MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ταλαντωτής ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη συχνότητας \[f_δ\]. Αν η τιμή \[|f_0-f_δ |\] μειώνεται τότε:
2. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική ενέργειά του:
3. Σύστημα ελατήριο-σώμα ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης με τη βοήθεια τροχού-διεγέρτη που έχει σταθερή συχνότητα περιστροφής \[f_1 < f_0\]. Αν αντικαταστήσω το ελατήριο με άλλο μεγαλύτερης σταθεράς \[k\] τότε:

Α. η περίοδος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα παραμείνει σταθερή.

Β. το πλάτος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.      γ) θα παραμείνει σταθερό.

4. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Αν \[Α_0,\, Α_1,\, Α_2\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[ t=0,\, t_1=T,\, t_2=2T \] αντίστοιχα τότε ισχύει η σχέση:
5. Τρεις ανεξάρτητοι ταλαντωτές εκτελούν φθίνουσες αρμονικές ταλαντώσεις και οι αντιτιθέμενες δυνάμεις στην κίνησή τους είναι της μορφής \[F_{αν}=-bυ\]. Οι σταθερές απόσβεσης των τριών ταλαντώσεων είναι \[b_1,\, b_2,\, b_3\] αντίστοιχα. Οι ταλαντωτές την \[t=0\] έχουν ίδιο πλάτος \[A_0\]. Στο παρακάτω διάγραμμα φαίνονται οι μεταβολές των πλατών τους με το χρόνο σε κοινό σύστημα αξόνων. Για τις σχέσεις των σταθερών επαναφοράς ισχύει:
6. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

7. Σε μια εξαναγκασμένη ταλάντωση όταν η συχνότητα του διεγέρτη γίνει πάρα πολύ μεγάλη:
8. Ταλαντωτής εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Αν διπλασιάσω τη μέγιστη ταχύτητα του ταλαντωτή, η ενέργεια της ταλάντωσής του γίνεται \[Ε_Τ'\]. Ο λόγος \[\frac{Ε_Τ'}{Ε_Τ}\] είναι ίσος με:
9. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η ιδιοσυχνότητα του συστήματος είναι \[f_0=60\, Hz\]. Αυξάνω αργά τη συχνότητα του διεγέρτη απ’ την τιμή \[f_1=50\, Hz\] ως την τιμή \[f_2=65\, Hz\]. Κατά την αύξηση αυτή:
10. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς είναι:
11. Η μέγιστη ταχύτητα του ταλαντωτή σε μια α.α.τ. εξαρτάται:
12. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει:

α) \[f_1 < f_2 = f_3\].          β) \[f_2=f_3 <  f_1\].                      γ) \[f_1 = f_2 = f_3\].

Β. Για τις σταθερές των ελατηρίων \[k_2\]  και \[k_3\]  ισχύει:

α) \[k_2 = 8 k_3\].                 β) \[k_2 =4 k_3\].                          γ) \[k_2=16 k_3\].

Γ. Αν γνωρίζω ότι \[k_1=k_2\]  και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\]  αρχικά:

α) θα αυξάνεται.          β) θα μειώνεται.                      γ) θα μένει σταθερό.

