MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Η εξίσωση \[U_T=32-2υ^2\] (S.I.) δίνει τη σχέση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την ταχύτητά του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και της μέγιστης ταχύτητας \[υ_{max}\] είναι:
2. Σε μια φθίνουσα ταλάντωση η δύναμη αντίστασης είναι της μορφής \[F_{αν}=-bυ\]. Η μονάδα μέτρησης στο S.I. της θετικής σταθεράς \[b\] είναι:
3. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των ταχυτήτων δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.

Α. Ο λόγος των πλατών των δύο ταλαντωτών είναι:

α. \[\frac{Α_1}{Α_2} =\frac{3}{4}\].                    β. \[\frac{Α_1}{Α_2} =\frac{4}{3}\].                   

γ. \[\frac{Α_1}{Α_2} =2\].                       δ. \[\frac{Α_1}{Α_2} =\frac{1}{2}\].

Β. Ο λόγος των μέγιστων δυνάμεων επαναφοράς είναι:

α. \[\frac{    F_{επmax,1} } {F_{επmax,2}   } =3\].       
β. \[\frac{  F_{επmax,1} }{ F_{επmax,2}  } =\frac{1}{3}\].                
γ. \[\frac{F_{επmax,1}  }{  F_{επmax,2}  } =9\].                       
δ. \[  \frac{ F_{επmax,1}   }{  F_{επmax,2} } =\frac{1}{9}\].

4. Υλικό σημείο εκτελεί α.α.τ. περιόδου \[Τ\] και πλάτους \[Α\].
5. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
6. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Αν τετραπλασιάσω τη μάζα του σώματος χωρίς να μεταβάλω τη συχνότητα του διεγέρτη τότε η συχνότητα της ταλάντωσης θα:
7. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει αρνητική ταχύτητα και δέχεται μηδενική δύναμη επαναφοράς. Τη χρονική στιγμή \[t_1=\frac{T}{12}\] ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. είναι:
8. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Τη χρονική στιγμή \[t=0\] ο ταλαντωτής έχει απομάκρυνση \[x=A\]. Ο ταλαντωτής περνά για δεύτερη φορά απ’ τη Θ.Ι. του τη χρονική στιγμή:
9. Στις ακραίες θέσεις μιας α.α.τ.:
10. Σε μια φθίνουσα μηχανική ταλάντωση ενός σώματος που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\], όπου \[b\] μια θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας του σώματος. Αν \[Α_0\] το πλάτος της ταλάντωσης τη στιγμή \[t=0\] και \[Λ\] μια άλλη θετική σταθερά, το πλάτος της ταλάντωσης εξαρτάται απ’ το χρόνο σύμφωνα με τη σχέση:
11. Στη διάρκεια μιας περιόδου της α.α.τ. ο ταλαντωτής:
12. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.


Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:

α. \[υ_{max,1}=2υ_{max,2}\].  
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\]. 
γ. \[υ_{max,1}=υ_{max,2}\]. 
δ. \[ υ_{max,1}=4υ_{max,2}\].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:

α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\].      β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].       γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].          δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].

13. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση συχνότητας \[f\]. Ποιο απ’ τα διαγράμματα δείχνει τη σχέση της συχνότητας της ταλάντωσης με τη συχνότητα του διεγέρτη;
14. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=υ_{max}\; συν(ωt+φ_0 )\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
15. Στο παρακάτω σχήμα φαίνονται σε κοινό σύστημα αξόνων τα διαγράμματα της δυναμικής, κινητικής, ολικής ενέργειας μιας απλής αρμονικής ταλάντωσης πλάτους Α και περιόδου Τ.


Α. Η δυναμική ενέργεια της α.α.τ. περιγράφεται στο διάγραμμα:

α. \[1\].                 β. \[2\].                 γ. \[3\].

Β. Οι τιμές των \[x_1,x_2\] είναι:

α. \[\pm \frac{A}{2}\].            β. \[\pm \frac{A\sqrt{2} }{2}\].       γ. \[\pm \frac{A\sqrt{3}}{2}\].              δ. \[ x_1=-\frac{A}{2}\, ,\, x_2=+\frac{A\sqrt{2} }{2} \].

16. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνσή του. (Θεωρήστε \[\sqrt{3}\approx 1,7\]). Η απόσταση των σημείων Γ, Δ της τροχιάς του απ’ τις κοντινότερες σ’ αυτά αντίστοιχες ακραίες θέσεις της α.α.τ. είναι:
17. Ταλαντωτής μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και γωνιακής συχνότητας \[ω\].
18. Σώμα εκτελεί α.α.τ. Σε μια θέση \[x_1\] το σώμα δέχεται δύναμη επαναφοράς που έχει μέτρο το \[50\, \%\] του μέτρου της δύναμης επαναφοράς που δέχεται σε μια ακραία θέση της τροχιάς του. Ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. στη θέση \[x_1\] είναι:
19. Αντιτιθέμενη δύναμη της μορφής \[F_ { αν } = - b υ \] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας δέχονται:
20. Σε μια α.α.τ. στη διάρκεια μιας περιόδου:
21. Τα σώματα \[Σ_1\] και \[Σ_2\] του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα και ηρεμούν στερεωμένα στα άκρα ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Τα ελατήρια έχουν σταθερές επαναφοράς \[k_1=k\] και \[k_2=2k\]. Εκτρέπω τα σώματα κατά τη διεύθυνση των αξόνων των ελατηρίων κατά \[x_0\] και \[2x_0\] αντίστοιχα προς τα δεξιά και την \[t=0\] τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τη στιγμή \[t_1\] και \[t_2\] αντίστοιχα τα σώματα \[Σ_1\], \[Σ_2\] περνούν απ’ τη Θ.Ι. τους για πρώτη φορά μετά τη στιγμή \[t=0\].
A. Για τους χρόνους , ισχύει:
α. \[t_1=2t_2\].                 β. \[ t_1=4t_2\].                 γ. \[t_1=t_2\].                    δ. \[t_1=\frac{t_2}{2}  \].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{8}    \].              
β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].          
γ. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}  }{4}  \].              
δ. \[Ε_{Τ,1}=Ε_{Τ,2}   \].

22. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] ενώ το σώμα επιστρέφει για πρώτη φορά στη Θ.Ι. του μετά απ’ τη στιγμή που το άφησα σε χρονικό διάστημα \[Δt_1\]. Αντικαθιστώ το ελατήριο με ένα δεύτερο σταθεράς \[k_2=4k_1\] και επαναλαμβάνω το ίδιο πείραμα εκτρέποντας το σώμα κατά το ίδιο \[y_0\]. Τώρα δαπάνησα ενέργεια \[E_2\] και ο ταλαντωτής επιστρέφει στη Θ.Ι. του για πρώτη φορά σε χρονικό διάστημα \[Δt_2\].

Α. Για τις δαπανώμενες ενέργειες ισχύει:

α. \[Ε_1=4Ε_2\].                β. \[Ε_1=16Ε_2\].              γ. \[Ε_1=2Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{4}   \].

Β. Για τα χρονικά διαστήματα ισχύει:

α. \[Δt_1=Δt_2\].              
β. \[Δt_1=4Δt_2\].           
γ. \[Δt_1=2Δt_2\].            
δ. \[ Δt_1=\frac{           Δt_2        }{       \sqrt{2}    }\].

23. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
24. Για να εκτελεί ένας ταλαντωτής εξαναγκασμένη ταλάντωση πρέπει:
25. Σε μια α.α.τ. η απομάκρυνση και η ταχύτητα δεν είναι συμφασικά μεγέθη. Αυτό σημαίνει ότι τα μεγέθη αυτά:
26. Η δυναμική ενέργεια της α.α.τ.:
27. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των δυναμικών ενεργειών δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με την απομάκρυνσή τους. Οι ταλαντωτές έχουν ίσες μάζες. Τα χρονικά διαστήματα μεταξύ δύο διαδοχικών περασμάτων από τη Θ.Ι. τους για τον ταλαντωτή (1) και (2) είναι αντίστοιχα \[Δt_1\] και \[Δt_2\]. Ο λόγος των δύο αυτών χρονικών διαστημάτων είναι:
28. Το μέτρο της δύναμης επαναφοράς σε μια α.α.τ. μεγιστοποιείται κάθε \[4\, sec\]. Σε χρονικό διάστημα \[40\, sec\] ο ταλαντωτής έχει εκτελέσει:
29. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει μέγιστη αρνητική επιτάχυνση. Την \[t_1=\frac{T}{6}\] ο λόγος της δυναμικής ενέργειας της α.α.τ. προς την κινητική ενέργεια είναι:
30. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:

    +30

    CONTACT US
    CALL US