MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σε μια απλή αρμονική ταλάντωση η δύναμη επαναφοράς είναι συμφασική:
2. Σε μια απλή αρμονική ταλάντωση πλάτους Α η δυναμική ενέργεια της ταλάντωσης γίνεται ίση με την κινητική στη θέση ή στις θέσεις:
3. Σε μια εξαναγκασμένη ταλάντωση η συχνότητα του ταλαντωτή:
4. Σε μια φθίνουσα μηχανική ταλάντωση με περίοδο \[Τ\] το πλάτος μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] μια θετική σταθερά. Αν \[Α_1,\, Α_2,\, …,\, Α_κ,\, Α_{κ+1}\] είναι τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[t_1=T,\, t_2=2T,\, t_κ=κT\] και \[T_{κ+1}=(κ+1)T\] (όπου \[κ\] θετικός ακέραιος) αντίστοιχα, τότε ισχύει: \[\frac{Α_0}{Α_1} =\frac{Α_1}{Α_2} =\, ⋯=\, \frac{Α_κ}{Α_{κ+1} } =λ_1\]. Η σταθερά \[λ_1\] είναι:
5. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Τη χρονική στιγμή \[t=0\] ο ταλαντωτής έχει απομάκρυνση \[x=A\]. Ο ταλαντωτής περνά για δεύτερη φορά απ’ τη Θ.Ι. του τη χρονική στιγμή:
6. Ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών στιγμιαίων μηδενισμών της ταχύτητας του ταλαντωτή είναι:
7. Σε μια φθίνουσα μηχανική ταλάντωση ενός σώματος που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\], όπου \[b\] μια θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας του σώματος. Αν \[Α_0\] το πλάτος της ταλάντωσης τη στιγμή \[t=0\] και \[Λ\] μια άλλη θετική σταθερά, το πλάτος της ταλάντωσης εξαρτάται απ’ το χρόνο σύμφωνα με τη σχέση:
8. Η ενέργεια μιας α.α.τ.:
9. Η ενέργεια της α.α.τ. εξαρτάται:
10. Σε μια φθίνουσα μηχανική ταλάντωση ενός σώματος που η δύναμη που αντιστέκεται στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] μια θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητάς του:
11. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].

Α. Η σχέση των \[E_1\], \[E_2\]  είναι:

α. \[Ε_1=Ε_2\].                  β. \[Ε_1=2Ε_2\].                γ. \[Ε_1=4Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{16}\].

B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\]  είναι:

α. \[υ_{max,1}=υ_{max,2}\].     
β. \[υ_{max,1}=2υ_{max,2}\].   
γ. \[υ_{max,1}=4υ_{max,2}\].   
δ. \[υ_{max,1}=\frac{υ_{max,2}  }  {  4  }   \].

12. Η επιτάχυνση στην απλή αρμονική ταλάντωση:
13. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των φάσεων δύο α.α.τ. σε σχέση με το χρόνο για δύο α.α.τ. Επιλέξτε ποιες από τις παρακάτω προτάσεις είναι σωστές.
14. Στη θέση ισορροπίας σώματος που εκτελεί α.α.τ.
15. Σύστημα ελατήριο-σώμα του παρακάτω σχήματος τίθεται σε κίνηση.
16. Σώμα εκτελεί α.α.τ. Στις θέσεις που η επιτάχυνση του σώματος μεγιστοποιείται κατά μέτρο:
17. Η φάση της απομάκρυνσης του ταλαντωτή απ’ τη Θ.Ι. του σε μια α.α.τ.:
18. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
19. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των δυνάμεων επαναφοράς σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές.

Α. Ο λόγος των σταθερών επαναφοράς των δύο ταλαντωτών είναι:
α. \[  \frac{  D_1}{  D_2  } =2\].                    
β. \[  \frac{D_1}{D_2} =\frac{1}{2}  \].         
γ. \[  \frac{D_1}{D_2} =\sqrt{2}\].                 
δ. \[\frac{D_1}{D_2} =\frac{   \sqrt{2}   } {2}\].

B. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:
α. \[   \frac{   Ε_{Τ,1}       }{        Ε_{Τ,2}          } =2\].                  
β. \[   \frac{Ε_{Τ,1}  }{Ε_{Τ,2} } =\frac{1}{2}  \].                   
γ. \[\frac{Ε_{Τ,1} }   {Ε_{Τ,2}      } =4\].                  
δ. \[ \frac{ Ε_{Τ,1}  }{Ε_{Τ,2}   } =\frac{1}{4}\].
20. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Αν διπλασιάσω το πλάτος της α.α.τ. του ίδιου ταλαντωτή, τότε:
21. Ταλαντωτής εκτελεί α.α.τ. και η τροχιά που διαγράφει φαίνεται στο παρακάτω σχήμα. Η περίοδος της ταλάντωσης είναι \[Τ,\] το πλάτος της \[Α\], ενώ η αρχική της φάση είναι μηδενική. Το σημείο Γ της τροχιάς βρίσκεται στη θέση \[x_Γ=+\frac{Α}{2}\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
22. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των φάσεων δύο α.α.τ. σε σχέση με το χρόνο.

Α. Ο λόγος των γωνιακών συχνοτήτων είναι:

α. \[\frac{ω_1}{ω_2} =1\].       
β. \[ \frac{ ω_1}{ ω_2} =\frac{1}{2}  \].        

γ. \[\frac{ω_1}{ω_2} =\frac{1}{3}\].

Β. Αν ο λόγος των μέγιστων ταχυτήτων των δύο ταλαντωτών είναι \[   \frac{  υ_{max,1}  }{ υ_{max,2}  } =2\], τότε ο λόγος των μέγιστων επιταχύνσεών τους είναι:

α. \[ \frac{  α_{max,1} } {  α_{max,2} }=1\].              
β. \[   \frac{α_{max,1} }  {  α_{max,2}  } =\frac{1}{4}\].               
γ. \[ \frac{ α_{max,1}  }{α_{max,2}  } =\frac{2}{3}  \].

23. Ταλαντωτής εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[T\]. Σε χρονική διάρκεια μιας περιόδου ο ταλαντωτής:
24. Ένα περιοδικό φαινόμενο επαναλαμβάνεται \[40\] φορές σε χρονικό διάστημα \[8\; sec\]. Η περίοδος του φαινομένου είναι:
25. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση, την \[t=0\] έχει πλάτος \[Α_0\] και η χρονική μεταβολή του πλάτους του δίνεται απ’ τη σχέση \[ A=A_0 e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Να αντιστοιχήσετε τις συναρτήσεις του πλάτους \[A=f(t)\] και της ενέργειας \[E_T=f(t)\] με τα διαγράμματα της δεύτερης στήλης.
26. Αν διπλασιάσω τη μέγιστη ταχύτητα της α.α.τ. ενός υλικού σημείου χωρίς ν' αλλάξει η μάζα του ή η σταθερά επαναφοράς, τότε:
27. Σε μια α.α.τ. με περίοδο \[Τ\] η διαφορά φάσης της επιτάχυνσης και της ταχύτητας του ταλαντωτή είναι \[Δφ=φ_α-φ_υ=\frac{π}{2}\]. Αυτό σημαίνει ότι αν τη στιγμή \[t_1\] η επιτάχυνση είναι μέγιστη τότε:
28. Ταλαντωτής μάζας \[m=1\, kg\] εκτελεί α.α.τ. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δύναμης επαναφοράς του ταλαντωτή σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. Η γωνιακή συχνότητα της ταλάντωσης είναι:
29. Ταλαντωτής μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και μέγιστης ταχύτητας \[υ_{max}\]. Μια χρονική στιγμή \[t_1\] το σώμα περνά απ’ τη θέση \[x_1\] με ταχύτητα \[υ_1\]. Η ενέργεια της ταλάντωσης τη στιγμή \[t_1\] είναι:
30. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με το χρόνο. Οι μάζες τους ικανοποιούν τη σχέση \[m_1=2m_2\].


Α. Ο λόγος των σταθερών επαναφοράς των δύο ταλαντωτών είναι:

α. \[\frac{D_1}{D_2} =1\].                
β. \[\frac{D_1}{D_2} =\frac{1}{8}\].                 
γ. \[\frac{D_1}{D_2} =4\].                  
δ. \[ \frac{D_1}{D_2} =\frac{1}{2} \].
Β. Ο λόγος των ενεργειών των δύο ταλαντωτών είναι:

α. \[ \frac{ Ε_{Τ,1}}{Ε_{Τ,2}} =32\]
β. \[ \frac{Ε_{Τ,1}   }{Ε_{Τ,2} }=\frac{1}{32}  \]
γ. \[ \frac{Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{1}{4}  \]
δ. \[\frac{ Ε_{Τ,1}   }{  Ε_{Τ,2}  } =4\]


    +30

    CONTACT US
    CALL US