MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
2. Σώμα εκτελεί α.α.τ. περιόδου \[Τ\]. Το χρονικό διάστημα μέσα σε μια περίοδο που η κινητική του ενέργεια είναι μεγαλύτερη από το τριπλάσιο της δυναμικής είναι:
3. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
4. Τα σώματα Α, Β είναι προσδεμένα σε όμοια ελατήρια σταθεράς \[k\] και εκτελούν α.α.τ. Ο ταλαντωτής Α έχει περίοδο \[Τ_1=2π\, s\] ενώ ο Β \[Τ_2=6π\, sec\]. Αν προσδέσω μέσω νήματος τα δύο σώματα, τότε το σύστημά τους θα εκτελεί α.α.τ. δεμένο σε όμοιο με τα αρχικά ελατήριο με περίοδο \[T\] και ισχύει:
5. Σε μια φθίνουσα μηχανική ταλάντωση που την \[t=0\] το πλάτος της είναι \[A_0\], η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η σταθερά \[Λ\] εξαρτάται:
6. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της επιτάχυνσης του ταλαντωτή σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. πάνω σε λείο οριζόντιο επίπεδο πλάτους Α και περιόδου \[Τ_1\]. Κάποια στιγμή που περνά απ’ τη Θ.Ι. του συγκρούεται με αρχικά ακίνητο σώμα ίσης μάζας \[m_2=m_1\]. Η κρούση είναι μετωπική και πλαστική. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ. με περίοδο \[T_2\].


Α. Για τις περιόδους \[Τ_1, Τ_2\] των δύο α.α.τ. ισχύει:
α. \[Τ_1=Τ_2\].                  
β. \[Τ_1=2Τ_2\].               
γ. \[Τ_1=4Τ_2\].                
δ. \[Τ_1=\frac{Τ_2 \sqrt{2}}{2}\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά τη διάρκεια της κρούσης είναι:
α. \[π=-50 \%\].           
β. \[π=50 \%\].              
γ. \[π=-25 \%\].           
δ. \[π=25 \%\].

8. Τρία σώματα με ίσες μάζες \[m_1 = m_2 = m_3 = 1\, kg\] έχουν προσδεθεί στα κάτω άκρα κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους στερεώνονται σε οριζόντια μεταλλική ράβδο όπως φαίνεται στο παρακάτω σχήμα. Τα ελατήρια έχουν σταθερές \[k_1 = 25 \frac Nm,\, k_2=100 \frac Nm\] και \[k_3=200 \frac Nm\] αντίστοιχα. Με τη βοήθεια κατακόρυφης περιοδικής δύναμης που ασκώ στη ράβδο, εξαναγκάζω τα τρία συστήματα σε ταλάντωση. Η συχνότητα της διεγείρουσας δύναμης είναι σταθερή και ίση με \[f_δ=\frac{5}{π} Hz\], ενώ η ράβδος παραμένει συνεχώς οριζόντια. Η σταθερά απόσβεσης είναι μικρή και για τα τρία συστήματα.

Α. Για τις συχνότητες ταλάντωσης των τριών συστημάτων ισχύει:

α) \[f_3 > f_2 > f_1\].          β) \[ f_1 > f_2 > f_3\].          γ) \[ f_1 = f_2 = f_3\].

B. Για τα πλάτη ταλάντωσης των τριών συστημάτων ισχύει:

α) το Σ1 έχει το μεγαλύτερο πλάτος.

β) το Σ2 έχει το μεγαλύτερο πλάτος.

γ) το Σ3 έχει το μεγαλύτερο πλάτος.

δ) και τα τρία σώματα έχουν ίσα πλάτη.

Γ. Αν αυξήσω τη συχνότητα της διεγείρουσας δύναμης, τότε το πλάτος του σώματος Σ1:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερό.

9. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

10. Το πλάτος σε μια α.α.τ. εξαρτάται:
11. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ. για τα μεγέθη απομάκρυνση και επιτάχυνση ισχύει:
12. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η ιδιοσυχνότητα του συστήματος είναι \[f_0=30\, Hz\]. Μειώνω αργά τη συχνότητα του διεγέρτη απ’ την τιμή \[f_1=35\, Hz\] στην τιμή \[f_2=27\, Hz\]. Στη διάρκεια της μείωσης αυτής:
13. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
14. Η σταθερά επαναφοράς \[D\] ενός απλού αρμονικού ταλαντωτή:
15. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
16. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
17. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της απομάκρυνσης του ταλαντωτή απ’ τη Θ.Ι. του σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης. Ο τροχός έχει σταθερή συχνότητα \[f_1 = 2 f_0\] όπου \[f_0\] είναι η ιδιοσυχνότητα του συστήματος. Για να γίνει κάθε στιγμή ο ρυθμός της απορροφούμενης ενέργειας του ταλαντωτή απ’ το διεγέρτη ίσος με το ρυθμό απώλειας ενέργειας του ταλαντωτή λόγω της αντιτιθέμενης δύναμης χωρίς ν’ αλλάξω τη συχνότητα του διεγέρτη πρέπει η σταθερά του ελατηρίου να μεταβληθεί κατά:
19. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής έχει αρνητική επιτάχυνση και επιταχύνεται ενώ την ίδια στιγμή η δυναμική του ενέργεια είναι ίση με την κινητική. Η αρχική φάση της α.α.τ. είναι:
20. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].                                         
β. \[ Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{  2  }\].   
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].                                           
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].

Β. Για τις μέγιστες ταχύτητες  και  ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{  υ_{max,2}   }{  2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]

21. Ταλαντωτής ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη συχνότητας \[f_δ\]. Αν η τιμή \[|f_0-f_δ |\] μειώνεται τότε:
22. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη αντίστασης στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[Α_0\], ενώ τη χρονική στιγμή \[t_1=4\, s\] το πλάτος του γίνεται \[Α_1=\frac{Α_0}{2}\]. Η χρονική διάρκεια \[Δt\] απ’ την \[t_1\] ως τη στιγμή \[t_2\] που το πλάτος γίνεται \[Α_2=\frac{Α_0}{8}\] είναι:
23. Για τους δύο απλούς αρμονικούς ταλαντωτές του παρακάτω σχήματος ισχύει \[k_2=4k_1\] και \[m_2=\frac{m_1}{4}\]. Απομακρύνουμε τα σώματα κατά τη διεύθυνση του κεκλιμένου επιπέδου προς τα κάτω και τ’ αφήνω ελεύθερα. Κατά την απομάκρυνση των σωμάτων δαπανήσαμε και στα δύο την ίδια ενέργεια.

Α. Αν τα πλάτη των α.α.τ. είναι ,  αντίστοιχα, ισχύει γι’ αυτά:

α. \[Α_1=Α_2\].                 
β. \[Α_1=2Α_2\].              
γ. \[Α_1=\frac{Α_2}{2}\].                  
δ. \[Α_1=\frac{Α_2}{4}\]

Β. Αν  και  είναι οι μέγιστες ορμές που αποκτούν τα σώματα κατά τη διάρκεια των α.α.τ., ισχύει:

α. \[p_{1,max}=p_{2,max}\].                             
β. \[ p_{1,max}=\frac{    p_{2,max} }{ 2}\].      
γ. \[p_{1,max}=2p_{2,max}\].                           
δ. \[p_{1,max}=4p_{2,max}\].

24. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac 12}\]. Από τη χρονική στιγμή \[t=0\] ως τη χρονική στιγμή \[t_1=3t_{\frac 12}\] το επί τοις εκατό ποσοστό μείωσης της ενέργειας της ταλάντωσης είναι:
25. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν αντικαταστήσω το ελατήριο με άλλο τετραπλάσιας σταθεράς \[k\], τότε:
26. Τρεις ανεξάρτητοι ταλαντωτές εκτελούν φθίνουσες αρμονικές ταλαντώσεις και οι αντιτιθέμενες δυνάμεις στην κίνησή τους είναι της μορφής \[F_{αν}=-bυ\]. Οι σταθερές απόσβεσης των τριών ταλαντώσεων είναι \[b_1,\, b_2,\, b_3\] αντίστοιχα. Οι ταλαντωτές την \[t=0\] έχουν ίδιο πλάτος \[A_0\]. Στο παρακάτω διάγραμμα φαίνονται οι μεταβολές των πλατών τους με το χρόνο σε κοινό σύστημα αξόνων. Για τις σχέσεις των σταθερών επαναφοράς ισχύει:
27. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δυναμικής ενέργειας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
28. Υλικό σημείο εκτελεί α.α.τ. με περίοδο \[Τ\]. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac π2\]. Το σχήμα που δείχνει τα διαγράμματα της δυναμικής και της κινητικής ενέργειας του ταλαντωτή σε κοινό σύστημα αξόνων σε συνάρτηση με το χρόνο είναι:
29. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Η σταθερά επαναφοράς του συστήματος:
30. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της μεταβολής των φάσεων σε συνάρτηση με το χρόνο για δύο απλούς αρμονικούς ταλαντωτές. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US