MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σε μια φθίνουσα αρμονική ταλάντωση η δύναμη αντίστασης είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Το έργο της \[F_{αν}\] είναι:
2. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης. Ο τροχός έχει σταθερή συχνότητα \[f_1 = 2 f_0\] όπου \[f_0\] είναι η ιδιοσυχνότητα του συστήματος. Για να γίνει κάθε στιγμή ο ρυθμός της απορροφούμενης ενέργειας του ταλαντωτή απ’ το διεγέρτη ίσος με το ρυθμό απώλειας ενέργειας του ταλαντωτή λόγω της αντιτιθέμενης δύναμης χωρίς ν’ αλλάξω τη συχνότητα του διεγέρτη πρέπει η σταθερά του ελατηρίου να μεταβληθεί κατά:
3. Σώμα εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η διαφορά φάσης:
4. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
5. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει επιτάχυνση \[α=α_0>0\]. Αυτό σημαίνει ότι τη στιγμή \[t=0\]:
6. Σε μια φθίνουσα μηχανική ταλάντωση η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\]. Η μονάδα μέτρησης της θετικής σταθεράς \[Λ\] στο S.I. είναι:
7. Τρεις ανεξάρτητοι ταλαντωτές εκτελούν φθίνουσες αρμονικές ταλαντώσεις και οι αντιτιθέμενες δυνάμεις στην κίνησή τους είναι της μορφής \[F_{αν}=-bυ\]. Οι σταθερές απόσβεσης των τριών ταλαντώσεων είναι \[b_1,\, b_2,\, b_3\] αντίστοιχα. Οι ταλαντωτές την \[t=0\] έχουν ίδιο πλάτος \[A_0\]. Στο παρακάτω διάγραμμα φαίνονται οι μεταβολές των πλατών τους με το χρόνο σε κοινό σύστημα αξόνων. Για τις σχέσεις των σταθερών επαναφοράς ισχύει:
8. Ποιες από τις παρακάτω προτάσεις που αφορούν την α.α.τ. είναι σωστές;
9. Η μέγιστη ταχύτητα του ταλαντωτή σε μια α.α.τ. εξαρτάται:
10. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή δίνεται απ’ τη σχέση \[υ=υ_{max}\; ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
11. Ταλαντωτής εκτελεί φθίνουσα ταλάντωση με αρχικό πλάτος \[Α_0\] που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Αν ο ίδιος ταλαντωτής εκτελούσε ίδιας μορφής ταλάντωση με ίδιο αρχικό πλάτος αλλά με μεγαλύτερη σταθερά απόσβεσης τότε:
12. Το έργο της δύναμης επαναφοράς \[F_{επ}\] κατά τη διαδρομή ΚΛ σε μια α.α.τ. είναι ίσο:
13. Στο παρακάτω σχήμα το ιδανικό ελατήριο έχει σταθερά \[k\] και το σώμα μάζα \[m\]. Ο ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση μικρής απόσβεσης. Για μια συγκεκριμένη τιμή της συχνότητας \[f_1\] του διεγέρτη η απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι. του δίνεται απ’ τη σχέση \[x=A ημ \frac 13 \sqrt{\frac km} t\].
A. Για δύο διαφορετικές τιμές της περιόδου του διεγέρτη \[ T_1,\, T_2\] με \[ T_1 > T_2 \] παρατηρώ ότι το πλάτος της ταλάντωσης εμφανίζει την ίδια τιμή \[A_1\]. Για την τιμή της \[T_2\]  ισχύει:

α) \[Τ_2=2π\sqrt{\frac mk}\].       β) \[ Τ_2 > 2π\sqrt{ \frac mk } \].       γ) \[ Τ_2 < 2π\sqrt{ \frac mk }\].

B. Για να βρεθεί ο ταλαντωτής σε συντονισμό για τη συχνότητα \[f_1\] του διεγέρτη πρέπει να αντικαταστήσω το ελατήριο με άλλο σταθεράς \[k'\] για την οποία ισχύει:

α) \[k'=\frac{k}{3} \].                   β) \[k'=3k\].                    γ) \[k'=\frac{k}{9}\].                    δ) \[k'=9k\].

