη με ένα νήμα. Δυο μαθητές (α) και (β) εκφράζουν αντίστοιχα την άποψη ότι η ράβδος: α. μπορεί να ισορροπήσει β. δεν μπορεί να ισορροπήσει. Εσείς με ποια άποψη συμφωνείτε;
28. Στο παρακάτω σχήμα η διπλή τροχαλία αποτελείται από δύο κατακόρυφους ομογενείς και ομόκεντρους δίσκους κέντρου Κ που μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα κάθετο στο επίπεδο των δύο δίσκων που διέρχεται απ’ το κοινό κέντρο Κ χωρίς τριβές και έχουν ακτίνες \[R_1 \, , \, R_2=\frac{R_1}{2}\]. Το ελατήριο είναι ιδανικό, έχει σταθερά \[k\] και επιμήκυνση \[Δ\ell\] ενώ η ράβδος έχει μήκος \[\ell\], βάρος \[w_ρ\] και είναι αρθρωμένη στο άκρο της Α και μπορεί να στρέφεται γύρω απ’ την άρθρωση αυτή σε κατακόρυφο επίπεδο χωρίς τριβές. Το σώμα Σ έχει βάρος \[w_Σ\]. Το σύστημα όλων των παραπάνω σωμάτων ισορροπεί. Για τη γωνία \[φ\] δίνεται \[ημφ=0,6\, ,\, συνφ=0,8\]. Η απόσταση ΑΔ είναι \[ΑΔ=\frac{2\ell}{3}\]. Για τη δυναμική ενέργεια \[U_{ελ}\] του παραμορφωμένου ελατηρίου ισχύει:
29. Να επιλέξετε τις σωστές από τις προτάσεις που ακολουθούν. Δίνονται τρεις ομοεπίπεδες δυνάμεις \[\vec{F}_1,\, \vec{F}_2\] και \[\vec{F}_3\], οι οποίες έχουν ίσα μέτρα και ένα σημείο Ο του επιπέδου τους. Οι αποστάσεις (ΟΑ), (ΟΒ) και (ΟΓ) είναι ίσες μεταξύ τους.
30. Στην επιφάνεια ενός κυλίνδρου έχει τυλιχθεί ένα νήμα. Ο κύλινδρος στηρίζεται πάνω σε λείο κεκλιμένο επίπεδο ενώ το νήμα που είναι παράλληλο σε αυτό έχει το άλλο άκρο του δεμένο σε ακλόνητο στήριγμα.

    +30

    CONTACT US
    CALL US