MENU

Τεστ στο Στερεό (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και το μέτρο της ταχύτητας του κέντρου μάζας του αυξάνεται. Σε ποια απ’ τα παρακάτω σχήματα φαίνεται το διάνυσμα της επιτάχυνσης \[\vec{α}_Β\] του ανώτερου σημείου Β του τροχού;
2. Ομογενής λεπτή ράβδος ΟΑ εκτελεί στροφική κίνηση πάνω σε οριζόντιο επίπεδο και γύρω από σταθερό κατακόρυφο άξονα που διέρχεται απ’ το κέντρο της. Στο παρακάτω σχήμα φαίνεται η μεταβολή της γωνιακής της ταχύτητας με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Τροχός κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος και το μέτρο της ταχύτητας του κέντρου μάζας του αυξάνεται. Σε ποιο απ’ τα παρακάτω σχήματα φαίνεται το διάνυσμα της επιτάχυνσης \[\vec{α}_A\] του σημείου επαφής Α του τροχού με το έδαφος;
4. Η ομογενής σφαίρα του παρακάτω σχήματος ακτίνας \[R\] βρίσκεται σε κεκλιμένο επίπεδο γωνίας \[φ\] και ισορροπεί με τη βοήθεια κυβικού εμποδίου ακμής \[h = \frac{R}{2}\]. Η σφαίρα υπερπηδά το εμπόδιο αν η γωνία \[φ\] γίνει μεγαλύτερη από:
5. Οριζόντια ομογενής ράβδος, μήκους \[L\] και βάρους \[w\], ισορροπεί κρεμασμένη από την οροφή μέσω δυο δυναμόμετρων \[Δ_1\] και \[Δ_2\] όπως φαίνεται στο σχήμα. Αν \[F_1\] είναι η ένδειξη του δυναμόμετρου \[Δ_1\] και \[F_2\] η ένδειξη του δυναμόμετρου \[Δ_2\], τότε η τιμή του λόγου \[\frac{F_1}{F_2}\] είναι
6. Η ομογενής ράβδος ΑΓ του σχήματος στηρίζεται με το ένα άκρο της σε οριζόντιο δάπεδο και με το άλλο σε λείο κατακόρυφο τοίχο. Αν ο συντελεστής στατικής τριβής μεταξύ της ράβδου και του δαπέδου είναι \[μ_s\] τότε η ελάχιστη τιμή της εφαπτομένης της γωνίας \[φ\] για την οποία η ράβδος δεν ολισθαίνει πάνω στο δάπεδο δίνεται από τη σχέση:
7. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει κατεβαίνοντας σε κεκλιμένο επίπεδο με σταθερή επιτάχυνση μέτρου \[α_{cm}\] και σταθερή γωνιακή επιτάχυνση μέτρου \[α_{γων}\]. Ποια απ’ τις επόμενες προτάσεις είναι σωστή;
8. Δίσκος στρέφεται γύρω από σταθερό οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ο δίσκος ξεκινά να στρέφεται την \[t=0\] με σταθερή γωνιακή επιτάχυνση \[α_{γων}=4\, \frac{m}{s^2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Μια ομογενής ράβδος ΑΓ βάρους \[w\] είναι αρθρωμένη σε κατακόρυφο τοίχο και διατηρείται οριζόντια με τη βοήθεια ενός κατακόρυφου νήματος που είναι δεμένο στο άλλο άκρο όπως φαίνεται στο σχήμα. Η δύναμη που ασκείται στη ράβδο από την άρθρωση είναι η δύναμη:
10. Ένας ομογενής δίσκος βρίσκεται πάνω σε λείο οριζόντιο επίπεδο δάπεδο όπως φαίνεται στο σχήμα. Ο δίσκος είναι ελεύθερος να κινηθεί. Μια οριζόντια δύναμη \[\vec{F}\] ασκείται εφαπτομενικά στο δίσκο. Ο δίσκος θα εκτελέσει
11. Το παρακάτω σύστημα δύο κάθετων ομογενών ράβδων \[(1)\, ,\, (2)\] μήκους \[\ell_1\, ,\, \ell_2\] αντίστοιχα και μαζών \[m_1\] και \[m_2=3m_1\] μπορεί να στρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που περνά απ’ το άκρο Ο της ράβδου \[(1)\] και είναι κάθετος στο κατακόρυφο επίπεδο που δημιουργούν οι δύο ράβδοι. Οι ράβδοι είναι κολλημένες στο κοινό άκρο τους Α. Στο άκρο Β της ράβδου \[(2)\] έχουμε κολλήσει σημειακό σφαιρίδιο μάζας \[m_Σ=2m_1\]. Το σύστημα ράβδοι-σφαιρίδιο ισορροπούν με τη βοήθεια αβαρούς νήματος. Αν \[g\] είναι το μέτρο της επιτάχυνσης της βαρύτητας τότε η δύναμη που δέχεται η ράβδος \[(1)\] από τον άξονα περιστροφής στο άκρο της Ο είναι:
