MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Αρχικά η συχνότητα περιστροφής του διεγέρτη είναι απειροελάχιστη. Αρχίζω ν’ αυξάνω αργά τη συχνότητα του διεγέρτη και τότε:
2. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
3. Σε μια φθίνουσα μηχανική ταλάντωση η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\]. Η μονάδα μέτρησης της θετικής σταθεράς \[Λ\] στο S.I. είναι:
4. Σε μια φθίνουσα μηχανική ταλάντωση που την \[t=0\] το πλάτος της είναι \[A_0\], η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η σταθερά \[Λ\] εξαρτάται:
5. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν διπλασιάσω τη μάζα του σώματος χωρίς να μεταβάλω το πλάτος, τότε:
6. Η σταθερά επαναφοράς \[D\] ενός απλού αρμονικού ταλαντωτή:
7. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση δεχόμενη δύναμη αντιτιθέμενη στην κίνηση της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για συγκεκριμένη τιμή της σταθεράς απόσβεσης \[b\]:
8. Ταλαντωτές κινούνται σε διαφορετικά μέσα και η δύναμη αντίστασης που δέχονται σε συνάρτηση με την αλγεβρική τιμή της ταχύτητάς τους είναι της μορφής \[ΣF=-bυ\], όπου \[b\] θετικές σταθερές. Στη δεξιά στήλη έχουν σχεδιαστεί τα χρονοδιαγράμματα των απομακρύνσεων των ταλαντωτών \[x\] απ’ τη Θ.Ι. τους. Να αντιστοιχήσετε τα στοιχεία της πάνω στήλης που συμβολίζονται με αριθμούς και εκφράζουν τον βαθμό της απόσβεσης, με τα διαγράμματα της κάτω στήλης.1. μικρή απόσβεση
2. μεσαία απόσβεση
3. πολύ μεγάλη απόσβεση
4. μηδενική απόσβεση

9. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=-ωΑ συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της επιτάχυνσής του είναι:
10. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

11. Το σώμα μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. με πλάτος \[Α\] και περίοδο \[T\]. Κάποια στιγμή που διέρχεται απ’ τη Θ.Ι. του συγκρούεται πλαστικά με σώμα \[m_2\] ίσης μάζας που πριν την κρούση έχει κατακόρυφη ταχύτητα \[υ_2\]. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ.
Α. Οι σταθερές επαναφοράς ,  των δύο α.α.τ. πριν και μετά την κρούση είναι:

α. \[D_1=2D_2\].               β. \[D_1=4D_2\].               γ. \[D_1=D_2\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά την κρούση είναι:

α. \[π=-25 \%\].            β. \[π=-50 \%\].            γ. \[π=-75 \%\].            δ. \[π=30 \%\].

12. Ένα κρυστάλλινο ποτήρι μπορεί να σπάσει λόγω ενός ηχητικού κύματος όταν:
13. Σε μια α.α.τ. τη στιγμή \[t_1\] ο ταλαντωτής έχει ταχύτητα αλγεβρικής τιμής \[υ=υ_1>0\]. Αυτό σημαίνει ότι τη στιγμή \[t_1\]:
14. Σύστημα ελατήριο-σώμα δέχεται αντιτιθέμενη δύναμη στην κίνησή του της μορφής \[F_{αν}=-bυ\] και περιοδική δύναμη \[F=F_0\, συνωt\] με \[ω\] που μπορεί να μεταβάλλεται. Τότε:
15. Σε φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α = Α_0\, e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Για το πηλίκο \[ \frac{ Α_κ } {Α_{κ+1} } \] όπου \[Α_κ\] και \[Α_{κ+1}\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[t_1=κΤ\] και \[t_2=(κ+1)Τ\] (\[κ\] θετικός ακέραιος) ισχύει ότι:
16. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής επιβραδύνεται, η δύναμη επαναφοράς που δέχεται είναι αρνητική, ενώ η κινητική του ενέργεια είναι τριπλάσια της δυναμικής. Η αρχική φάση της α.α.τ. είναι:
17. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή προσδίνω στο σώμα ταχύτητα \[υ_0\] που έχει τη διεύθυνση του άξονα του ελατηρίου. Το σύστημα αρχίζει να εκτελεί α.α.τ. Επαναλαμβάνω ακριβώς το ίδιο πείραμα διπλασιάζοντας το μέτρο της \[υ_0\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Τα σώματα Α, Β είναι προσδεμένα σε όμοια ελατήρια σταθεράς \[k\] και εκτελούν α.α.τ. Ο ταλαντωτής Α έχει περίοδο \[Τ_1=2π\, s\] ενώ ο Β \[Τ_2=6π\, sec\]. Αν προσδέσω μέσω νήματος τα δύο σώματα, τότε το σύστημά τους θα εκτελεί α.α.τ. δεμένο σε όμοιο με τα αρχικά ελατήριο με περίοδο \[T\] και ισχύει:
19. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής έχει αρνητική επιτάχυνση και επιταχύνεται ενώ την ίδια στιγμή η δυναμική του ενέργεια είναι ίση με την κινητική. Η αρχική φάση της α.α.τ. είναι:
20. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
21. Για τους δύο απλούς αρμονικούς ταλαντωτές του παρακάτω σχήματος ισχύει \[k_2=4k_1\] και \[m_2=\frac{m_1}{4}\]. Απομακρύνουμε τα σώματα κατά τη διεύθυνση του κεκλιμένου επιπέδου προς τα κάτω και τ’ αφήνω ελεύθερα. Κατά την απομάκρυνση των σωμάτων δαπανήσαμε και στα δύο την ίδια ενέργεια.

