MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σώμα εκτελεί α.α.τ. με περίοδο \[Τ\]. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της δύναμης επαναφοράς που δέχεται ο ταλαντωτής σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Η ιδιοσυχνότητα του συστήματος ελατήριο-σώμα εξαρτάται:
3. Υλικό σημείο εκτελεί α.α.τ. Να αντιστοιχήσετε τα παρακάτω μεγέθη με τα αντίστοιχα διαγράμματα.α. Ενέργεια ταλάντωσης
β. Κινητική ενέργεια
γ. Δυναμική ενέργεια ταλάντωσης

4. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της ταχύτητας απλού αρμονικού ταλαντωτή σε συνάρτηση με το χρόνο.
Α. Η αρχική φάση της ταλάντωσης είναι:

α. \[φ_0=π\].    β. \[φ_0=\frac{3π}{2}\].     γ. \[φ_0=\frac{π}{2}\].       δ. \[φ_0=0\].

Β. Στη χρονική διάρκεια από  ως  ο ρυθμός μεταβολής της δυναμικής ενέργειας της α.α.τ. είναι:

α. θετικός.                   β. αρνητικός.               γ. μηδενικός.

5. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
6. Ένας ταλαντωτής εκτελεί ελεύθερη ταλάντωση:
7. Η περίοδος ενός περιοδικού φαινομένου είναι \[2\; s\]. Αυτό σημαίνει:
8. Η επιτάχυνση στην απλή αρμονική ταλάντωση είναι διάνυσμα:
9. Στις ακραίες θέσεις μιας α.α.τ.:
10. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει μέγιστη αρνητική επιτάχυνση. Την \[t_1=\frac{T}{6}\] ο λόγος της δυναμικής ενέργειας της α.α.τ. προς την κινητική ενέργεια είναι:
11. Η ενέργεια της α.α.τ. εμφανίζεται με μορφή:
12. Σε μια α.α.τ. η απομάκρυνση και η ταχύτητα δεν είναι συμφασικά μεγέθη. Αυτό σημαίνει ότι τα μεγέθη αυτά:
13. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των δυνάμεων επαναφοράς σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές.

Α. Ο λόγος των σταθερών επαναφοράς των δύο ταλαντωτών είναι:
α. \[  \frac{  D_1}{  D_2  } =2\].                    
β. \[  \frac{D_1}{D_2} =\frac{1}{2}  \].         
γ. \[  \frac{D_1}{D_2} =\sqrt{2}\].                 
δ. \[\frac{D_1}{D_2} =\frac{   \sqrt{2}   } {2}\].

B. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:
α. \[   \frac{   Ε_{Τ,1}       }{        Ε_{Τ,2}          } =2\].                  
β. \[   \frac{Ε_{Τ,1}  }{Ε_{Τ,2} } =\frac{1}{2}  \].                   
γ. \[\frac{Ε_{Τ,1} }   {Ε_{Τ,2}      } =4\].                  
δ. \[ \frac{ Ε_{Τ,1}  }{Ε_{Τ,2}   } =\frac{1}{4}\].
14. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση συχνότητας \[f\]. Ποιο απ’ τα διαγράμματα δείχνει τη σχέση της συχνότητας της ταλάντωσης με τη συχνότητα του διεγέρτη;
15. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και δέχεται δύναμη αντίστασης που είναι ανάλογη κατά μέτρο με το μέτρο της ταχύτητάς του, δηλαδή είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η συνισταμένη δύναμη που δέχεται τότε ο ταλαντωτής ισούται με:
16. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].

Α. Η σχέση των \[E_1\], \[E_2\]  είναι:

α. \[Ε_1=Ε_2\].                  β. \[Ε_1=2Ε_2\].                γ. \[Ε_1=4Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{16}\].

B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\]  είναι:

α. \[υ_{max,1}=υ_{max,2}\].     
β. \[υ_{max,1}=2υ_{max,2}\].   
γ. \[υ_{max,1}=4υ_{max,2}\].   
δ. \[υ_{max,1}=\frac{υ_{max,2}  }  {  4  }   \].

17. Ταλαντωτής εκτελεί α.α.τ. και η τροχιά που διαγράφει φαίνεται στο παρακάτω σχήμα. Η περίοδος της ταλάντωσης είναι \[Τ,\] το πλάτος της \[Α\], ενώ η αρχική της φάση είναι μηδενική. Το σημείο Γ της τροχιάς βρίσκεται στη θέση \[x_Γ=+\frac{Α}{2}\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
18. Στις ακραίες θέσεις μιας α.α.τ.:
19. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση, την \[t=0\] έχει πλάτος \[Α_0\] και η χρονική μεταβολή του πλάτους του δίνεται απ’ τη σχέση \[ A=A_0 e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Να αντιστοιχήσετε τις συναρτήσεις του πλάτους \[A=f(t)\] και της ενέργειας \[E_T=f(t)\] με τα διαγράμματα της δεύτερης στήλης.
20. Σώμα εκτελεί φθίνουσα ταλάντωση και η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\], όπου \[υ\] η αλγεβρική τιμή της ταχύτητας. Η θετική σταθερά \[b\] εξαρτάται:
21. Σύστημα ιδανικό ελαήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Αν διπλασιάσω τη συχνότητα του διεγέρτη χωρίς να μεταβάλω τα χαρακτηριστικά του ταλαντωτή τότε η συχνότητα της ταλάντωσης:
22. Η κινητική ενέργεια του ταλαντωτή:
23. Η ενέργεια μιας α.α.τ.:
24. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
25. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Αν τετραπλασιάσω τη σταθερά επαναφοράς \[k\] χωρίς να μεταβάλω τη συχνότητα του διεγέρτη τότε η συχνότητα της ταλάντωσης:
26. Σε μια απλή αρμονική ταλάντωση η δύναμη επαναφοράς είναι συμφασική:
27. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=υ_{max}\; συν(ωt+φ_0 )\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
28. Σε μια εξαναγκασμένη ταλάντωση η συχνότητα του ταλαντωτή:
29. Η φάση της απομάκρυνσης του ταλαντωτή απ’ τη Θ.Ι. του σε μια α.α.τ.:
30. Σε μια α.α.τ. στη διάρκεια μιας περιόδου:

    +30

    CONTACT US
    CALL US