12. Μια ομογενής ράβδος ΚΛ στηρίζεται σε λείο κατακόρυφο τοίχο και ταυτόχρονα είναι δεμένη με ένα νήμα. Δυο μαθητές (α) και (β) εκφράζουν αντίστοιχα την άποψη ότι η ράβδος: α. μπορεί να ισορροπήσει β. δεν μπορεί να ισορροπήσει. Εσείς με ποια άποψη συμφωνείτε;
13. Ο τροχός του παρακάτω σχήματος στρέφεται κατά τη φορά των δεικτών του ρολογιού γύρω από οριζόντιο άξονα που είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Η στροφική κίνηση είναι ομαλά μεταβαλλόμενη και το μέτρο της γωνιακής της ταχύτητας συνεχώς μειώνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Μια αβαρής ράβδος ΑΓ μήκους \[\ell\] διατηρείται οριζόντια με τη βοήθεια των νημάτων που είναι δεμένα στα άκρα της Α και Γ. Ένα κιβώτιο ισορροπεί στο μέσο της ράβδου και η τάση του νήματος στο άκρο Α είναι \[\vec{F}_1\]. Όταν το κιβώτιο μετακινηθεί κατά \[\frac{\ell}{4}\] προς το άκρο Α η τάση \[\vec{F}_1'\] του ίδιου νήματος έχει μέτρο:
15. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο έδαφος. Απ’ τη χρονική στιγμή \[0\] ως τη στιγμή \[t_1\] το cm έχει διανύσει απόσταση \[x_1\] και ο τροχός έχει στραφεί κατά γωνία \[Δθ_1\]. Τη στιγμή \[t_1\] ο τροχός έχει ταχύτητα μεταφορικής κίνησης μέτρου \[υ_{1_{cm} }\], επιτάχυνση μέτρου \[α_{1_{cm} }\] ενώ ταυτόχρονα έχει γωνιακή ταχύτητα \[ω_1\] και γωνιακή επιτάχυνση μέτρου \[α_{γων_1 }\] ενώ η γραμμική ταχύτητα του σημείου Ζ την ίδια στιγμή έχει μέτρο \[υ_{γρ_{1_Ζ }}\] και επιτρόχια επιτάχυνση λόγω της στροφικής κίνησης του τροχού \[α_{επ_{1_Ζ }}\]. Ποιες απ’ τις παρακάτω σχέσεις είναι σωστές;
16. Ομογενής σφαιρικός φλοιός εκτελεί στροφική κίνηση γύρω από οριζόντιο άξονα που διέρχεται από μια διάμετρό του. Θεωρούμε θετική φορά περιστροφής την αντίθετη της φοράς των δεικτών του ρολογιού. Η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Η διπλή τροχαλία του παρακάτω σχήματος αποτελείται από δύο ομογενείς κατακόρυφους δίσκους \[(1)\, ,\, (2)\] ακτίνων \[R_1\] και \[R_2=\frac{R_1}{2}\] και μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται απ’ το κοινό κέντρο Κ των δύο δίσκων κάθετα στο επίπεδό τους χωρίς τριβές. Μέσω αβαρών νημάτων έχουμε κρεμάσει από την περιφέρεια του δίσκου \[(1)\] σώμα βάρους \[w_1\] και απ’ την περιφέρεια του δίσκου \[(2)\] σώμα βάρους \[w_2=6w_1\]. Αν το σύστημα διπλή τροχαλία-σώματα ισορροπεί με την βοήθεια της \[F\] και η διπλή τροχαλία αυτή έχει βάρος μέτρου \[2w_1\], τότε η δύναμη \[F_K\] που δέχεται απ’ τον άξονά της έχει μέτρο:
18. Οι ομογενείς κατακόρυφοι τροχοί \[(1) \, , \, (2)\] του παρακάτω σχήματος έχουν ακτίνες \[R_1\, , \, R_2= \frac{R_1}{2}\], μπορούν να στρέφονται γύρω από οριζόντιους άξονες που διέρχονται απ’ τα κέντρα τους χωρίς τριβές και τα νήματα είναι αβαρή. Το σώμα Σ έχει βάρος μέτρου \[w\]. Για να ισορροπεί το σύστημα τροχοί-σώμα Σ ασκώ στο κατώτερο σημείο της περιφέρειας του τροχού \[(2)\] σταθερή δύναμη που σχηματίζει \[φ=60^0\] με την οριζόντια διεύθυνση. Το μέτρο της δύναμης \[F\] είναι:
19. Ο ομογενής τροχός του παρακάτω σχήματος εκτελεί ομαλή μεταφορική κίνηση με φορά προς τα δεξιά και ομαλή στροφική δεξιόστροφα πάνω σε οριζόντιο δάπεδο. Η ταχύτητα του ανώτερου σημείου Β του τροχού έχει σταθερό μέτρο \[υ_Β=1,5υ_{cm}\] όπου \[υ_{cm}\] το μέτρο της ταχύτητας του κέντρου μάζας.

