1. Δύο σώματα με μάζες \[m_1, m_2\], όπου \[m_1>m_2\] είναι δεμένα και ισορροπούν ακίνητα στα ελεύθερα κάτω άκρα δύο ιδανικών όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα σε οροφή. Εκτρέπω και τα δύο σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια να αποκτήσουν τα φυσικά τους μήκη. Απ’ τις θέσεις αυτές τα αφήνω ταυτόχρονα ελεύθερα και εκτελούν α.α.τ. 2. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Στο παρακάτω διάγραμμα φαίνεται η δυναμική ενέργεια \[U_T\] και η κινητική ενέργεια \[Κ\] της α.α.τ. σε συνάρτηση με την απομάκρυνση του σημείου απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
5. Ο δίσκος μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. πλάτους \[Α_1=Δ\ell\] όπου \[Δ \ell\] η συσπείρωση του ελατηρίου στη Θ.Ι. του δίσκου. Όταν ο δίσκος βρίσκεται στην ανώτερη ακραία θέση του, τοποθετούμε σ’ αυτόν δεύτερο σώμα ίσης μάζας \[m_2=m_1\]. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με πλάτος \[A_2\].
Α. Για τα πλάτη \[Α_1\, , \, Α_2\] ισχύει: α. \[Α_1=Α_2\]. β. \[Α_1=\frac{Α_2}{ 2 } \]. γ. \[Α_1=3Α_2\]. δ. \[Α_1=2Α_2\].
Β. Για τις μέγιστες δυναμικές ενέργειες του ελατηρίου \[U_{ελ,max,1}\, , \, U_{ελ,max,2}\] ισχύει:
α. \[U_{ελ,max,1}=U_{ελ,max,2}\].
β. \[U_{ελ,max,1}= \frac{ U_{ελ,max,2} }{ 4 }\].
γ. \[U_{ελ,max,1}=\frac{ U_{ ελ,max,2 } }{ 2 }\].
δ. \[U_{ελ,max,1}=\frac{ U_{ελ,max,2} }{ 16 }\].
7. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].
β. \[ Ε_{Τ,1}=\frac{ Ε_{Τ,2} }{ 2 }\].
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].
Β. Για τις μέγιστες ταχύτητες και ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{ υ_{max,2} }{ 2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]
12. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος με το χρόνο δίνεται απ’ τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου το \[Α_0\] είναι το πλάτος της στιγμής \[t=0\] και \[Λ\] μια θετική σταθερά. Για συγκεκριμένη τιμή της σταθεράς \[Λ\], η περίοδος της ταλάντωσης: 16. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της μεταβολής των φάσεων σε συνάρτηση με το χρόνο για δύο απλούς αρμονικούς ταλαντωτές. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Αν μια ομάδα ατόμων κινηθεί πάνω σε μια γέφυρα με κοινό βηματισμό τότε η γέφυρα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Η γέφυρα κινδυνεύει να καταστραφεί: 19. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\], το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο ν’ αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω να εκτελέσει α.α.τ. Η επιμήκυνση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 23. Τα σώματα \[Σ_1\], \[Σ_2\] ισορροπούν στα πάνω άκρα κατακόρυφων ιδανικών ελατηρίων σταθεράς \[k_1\, ,\, k_2\] που τα άλλα άκρα τους είναι στερεωμένα σε οριζόντιο δάπεδο. Τα σώματα έχουν ίσες μάζες. Εκτοξεύω τα δύο σώματα απ’ τις Θ.Ι. τους με κατακόρυφες ταχύτητες μέτρων \[υ_1\] και \[υ_2=\frac{υ_1}{2}\] αντίστοιχα και αυτά αρχίζουν να εκτελούν α.α.τ. Παρατηρώ ότι τη στιγμή που το \[Σ_1\] επιστρέφει στη Θ.Ι. του για 1η φορά μετά την εκτόξευση του, το \[Σ_2\] ακινητοποιείται για πρώτη φορά.Α. Για τις σταθερές των ελατηρίων \[k_1\, ,\, k_2\] ισχύει:
α. \[k_1=k_2 \sqrt{2}\].
β. \[k_1=4k_2\].
γ. \[k_1=\frac{k_2}{4}\].
δ. \[k_1=\frac{k_2}{ \sqrt{2} }\].
Β. Για τις μέγιστες επιταχύνσεις των σωμάτων \[α_{max,1}\, ,\, α_{max,2}\] ισχύει:
α. \[α_{max,1}=α_{max,2}\].
β. \[α_{max,1}=2α_{max,2}\].
γ. \[α_{max,1}=4α_{max,2}\].
δ. \[α_{max,1}=\sqrt{2} α_{max,2}\].
24. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει: α) \[f_1 < f_2 = f_3\]. β) \[f_2=f_3 < f_1\]. γ) \[f_1 = f_2 = f_3\].
Β. Για τις σταθερές των ελατηρίων \[k_2\] και \[k_3\] ισχύει:
α) \[k_2 = 8 k_3\]. β) \[k_2 =4 k_3\]. γ) \[k_2=16 k_3\].
Γ. Αν γνωρίζω ότι \[k_1=k_2\] και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\] αρχικά:
α) θα αυξάνεται. β) θα μειώνεται. γ) θα μένει σταθερό.
25. Σύστημα ελατήριο-σώμα δέχεται αντιτιθέμενη δύναμη στην κίνησή του της μορφής \[F_{αν}=-bυ\] και περιοδική δύναμη \[F=F_0\, συνωt\] με \[ω\] που μπορεί να μεταβάλλεται. Τότε: 26. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση δεχόμενη δύναμη αντιτιθέμενη στην κίνηση της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για συγκεκριμένη τιμή της σταθεράς απόσβεσης \[b\]: