MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σύστημα ιδανικού ελατηρίου-σώματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση μέσα σε θάλαμο με αέρα. Αρχικά η πίεση του αέρα είναι \[P_1\] και η σταθερά απόσβεσης \[b_1\]. Με τις συνθήκες αυτές αυξάνω αργά τη συχνότητα του διεγέρτη αρχίζοντας από μηδενική τιμή. Κατόπιν αυξάνω την πίεση στην τιμή \[P_2\] και η σταθερά απόσβεσης γίνεται \[b_2\] και επαναλαμβάνω το ίδιο πείραμα. Τα πειραματικά διαγράμματα στις δύο περιστάσεις είναι στο σχήμα:
2. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια απλή αρμονική ταλάντωση για τα μεγέθη απομάκρυνση και ταχύτητα του ταλαντωτή ισχύει:
3. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της κινητικής ενέργειας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
4. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
5. Το σύστημα των σωμάτων \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος εκτελεί α.α.τ. Το \[Σ_1\] είναι δεμένο στο ιδανικό ελατήριο σταθεράς \[k\], ενώ το \[Σ_2\] ακουμπάει πάνω στο \[Σ_1\]. Οι σταθερές επαναφοράς της α.α.τ. για το κάθε σώμα είναι αντίστοιχα \[D_1\],\[D_2\]. Τα σώματα έχουν μάζες \[m_1\],\[ m_2\] αντίστοιχα με \[m_1 \neq m_2\]. Ισχύει:
6. Σε μια απλή φθίνουσα αρμονική ταλάντωση σώματος μάζας \[m\], η δύναμη της αντίστασης \[F_{αν}\] με την ταχύτητα του ταλαντωτή \[υ\] συνδέονται απ’ τη σχέση \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η γωνιακή συχνότητα της φθίνουσας ταλάντωσης δίνεται απ’ τη σχέση \[ ω = \sqrt{ \frac{D}{m}-\left( \frac{b}{2m} \right)^2 }\] όπου \[D\] η σταθερά επαναφοράς της ταλάντωσης. Σύμφωνα με τη σχέση αυτή μπορούμε να ταυτίσουμε προσεγγιστικά την περίοδο της φθίνουσας ταλάντωσης με την περίοδο \[T_0\] που θα είχε ο ταλαντωτής όταν εκτελούσε α.α.τ. αν:
7. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής επιβραδύνεται, η δύναμη επαναφοράς που δέχεται είναι αρνητική, ενώ η κινητική του ενέργεια είναι τριπλάσια της δυναμικής. Η αρχική φάση της α.α.τ. είναι:
8. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;

Η α.α.τ. έχει αρχική φάση .

9. Σε μια α.α.τ. η χρονοεξίσωση της επιτάχυνσης του ταλαντωτή είναι \[α=ω^2 Α ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητάς του είναι:
10. Στο παρακάτω σχήμα το ιδανικό ελατήριο έχει σταθερά \[k\] και το σώμα μάζα \[m\]. Ο ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση μικρής απόσβεσης. Για μια συγκεκριμένη τιμή της συχνότητας \[f_1\] του διεγέρτη η απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι. του δίνεται απ’ τη σχέση \[x=A ημ \frac 13 \sqrt{\frac km} t\].
A. Για δύο διαφορετικές τιμές της περιόδου του διεγέρτη \[ T_1,\, T_2\] με \[ T_1 > T_2 \] παρατηρώ ότι το πλάτος της ταλάντωσης εμφανίζει την ίδια τιμή \[A_1\]. Για την τιμή της \[T_2\]  ισχύει:

α) \[Τ_2=2π\sqrt{\frac mk}\].       β) \[ Τ_2 > 2π\sqrt{ \frac mk } \].       γ) \[ Τ_2 < 2π\sqrt{ \frac mk }\].

B. Για να βρεθεί ο ταλαντωτής σε συντονισμό για τη συχνότητα \[f_1\] του διεγέρτη πρέπει να αντικαταστήσω το ελατήριο με άλλο σταθεράς \[k'\] για την οποία ισχύει:

α) \[k'=\frac{k}{3} \].                   β) \[k'=3k\].                    γ) \[k'=\frac{k}{9}\].                    δ) \[k'=9k\].

11. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει:

α) \[f_1 < f_2 = f_3\].          β) \[f_2=f_3 <  f_1\].                      γ) \[f_1 = f_2 = f_3\].

Β. Για τις σταθερές των ελατηρίων \[k_2\]  και \[k_3\]  ισχύει:

α) \[k_2 = 8 k_3\].                 β) \[k_2 =4 k_3\].                          γ) \[k_2=16 k_3\].