Α) α) Ο τροχός κυλίεται χωρίς να ολισθαίνει στο δάπεδο.

β) Ο τροχός μόνο ολισθαίνει στο δάπεδο.

γ) Ο τροχός κυλίεται στο δάπεδο με ολίσθηση.

Β) Το σημείο επαφής Α με το έδαφος  έχει κάθε στιγμή ταχύτητα:

α) μέτρου \[υ_{cm}\]  με φορά προς τα δεξιά.

β) μέτρου  \[\frac{υ_{cm}}{2}\]  με φορά προς τ’ αριστερά.

γ) μέτρου  \[\frac{ υ_{cm} }{ 2 }\]  με φορά προς τα δεξιά.

δ) μηδενική.

20. Τροχός στρέφεται γύρω από σταθερό οριζόντιο άξονα εκτελώντας ομαλά μεταβαλλόμενη κίνηση κατά τη φορά των δεικτών του ρολογιού. Ο άξονας περιστροφής είναι κάθετος στις βάσεις του και διέρχεται απ’ τα κέντρα τους. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Για να ισορροπεί ένα αρχικά ακίνητο στερεό σώμα στο οποίο ασκούνται πολλές ομοεπίπεδες δυνάμεις πρέπει να ισχύουν οι σχέσεις:
22. Ένα στερεό σώμα που αρχικά είναι ακίνητο έχει τη δυνατότητα να περιστρέφεται γύρω από το σταθερό (ακλόνητο) κατακόρυφο άξονα \[z’z\]. Στο στερεό ασκείται οριζόντια δύναμη \[\vec{F}\] που απέχει απόσταση \[R\] από τον άξονα \[z'z\], όπως φαίνεται στο σχήμα.
23. Η ομογενής δοκός ΚΛ μήκους \[\ell\] του παρακάτω σχήματος έχει βάρος \[w_ρ\] και ακουμπά σε δύο σημειακά στηρίγματα Ζ, Θ για τα οποία ισχύει \[ΚΖ=ΘΛ=\frac{\ell}{3}\]. Στο άκρο της τοποθετούμε σημειακό αντικείμενο βάρους \[w\] και έτσι η δοκός μόλις που ισορροπεί. Οι σχέσεις των μέτρων των βαρών \[w_ρ\, ,\, w\] είναι:
24. Στο παρακάτω σχήμα η διπλή τροχαλία αποτελείται από δύο κατακόρυφους ομογενείς και ομόκεντρους δίσκους κέντρου Κ που μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα κάθετο στο επίπεδο των δύο δίσκων που διέρχεται απ’ το κοινό κέντρο Κ χωρίς τριβές και έχουν ακτίνες \[R_1 \, , \, R_2=\frac{R_1}{2}\]. Το ελατήριο είναι ιδανικό, έχει σταθερά \[k\] και επιμήκυνση \[Δ\ell\] ενώ η ράβδος έχει μήκος \[\ell\], βάρος \[w_ρ\] και είναι αρθρωμένη στο άκρο της Α και μπορεί να στρέφεται γύρω απ’ την άρθρωση αυτή σε κατακόρυφο επίπεδο χωρίς τριβές. Το σώμα Σ έχει βάρος \[w_Σ\]. Το σύστημα όλων των παραπάνω σωμάτων ισορροπεί. Για τη γωνία \[φ\] δίνεται \[ημφ=0,6\, ,\, συνφ=0,8\]. Η απόσταση ΑΔ είναι \[ΑΔ=\frac{2\ell}{3}\]. Για τα βάρη \[w_Σ\, ,\, w_ρ\] ισχύει:
