MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
2. Σώμα εκτελεί α.α.τ. περιόδου \[Τ\]. Το χρονικό διάστημα μέσα σε μια περίοδο που η δυναμική ενέργεια είναι μεγαλύτερη της κινητικής είναι:
3. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=0,3e^{-Λt}\] (S.I.) όπου \[Λ\] μια θετική σταθερά. Το πλάτος γίνεται \[Α_1=0,15\, m\] τη χρονική στιγμή \[t_1=2\, s\]. Αν το αρχικό πλάτος στην ίδια ταλάντωση ήταν \[A_0'=0,4\, m\] το χρονικό διάστημα που απαιτείται για να γίνει \[Α_1'=0,2\, m\] είναι:
4. Υλικό σημείο εκτελεί α.α.τ. μεταξύ δύο ακραίων θέσεων Κ και Λ. Στη θέση Κ μηδενίζονται:
5. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

6. Ο δίσκος μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. πλάτους \[Α_1=Δ\ell\] όπου \[Δ \ell\] η συσπείρωση του ελατηρίου στη Θ.Ι. του δίσκου. Όταν ο δίσκος βρίσκεται στην ανώτερη ακραία θέση του, τοποθετούμε σ’ αυτόν δεύτερο σώμα ίσης μάζας \[m_2=m_1\]. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με πλάτος \[A_2\].
Α. Για τα πλάτη  \[Α_1\, , \, Α_2\] ισχύει:

α. \[Α_1=Α_2\].                  β. \[Α_1=\frac{Α_2}{ 2 }  \].                   γ. \[Α_1=3Α_2\].                δ. \[Α_1=2Α_2\].

Β. Για τις μέγιστες δυναμικές ενέργειες του ελατηρίου \[U_{ελ,max,1}\, , \, U_{ελ,max,2}\] ισχύει:

α. \[U_{ελ,max,1}=U_{ελ,max,2}\].                                 
β. \[U_{ελ,max,1}= \frac{  U_{ελ,max,2}   }{    4  }\].
γ. \[U_{ελ,max,1}=\frac{  U_{     ελ,max,2      }   }{      2    }\].                                   
δ. \[U_{ελ,max,1}=\frac{    U_{ελ,max,2}   }{   16   }\].