Γ. Αν γνωρίζω ότι \[k_1=k_2\]  και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\]  αρχικά:

α) θα αυξάνεται.          β) θα μειώνεται.                      γ) θα μένει σταθερό.

12. Υλικό σημείο εκτελεί α.α.τ. με περίοδο \[Τ\]. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac π2\]. Το σχήμα που δείχνει τα διαγράμματα της δυναμικής και της κινητικής ενέργειας του ταλαντωτή σε κοινό σύστημα αξόνων σε συνάρτηση με το χρόνο είναι:
13. Ταλαντωτής εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Αν διπλασιάσω τη μέγιστη ταχύτητα του ταλαντωτή, η ενέργεια της ταλάντωσής του γίνεται \[Ε_Τ'\]. Ο λόγος \[\frac{Ε_Τ'}{Ε_Τ}\] είναι ίσος με:
14. Η διαφορά φάσης της απομάκρυνσης \[x\] και της επιτάχυνσης \[α\] σε μια α.α.τ., \[Δφ=φ_x-φ_α\] έχει τιμή:
15. Το έργο της δύναμης επαναφοράς \[F_{επ}\] κατά τη διαδρομή ΚΛ σε μια α.α.τ. είναι ίσο:
16. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. πάνω σε λείο οριζόντιο επίπεδο πλάτους Α και περιόδου \[Τ_1\]. Κάποια στιγμή που περνά απ’ τη Θ.Ι. του συγκρούεται με αρχικά ακίνητο σώμα ίσης μάζας \[m_2=m_1\]. Η κρούση είναι μετωπική και πλαστική. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ. με περίοδο \[T_2\].


Α. Για τις περιόδους \[Τ_1, Τ_2\] των δύο α.α.τ. ισχύει:
α. \[Τ_1=Τ_2\].                  
β. \[Τ_1=2Τ_2\].               
γ. \[Τ_1=4Τ_2\].                
δ. \[Τ_1=\frac{Τ_2 \sqrt{2}}{2}\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά τη διάρκεια της κρούσης είναι:
α. \[π=-50 \%\].           
β. \[π=50 \%\].              
γ. \[π=-25 \%\].           
δ. \[π=25 \%\].

17. Το πλάτος σε μια α.α.τ. εξαρτάται:
18. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
19. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\], το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο ν’ αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω να εκτελέσει α.α.τ. Η επιμήκυνση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
20. Σώμα μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και γωνιακής συχνότητας \[ω\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
22. Το κτίριο στη διάρκεια ενός σεισμού κινδυνεύει να καταστραφεί όταν:
23. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει μέγιστη θετική επιτάχυνση. Αυτό σημαίνει ότι η αρχική φάση της ταλάντωσης είναι:
24. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική του ενέργεια:
25. Ταλαντωτής εκτελεί ταλάντωση με συχνότητα \[f_α\]. Η δυναμική και η κινητική ενέργεια της α.α.τ. μεταβάλλονται περιοδικά με συχνότητα \[f_β\]. Η σχέση που συνδέει τις \[f_α\] και \[f_β\] είναι:
26. Υλικό σημείο εκτελεί α.α.τ. μεταξύ δύο ακραίων θέσεων Κ και Λ. Στη θέση Κ μηδενίζονται:
27. Ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\] έχει το πάνω άκρο του ελεύθερο σε δάπεδο ενώ το άλλο άκρο του είναι στερεωμένο σε οριζόντιο δάπεδο όπως φαίνεται στο παρακάτω σχήμα. Αρχικά τοποθετώ στο πάνω άκρο του ελατηρίου σώμα μάζας \[m\] και το αφήνω ελεύθερο απ’ τη Θ.Φ.Μ. του ελατηρίου. Το σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max_1}\]. Επαναλαμβάνω το ίδιο ακριβώς πείραμα με σώμα μάζας \[4m\] και κατόπιν πάλι εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max_2 }\].

Ο λόγος των μέγιστων ταχυτήτων  είναι:

28. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η ιδιοσυχνότητα του συστήματος είναι \[f_0=30\, Hz\]. Μειώνω αργά τη συχνότητα του διεγέρτη απ’ την τιμή \[f_1=35\, Hz\] στην τιμή \[f_2=27\, Hz\]. Στη διάρκεια της μείωσης αυτής:
29. Σε μια φθίνουσα μηχανική ταλάντωση που την \[t=0\] το πλάτος της είναι \[A_0\], η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η σταθερά \[Λ\] εξαρτάται:
30. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Η σταθερά επαναφοράς του συστήματος:

    +30

    CONTACT US
    CALL US