14. Τα σώματα \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος ηρεμούν δεμένα στα κάτω άκρα πανομοιότυπων κατακόρυφων ελατηρίων που τα άλλα άκρα τους είναι ακλόνητα στερεωμένα σε οροφή. Τα σώματα έχουν μάζες \[m_1\] και \[m_2=2m_1\] αντίστοιχα. Εκτρέπω τα σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια ν’ αποκτήσουν το φυσικό τους μήκος και απ’ τη θέση αυτή τα αφήνω ελεύθερα να κινηθούν. Τα σώματα εκτελούν α.α.τ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ελατηρίων κατά τη διάρκεια των ταλαντώσεων είναι:
15. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Όταν μεταβάλλω τη συχνότητα του διεγέρτη μεταβάλλεται:
16. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\], το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο ν’ αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω να εκτελέσει α.α.τ. Η επιμήκυνση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
17. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού διεγέρτη. Η σταθερά απόσβεσης \[b\] της αντιτιθέμενης δύναμης είναι μικρή. Αρχικά το σύστημα βρίσκεται σε κατάσταση συντονισμού. Αν αντικαταστήσω το σώμα με άλλο τετραπλάσιας μάζας, για να βρεθεί το σύστημα ξανά σε κατάσταση συντονισμού πρέπει η συχνότητα του διεγέρτη:
18. Τα σώματα Α, Β είναι προσδεμένα σε όμοια ελατήρια σταθεράς \[k\] και εκτελούν α.α.τ. Ο ταλαντωτής Α έχει περίοδο \[Τ_1=2π\, s\] ενώ ο Β \[Τ_2=6π\, sec\]. Αν προσδέσω μέσω νήματος τα δύο σώματα, τότε το σύστημά τους θα εκτελεί α.α.τ. δεμένο σε όμοιο με τα αρχικά ελατήριο με περίοδο \[T\] και ισχύει:
19. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
20. Ένα κρυστάλλινο ποτήρι μπορεί να σπάσει λόγω ενός ηχητικού κύματος όταν:
21. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη αντίστασης στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[Α_0\], ενώ τη χρονική στιγμή \[t_1=4\, s\] το πλάτος του γίνεται \[Α_1=\frac{Α_0}{2}\]. Η χρονική διάρκεια \[Δt\] απ’ την \[t_1\] ως τη στιγμή \[t_2\] που το πλάτος γίνεται \[Α_2=\frac{Α_0}{8}\] είναι:
22. Υλικό σημείο εκτελεί α.α.τ. με περίοδο \[Τ\]. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac π2\]. Το σχήμα που δείχνει τα διαγράμματα της δυναμικής και της κινητικής ενέργειας του ταλαντωτή σε κοινό σύστημα αξόνων σε συνάρτηση με το χρόνο είναι:
23. Σώμα εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Για να διπλασιάσω τη μέγιστη δύναμη επαναφοράς πρέπει να προσφέρω επιπλέον ενέργεια στον ταλαντωτή ίση με:
24. Σε φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α = Α_0\, e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Για το πηλίκο \[ \frac{ Α_κ } {Α_{κ+1} } \] όπου \[Α_κ\] και \[Α_{κ+1}\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[t_1=κΤ\] και \[t_2=(κ+1)Τ\] (\[κ\] θετικός ακέραιος) ισχύει ότι:
25. Ταλαντωτής εκτελεί ταλάντωση με συχνότητα \[f_α\]. Η δυναμική και η κινητική ενέργεια της α.α.τ. μεταβάλλονται περιοδικά με συχνότητα \[f_β\]. Η σχέση που συνδέει τις \[f_α\] και \[f_β\] είναι:
26. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της επιτάχυνσης του ταλαντωτή σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\]. Όταν το σημείο βρίσκεται στις θέσεις \[x=±\frac{A}{2}\], το πηλίκο της κινητικής προς τη δυναμική ενέργεια \[\frac ΚU\] είναι ίσο με:
28. Το σύστημα ιδανικού ελατηρίου-σώματος του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης \[b\]. Η εξίσωση της διεγείρουσας δύναμης είναι \[F_δ=F_0\, συν10t\] (S.I.) όπου \[F_0\] η μέγιστη τιμή της. Το ελατήριο έχει σταθερά \[k= 50 \frac{N}{m}\], ενώ το σώμα έχει μάζα \[m=2 kg\]. Για να απορροφά το σύστημα από το διεγέρτη ενέργεια με το βέλτιστο τρόπο χωρίς ν’ αλλάξουμε τη συχνότητα του διεγέρτη πρέπει η μάζα του σώματος να μεταβληθεί κατά:
29. Ο δίσκος μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. πλάτους \[Α_1=Δ\ell\] όπου \[Δ \ell\] η συσπείρωση του ελατηρίου στη Θ.Ι. του δίσκου. Όταν ο δίσκος βρίσκεται στην ανώτερη ακραία θέση του, τοποθετούμε σ’ αυτόν δεύτερο σώμα ίσης μάζας \[m_2=m_1\]. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με πλάτος \[A_2\].
Α. Για τα πλάτη  \[Α_1\, , \, Α_2\] ισχύει:

α. \[Α_1=Α_2\].                  β. \[Α_1=\frac{Α_2}{ 2 }  \].                   γ. \[Α_1=3Α_2\].                δ. \[Α_1=2Α_2\].

Β. Για τις μέγιστες δυναμικές ενέργειες του ελατηρίου \[U_{ελ,max,1}\, , \, U_{ελ,max,2}\] ισχύει:

α. \[U_{ελ,max,1}=U_{ελ,max,2}\].                                 
β. \[U_{ελ,max,1}= \frac{  U_{ελ,max,2}   }{    4  }\].
γ. \[U_{ελ,max,1}=\frac{  U_{     ελ,max,2      }   }{      2    }\].                                   
δ. \[U_{ελ,max,1}=\frac{    U_{ελ,max,2}   }{   16   }\].

30. Το σώμα μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. με πλάτος \[Α\] και περίοδο \[T\]. Κάποια στιγμή που διέρχεται απ’ τη Θ.Ι. του συγκρούεται πλαστικά με σώμα \[m_2\] ίσης μάζας που πριν την κρούση έχει κατακόρυφη ταχύτητα \[υ_2\]. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ.
Α. Οι σταθερές επαναφοράς ,  των δύο α.α.τ. πριν και μετά την κρούση είναι:

α. \[D_1=2D_2\].               β. \[D_1=4D_2\].               γ. \[D_1=D_2\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά την κρούση είναι:

α. \[π=-25 \%\].            β. \[π=-50 \%\].            γ. \[π=-75 \%\].            δ. \[π=30 \%\].


    +30

    CONTACT US
    CALL US