13. Ένα κρυστάλλινο ποτήρι μπορεί να σπάσει λόγω ενός ηχητικού κύματος όταν:
14. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
15. Στο θάλαμο της πειραματικής διάταξης της φθίνουσας ταλάντωσης, τοποθετούμε αέρα πίεσης \[P\] και προσδίνουμε στο σύστημα ελατήριο-σώμα αρχικό πλάτος \[Α_0\]. Το πλάτος της ταλάντωσης υποδιπλασιάζεται σε χρόνο \[t_{\frac 12}\]. Κατόπιν αλλάζουμε την ποσότητα του αέρα ώστε η πίεσή του να γίνει \[P'=2P\] και προσδίνω στο σύστημα αρχικό πλάτος \[Α_0'=2Α_0\]. Στην περίπτωση αυτή το πλάτος υποδιπλασιάζεται σε χρόνο \[ t_{ \frac{1}{2} }' \] . Για τους χρόνους \[t_{ \frac{1}{2} },\, t_{ \frac{1}{2} }'\] ισχύει:
16. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης. Ο τροχός έχει σταθερή συχνότητα \[f_1 = 2 f_0\] όπου \[f_0\] είναι η ιδιοσυχνότητα του συστήματος. Για να γίνει κάθε στιγμή ο ρυθμός της απορροφούμενης ενέργειας του ταλαντωτή απ’ το διεγέρτη ίσος με το ρυθμό απώλειας ενέργειας του ταλαντωτή λόγω της αντιτιθέμενης δύναμης χωρίς ν’ αλλάξω τη συχνότητα του διεγέρτη πρέπει η σταθερά του ελατηρίου να μεταβληθεί κατά:
17. Σε μια φθίνουσα μηχανική ταλάντωση η αντιτιθέμενη δύναμη δίνεται απ’ τη σχέση \[F_{αν}=-bυ\]. Σε χρονικό διάστημα \[Δt\] ο ταλαντωτής έχει διανύσει διάστημα \[s\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη με μικρή σταθερά απόσβεσης \[b\]. Αρχικά η συχνότητα του διεγέρτη έχει σταθερή τιμή \[f_1\] και το πλάτος της ταλάντωσης έχει σταθερή τιμή \[A_1\]. Αυξάνω αργά τη συχνότητα του διεγέρτη και όταν η συχνότητα του διεγέρτη αποκτά την τιμή \[f_2\] τότε το πλάτος της ταλάντωσης γίνεται πάλι \[Α_1\]. Για την ιδιοσυχνότητα του ταλαντωτή και τη συχνότητα \[f_1\] του διεγέρτη ισχύει:
19. Υλικό σημείο εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max}\]. Τις στιγμές που η ταχύτητα του σημείου είναι \[υ=±\frac{ υ_{max} }{2}\], το πηλίκο της δυναμικής ενέργειας της α.α.τ. προς την κινητική είναι \[\frac{U_T}{K}\] ίσο με:
20. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
21. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Αρχικά η συχνότητα περιστροφής του διεγέρτη είναι απειροελάχιστη. Αρχίζω ν’ αυξάνω αργά τη συχνότητα του διεγέρτη και τότε:
22. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις των φάσεων δύο α.α.τ. σε συνάρτηση με το χρόνο. Οι ευθείες των διαγραμμάτων είναι παράλληλες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
23. Σε φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α = Α_0\, e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Για το πηλίκο \[ \frac{ Α_κ } {Α_{κ+1} } \] όπου \[Α_κ\] και \[Α_{κ+1}\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[t_1=κΤ\] και \[t_2=(κ+1)Τ\] (\[κ\] θετικός ακέραιος) ισχύει ότι:
24. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=0,3e^{-Λt}\] (S.I.) όπου \[Λ\] μια θετική σταθερά. Το πλάτος γίνεται \[Α_1=0,15\, m\] τη χρονική στιγμή \[t_1=2\, s\]. Αν το αρχικό πλάτος στην ίδια ταλάντωση ήταν \[A_0'=0,4\, m\] το χρονικό διάστημα που απαιτείται για να γίνει \[Α_1'=0,2\, m\] είναι:
25. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. πάνω σε λείο οριζόντιο επίπεδο πλάτους Α και περιόδου \[Τ_1\]. Κάποια στιγμή που περνά απ’ τη Θ.Ι. του συγκρούεται με αρχικά ακίνητο σώμα ίσης μάζας \[m_2=m_1\]. Η κρούση είναι μετωπική και πλαστική. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ. με περίοδο \[T_2\].


Α. Για τις περιόδους \[Τ_1, Τ_2\] των δύο α.α.τ. ισχύει:
α. \[Τ_1=Τ_2\].                  
β. \[Τ_1=2Τ_2\].               
γ. \[Τ_1=4Τ_2\].                
δ. \[Τ_1=\frac{Τ_2 \sqrt{2}}{2}\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά τη διάρκεια της κρούσης είναι:
α. \[π=-50 \%\].           
β. \[π=50 \%\].              
γ. \[π=-25 \%\].           
δ. \[π=25 \%\].

26. Ο δίσκος μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. πλάτους \[Α_1=Δ\ell\] όπου \[Δ \ell\] η συσπείρωση του ελατηρίου στη Θ.Ι. του δίσκου. Όταν ο δίσκος βρίσκεται στην ανώτερη ακραία θέση του, τοποθετούμε σ’ αυτόν δεύτερο σώμα ίσης μάζας \[m_2=m_1\]. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με πλάτος \[A_2\].
Α. Για τα πλάτη  \[Α_1\, , \, Α_2\] ισχύει:

α. \[Α_1=Α_2\].                  β. \[Α_1=\frac{Α_2}{ 2 }  \].                   γ. \[Α_1=3Α_2\].                δ. \[Α_1=2Α_2\].

Β. Για τις μέγιστες δυναμικές ενέργειες του ελατηρίου \[U_{ελ,max,1}\, , \, U_{ελ,max,2}\] ισχύει:

α. \[U_{ελ,max,1}=U_{ελ,max,2}\].                                 
β. \[U_{ελ,max,1}= \frac{  U_{ελ,max,2}   }{    4  }\].
γ. \[U_{ελ,max,1}=\frac{  U_{     ελ,max,2      }   }{      2    }\].                                   
δ. \[U_{ελ,max,1}=\frac{    U_{ελ,max,2}   }{   16   }\].

27. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
28. Τα σώματα Α, Β είναι προσδεμένα σε όμοια ελατήρια σταθεράς \[k\] και εκτελούν α.α.τ. Ο ταλαντωτής Α έχει περίοδο \[Τ_1=2π\, s\] ενώ ο Β \[Τ_2=6π\, sec\]. Αν προσδέσω μέσω νήματος τα δύο σώματα, τότε το σύστημά τους θα εκτελεί α.α.τ. δεμένο σε όμοιο με τα αρχικά ελατήριο με περίοδο \[T\] και ισχύει:
29. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
30. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\], το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Αν \[Ε_{Τ,κ}\] και \[Ε_{Τ,κ+1}\] η ενέργεια της ταλάντωσης τις χρονικές στιγμές \[t_1=κT\] και \[t_2=(κ+1)T\] (όπου \[κ\] θετικός ακέραιος), ποιες από τις παρακάτω προτάσεις είναι σωστές; Για το πηλίκο \[ \frac{ Ε_{Τ,κ} } { Ε_{Τ,κ+1} } \] ισχύει ότι:

    +30

    CONTACT US
    CALL US