Α. Αν τα πλάτη των α.α.τ. είναι ,  αντίστοιχα, ισχύει γι’ αυτά:

α. \[Α_1=Α_2\].                 
β. \[Α_1=2Α_2\].              
γ. \[Α_1=\frac{Α_2}{2}\].                  
δ. \[Α_1=\frac{Α_2}{4}\]

Β. Αν  και  είναι οι μέγιστες ορμές που αποκτούν τα σώματα κατά τη διάρκεια των α.α.τ., ισχύει:

α. \[p_{1,max}=p_{2,max}\].                             
β. \[ p_{1,max}=\frac{    p_{2,max} }{ 2}\].      
γ. \[p_{1,max}=2p_{2,max}\].                           
δ. \[p_{1,max}=4p_{2,max}\].

22. Σώμα εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η διαφορά φάσης:
23. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Σε μια α.α.τ. η δύναμη επαναφοράς:
24. Το κτίριο στη διάρκεια ενός σεισμού κινδυνεύει να καταστραφεί όταν:
25. Σύστημα ιδανικού ελατηρίου-σώματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση μέσα σε θάλαμο με αέρα. Αρχικά η πίεση του αέρα είναι \[P_1\] και η σταθερά απόσβεσης \[b_1\]. Με τις συνθήκες αυτές αυξάνω αργά τη συχνότητα του διεγέρτη αρχίζοντας από μηδενική τιμή. Κατόπιν αυξάνω την πίεση στην τιμή \[P_2\] και η σταθερά απόσβεσης γίνεται \[b_2\] και επαναλαμβάνω το ίδιο πείραμα. Τα πειραματικά διαγράμματα στις δύο περιστάσεις είναι στο σχήμα:
26. Σώμα εκτελεί α.α.τ. περιόδου \[Τ\]. Το χρονικό διάστημα μέσα σε μια περίοδο που η κινητική του ενέργεια είναι μεγαλύτερη από το τριπλάσιο της δυναμικής είναι:
27. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
28. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος της την \[t=0\] είναι \[A_0\] και μεταβάλλεται με το χρόνο σύμφωνα με την \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] μια θετική σταθερά. Αν την \[t=κT\] (όπου \[κ\] θετικός ακέραιος) το πλάτος της ταλάντωσης είναι \[Α_κ\] και την \[t=(κ+1)T\] το πλάτος γίνεται \[Α_{κ+1}\], τότε το πηλίκο \[ \frac{ Α_κ } { A_{κ+1} }\] :
29. Σε μια φθίνουσα αρμονική ταλάντωση το πλάτος μεταβάλλεται σύμφωνα με τη σχέση \[ Α= 0,64 \, e^{-Λt} \] (S.I.). Την \[t_1=2\, s\] το πλάτος γίνεται \[Α_1=0,32\, m\]. Σε χρονικό διάστημα \[Δt=6\, sec\] μετά τη χρονική στιγμή \[t_1\] το πλάτος γίνεται \[A_2\] όπου:
30. Σε μια α.α.τ. τη χρονική στιγμή \[t_1\] η φάση είναι \[φ_1=\frac{25π}{6}\]. Τη στιγμή αυτή ισχύει:

    +30

    CONTACT US
    CALL US