25. Η ράβδος ΑΒ είναι ομογενής, έχει βάρος \[w\] και ισορροπεί όπως φαίνεται στο σχήμα.
26. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει σε οριζόντιο επίπεδο. Ένα σημείο Α του τροχού έχει κάθε στιγμή γραμμική ταχύτητα ίση κατά μέτρο με την ταχύτητα του κέντρου μάζας του τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το σημείο Α:
27. Σφαίρα εκτελεί στροφική κίνηση γύρω από κατακόρυφο άξονα περιστροφής που ταυτίζεται με μια διάμετρό της. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της γωνιακής της ταχύτητας με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Ο ομογενής τροχός ακτίνας \[R\] του παρακάτω σχήματος στρέφεται δεξιόστροφα με σταθερή γωνιακή ταχύτητα και ταυτόχρονα μεταφέρεται προς τα δεξιά με σταθερή ταχύτητα μέτρου \[υ_{cm}\]. Το σημείο επαφής του τροχού με το έδαφος έχει κάθε στιγμή ταχύτητα μέτρου \[υ_Α=\frac{ υ_{cm} }{2}\] και φορά προς τ’ αριστερά.

Α) Αν σε χρόνο \[Δt\] ένα σημείο της περιφέρειας του τροχού διαγράφει μήκος τόξου \[Δs\] και στον ίδιο χρόνο το κέντρο μάζας του μεταφέρεται κατά \[Δx_{cm}\]  τότε το πηλίκο  \[\frac{  Δs  }{  Δx_{cm} } \]  είναι:

α) \[\frac{3}{2}\],              β) \[\frac{2}{3}\],              γ) \[1\],                 δ) \[2\].

Β) Το μέτρο της ταχύτητας του σημείου Γ της περιφέρειάς που απέχει \[R\] απ’ το έδαφος έχει ταχύτητα:

α) \[  \sqrt{2} υ_{cm} \],       β) \[\frac{ \sqrt{13} }{ 2 } υ_{cm}\],            γ) \[ \frac{ \sqrt{5} }{2} υ_{cm}\].

29. Ομογενής τροχός ακτίνας \[R\] κυλίεται χωρίς να ολισθαίνει και το κέντρο μάζας του έχει σταθερή ταχύτητα. Δύο σημεία Β, Γ απέχουν απ’ το κέντρο του τροχού αποστάσεις \[\frac{R}{2}\] και \[\frac{R}{8}\] αντίστοιχα και βρίσκονται πάνω στην ίδια διάμετρο του τροχού. Τη στιγμή που η διάμετρος αυτή γίνεται οριζόντια ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_Γ}{υ_Β}\] την ίδια στιγμή είναι:
30. Η ελάχιστη τιμή της οριζόντιας δύναμης \[\vec{F}\] που πρέπει να ασκήσουμε στο υψηλότερο σημείο του τροχού (όπως φαίνεται στο σχήμα) ώστε να καταφέρει να υπερπηδήσει το εμπόδιο που έχει ύψος \[h=\frac{R}{2}\], αν ο τροχός έχει βάρος \[w\], είναι:

    +30

    CONTACT US
    CALL US