7. Ταλαντωτής ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη συχνότητας \[f_δ\]. Αν η τιμή \[|f_0-f_δ |\] μειώνεται τότε:
8. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη αντίστασης στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[Α_0\], ενώ τη χρονική στιγμή \[t_1=4\, s\] το πλάτος του γίνεται \[Α_1=\frac{Α_0}{2}\]. Η χρονική διάρκεια \[Δt\] απ’ την \[t_1\] ως τη στιγμή \[t_2\] που το πλάτος γίνεται \[Α_2=\frac{Α_0}{8}\] είναι:
9. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή δίνεται απ’ τη σχέση \[υ=υ_{max}\; ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
10. Ταλάντωση είναι:
11. Δύο σώματα με μάζες \[m_1, m_2\], όπου \[m_1>m_2\] είναι δεμένα και ισορροπούν ακίνητα στα ελεύθερα κάτω άκρα δύο ιδανικών όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα σε οροφή. Εκτρέπω και τα δύο σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια να αποκτήσουν τα φυσικά τους μήκη. Απ’ τις θέσεις αυτές τα αφήνω ταυτόχρονα ελεύθερα και εκτελούν α.α.τ.
12. Το σώμα \[Σ_1\] μάζας \[m_1\] του διπλανού σχήματος εκτελεί α.α.τ. Στη θέση \[x_0\] πάνω απ’ τη Θ.Ι. του, τη στιγμή που κατέρχεται, συγκρούεται μετωπικά και πλαστικά με σώμα \[Σ_2\] που ανέρχεται με ταχύτητα \[υ_2\]. Αμέσως μετά την κρούση το συσσωμάτωμα ακινητοποιείται στιγμιαία και κατόπιν εκτελεί α.α.τ. Για την α.α.τ. του συσσωματώματος ισχύει:
13. Το σύστημα ιδανικό ελατήριο σταθεράς \[k\] και σώμα μάζας \[m\] του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Το σώμα δέχεται αντιτιθέμενη δύναμη της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Ο δεύτερος νόμος του Νεύτωνα για το σύστημα γράφεται:
14. Δύο σώματα με μάζες \[m_1, m_2\] όπου \[m_1 > m_2\] ισορροπούν ακίνητα δεμένα στα ελεύθερα κάτω άκρα όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα ακλόνητα σε οροφή. Εκτρέπω και τα δύο σώματα κατά \[d\] κατακόρυφα προς τα κάτω και τα αφήνω ταυτόχρονα ελεύθερα απ’ τις θέσεις αυτές. Τα σώματα εκτελούν α.α.τ.
15. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Η σταθερά επαναφοράς του συστήματος:
16. Ο δίσκος μάζας \[M\] είναι στερεωμένος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] και ισορροπεί όπως φαίνεται στο παρακάτω σχήμα. Το άλλο άκρο του ελατηρίου είναι στερεωμένο στο έδαφος. Στο δίσκο τοποθετούμε χωρίς αρχική ταχύτητα σώμα μάζας \[m\]. Το σύστημα εκτελεί α.α.τ. Η ενέργεια της α.α.τ. είναι:
17. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Αν \[Α_0,\, Α_1,\, Α_2\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[ t=0,\, t_1=T,\, t_2=2T \] αντίστοιχα τότε ισχύει η σχέση:
18. Σε μια φθίνουσα μηχανική ταλάντωση, η δύναμη που αντιστέκεται στην κίνηση είναι της μορφής \[F_{αν}=-bυ\] όπου \[υ\] η αλγεβρική τιμή της ταχύτητας και \[b\] μια θετική σταθερά. Στη διάρκεια μιας περιόδου το μέτρο της αντιτιθέμενης δύναμης \[F_{αν}\]:
19. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
20. Σώμα ισορροπεί ακίνητο δεμένο στο ένα άκρο ιδανικού οριζόντιου ελατηρίου που το άλλο του άκρο είναι ακλόνητα στερεωμένο. Η Θ.Ι. του σώματος ταυτίζεται με τη θέση που το ελατήριο έχει το φυσικό του μήκος. Ασκώ στο σώμα σταθερή οριζόντια δύναμη μέτρου \[F\] κατά τη διεύθυνση του άξονα του ελατηρίου και αυτό αρχίζει να επιμηκύνεται μέχρι το σώμα να σταματήσει στιγμιαία για πρώτη φορά στη θέση \[x_0\]. Ακριβώς τη στιγμή αυτή προσδίνω στο σώμα ταχύτητα μέτρου \[υ_0\], ομόρροπη της δύναμης και ταυτόχρονα καταργώ τη δύναμη αυτή. Το σώμα εκτελεί α.α.τ. Η ενέργεια της α.α.τ. είναι:
21. Το σύστημα των σωμάτων \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος εκτελεί α.α.τ. Το \[Σ_1\] είναι δεμένο στο ιδανικό ελατήριο σταθεράς \[k\], ενώ το \[Σ_2\] ακουμπάει πάνω στο \[Σ_1\]. Οι σταθερές επαναφοράς της α.α.τ. για το κάθε σώμα είναι αντίστοιχα \[D_1\],\[D_2\]. Τα σώματα έχουν μάζες \[m_1\],\[ m_2\] αντίστοιχα με \[m_1 \neq m_2\]. Ισχύει:
22. Στο παρακάτω σχήμα φαίνεται η μεταβολή της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με το χρόνο. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac{π}{2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
23. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\]. Όταν το σημείο βρίσκεται στις θέσεις \[x=±\frac{A}{2}\], το πηλίκο της κινητικής προς τη δυναμική ενέργεια \[\frac ΚU\] είναι ίσο με:
24. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\], το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο ν’ αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω να εκτελέσει α.α.τ. Η επιμήκυνση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
25. Σε μια α.α.τ. τη στιγμή \[t_1\] ο ταλαντωτής έχει ταχύτητα αλγεβρικής τιμής \[υ=υ_1>0\]. Αυτό σημαίνει ότι τη στιγμή \[t_1\]:
26. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
27. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη με μικρή σταθερά απόσβεσης \[b\]. Αρχικά η συχνότητα του διεγέρτη έχει σταθερή τιμή \[f_1\] και το πλάτος της ταλάντωσης έχει σταθερή τιμή \[A_1\]. Αυξάνω αργά τη συχνότητα του διεγέρτη και όταν η συχνότητα του διεγέρτη αποκτά την τιμή \[f_2\] τότε το πλάτος της ταλάντωσης γίνεται πάλι \[Α_1\]. Για την ιδιοσυχνότητα του ταλαντωτή και τη συχνότητα \[f_1\] του διεγέρτη ισχύει:
28. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και η Θ.Ι. του ταυτίζεται με τη θέση φυσικού μήκους του ελατηρίου. Το σύστημα εκτελεί α.α.τ. Το ελατήριο έχει σταθερά επαναφοράς \[k\] και το σώμα μάζα \[m\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
29. Ταλαντωτής εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Αν διπλασιάσω τη μέγιστη ταχύτητα του ταλαντωτή, η ενέργεια της ταλάντωσής του γίνεται \[Ε_Τ'\]. Ο λόγος \[\frac{Ε_Τ'}{Ε_Τ}\] είναι ίσος με:
30. Σύστημα ιδανικό ελατήριο σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη που στρέφεται με συχνότητα \[ f_δ \]. Η ταλάντωση γίνεται σε περιβάλλον μικρής απόσβεσης. Αρχικά ισχύει \[f_δ > f_0\]. Για να απορροφά ο ταλαντωτής ενέργεια απ’ το διεγέρτη με το βέλτιστο τρόπο, τότε πρέπει:

    +30

    CONTACT US
    CALL US