MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής έχει αρνητική επιτάχυνση και επιταχύνεται ενώ την ίδια στιγμή η δυναμική του ενέργεια είναι ίση με την κινητική. Η αρχική φάση της α.α.τ. είναι:
2. Η μέγιστη ταχύτητα του ταλαντωτή σε μια α.α.τ. εξαρτάται:
3. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή δίνεται απ’ τη σχέση \[υ=υ_{max}\; ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
4. Σε μια α.α.τ. τη χρονική στιγμή \[t_1\] η φάση είναι \[φ_1=\frac{25π}{6}\]. Τη στιγμή αυτή ισχύει:
5. Το έργο της δύναμης επαναφοράς \[F_{επ}\] κατά τη διαδρομή ΚΛ σε μια α.α.τ. είναι ίσο:
6. Σε μια φθίνουσα μηχανική ταλάντωση η αντιτιθέμενη δύναμη δίνεται απ’ τη σχέση \[F_{αν}=-bυ\]. Σε χρονικό διάστημα \[Δt\] ο ταλαντωτής έχει διανύσει διάστημα \[s\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Στο παρακάτω διάγραμμα φαίνεται η δυναμική ενέργεια \[U_T\] και η κινητική ενέργεια \[Κ\] της α.α.τ. σε συνάρτηση με την απομάκρυνση του σημείου απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς είναι:
9. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=-ωΑ συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της επιτάχυνσής του είναι:
10. Η σταθερά επαναφοράς \[D\] ενός απλού αρμονικού ταλαντωτή:
11. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει μέγιστη θετική επιτάχυνση. Αυτό σημαίνει ότι η αρχική φάση της ταλάντωσης είναι:
12. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=0,3e^{-Λt}\] (S.I.) όπου \[Λ\] μια θετική σταθερά. Το πλάτος γίνεται \[Α_1=0,15\, m\] τη χρονική στιγμή \[t_1=2\, s\]. Αν το αρχικό πλάτος στην ίδια ταλάντωση ήταν \[A_0'=0,4\, m\] το χρονικό διάστημα που απαιτείται για να γίνει \[Α_1'=0,2\, m\] είναι:
13. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν διπλασιάσω τη μάζα του σώματος, τότε η σταθερά επαναφοράς της α.α.τ.:
14. Ταλάντωση είναι:
15. Σε μια απλή φθίνουσα αρμονική ταλάντωση σώματος μάζας \[m\], η δύναμη της αντίστασης \[F_{αν}\] με την ταχύτητα του ταλαντωτή \[υ\] συνδέονται απ’ τη σχέση \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η γωνιακή συχνότητα της φθίνουσας ταλάντωσης δίνεται απ’ τη σχέση \[ ω = \sqrt{ \frac{D}{m}-\left( \frac{b}{2m} \right)^2 }\] όπου \[D\] η σταθερά επαναφοράς της ταλάντωσης. Σύμφωνα με τη σχέση αυτή μπορούμε να ταυτίσουμε προσεγγιστικά την περίοδο της φθίνουσας ταλάντωσης με την περίοδο \[T_0\] που θα είχε ο ταλαντωτής όταν εκτελούσε α.α.τ. αν:
16. Το σύστημα ιδανικό ελατήριο σταθεράς \[k\] και σώμα μάζας \[m\] του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Το σώμα δέχεται αντιτιθέμενη δύναμη της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Ο δεύτερος νόμος του Νεύτωνα για το σύστημα γράφεται:
17. Ταλαντωτές κινούνται σε διαφορετικά μέσα και η δύναμη αντίστασης που δέχονται σε συνάρτηση με την αλγεβρική τιμή της ταχύτητάς τους είναι της μορφής \[ΣF=-bυ\], όπου \[b\] θετικές σταθερές. Στη δεξιά στήλη έχουν σχεδιαστεί τα χρονοδιαγράμματα των απομακρύνσεων των ταλαντωτών \[x\] απ’ τη Θ.Ι. τους. Να αντιστοιχήσετε τα στοιχεία της πάνω στήλης που συμβολίζονται με αριθμούς και εκφράζουν τον βαθμό της απόσβεσης, με τα διαγράμματα της κάτω στήλης.1. μικρή απόσβεση
2. μεσαία απόσβεση
3. πολύ μεγάλη απόσβεση
4. μηδενική απόσβεση

18. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

19. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που το πλάτος της δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος \[t_{\frac 12}\] που απαιτείται ώστε το πλάτος της να γίνει ίσο με \[\frac{Α_0}{2}\] είναι:
20. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει:

α) \[f_1 < f_2 = f_3\].          β) \[f_2=f_3 <  f_1\].                      γ) \[f_1 = f_2 = f_3\].

Β. Για τις σταθερές των ελατηρίων \[k_2\]  και \[k_3\]  ισχύει:

α) \[k_2 = 8 k_3\].                 β) \[k_2 =4 k_3\].                          γ) \[k_2=16 k_3\].

Γ. Αν γνωρίζω ότι \[k_1=k_2\]  και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\]  αρχικά:

α) θα αυξάνεται.          β) θα μειώνεται.                      γ) θα μένει σταθερό.

22. Ταλαντωτής εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Αν διπλασιάσω τη μέγιστη ταχύτητα του ταλαντωτή, η ενέργεια της ταλάντωσής του γίνεται \[Ε_Τ'\]. Ο λόγος \[\frac{Ε_Τ'}{Ε_Τ}\] είναι ίσος με:
23. Το σώμα μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. με πλάτος \[Α\] και περίοδο \[T\]. Κάποια στιγμή που διέρχεται απ’ τη Θ.Ι. του συγκρούεται πλαστικά με σώμα \[m_2\] ίσης μάζας που πριν την κρούση έχει κατακόρυφη ταχύτητα \[υ_2\]. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ.
Α. Οι σταθερές επαναφοράς ,  των δύο α.α.τ. πριν και μετά την κρούση είναι:

α. \[D_1=2D_2\].               β. \[D_1=4D_2\].               γ. \[D_1=D_2\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά την κρούση είναι:

α. \[π=-25 \%\].            β. \[π=-50 \%\].            γ. \[π=-75 \%\].            δ. \[π=30 \%\].

24. Υλικό σημείο εκτελεί α.α.τ. μεταξύ των ακραίων θέσεων Κ, Λ γύρω απ’ τη θέση ισορροπίας Ο. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς:
25. Τρεις ανεξάρτητοι ταλαντωτές εκτελούν φθίνουσες αρμονικές ταλαντώσεις και οι αντιτιθέμενες δυνάμεις στην κίνησή τους είναι της μορφής \[F_{αν}=-bυ\]. Οι σταθερές απόσβεσης των τριών ταλαντώσεων είναι \[b_1,\, b_2,\, b_3\] αντίστοιχα. Οι ταλαντωτές την \[t=0\] έχουν ίδιο πλάτος \[A_0\]. Στο παρακάτω διάγραμμα φαίνονται οι μεταβολές των πλατών τους με το χρόνο σε κοινό σύστημα αξόνων. Για τις σχέσεις των σταθερών επαναφοράς ισχύει:
26. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;

Η α.α.τ. έχει αρχική φάση .

27. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν τετραπλασιάσω την ενέργεια της ταλάντωσης, τότε:
28. Το σώμα \[Σ_1\] μάζας \[m_1\] του διπλανού σχήματος εκτελεί α.α.τ. Στη θέση \[x_0\] πάνω απ’ τη Θ.Ι. του, τη στιγμή που κατέρχεται, συγκρούεται μετωπικά και πλαστικά με σώμα \[Σ_2\] που ανέρχεται με ταχύτητα \[υ_2\]. Αμέσως μετά την κρούση το συσσωμάτωμα ακινητοποιείται στιγμιαία και κατόπιν εκτελεί α.α.τ. Για την α.α.τ. του συσσωματώματος ισχύει:
29. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
30. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Αν \[Α_0,\, Α_1,\, Α_2\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[ t=0,\, t_1=T,\, t_2=2T \] αντίστοιχα τότε ισχύει η σχέση:

    +30

    CONTACT US
    CALL US