MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της κινητικής ενέργειας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
2. Το σύστημα ιδανικού ελατηρίου-σώματος του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού με μικρή σταθερά απόσβεσης \[b\]. Η εξίσωση της διεγείρουσας δύναμης είναι \[F_δ=F_0\, συν10t\] (S.I.) όπου \[F_0\] η μέγιστη τιμή της. Το ελατήριο έχει σταθερά \[k= 50 \frac{N}{m}\], ενώ το σώμα έχει μάζα \[m=2 kg\]. Για να απορροφά το σύστημα από το διεγέρτη ενέργεια με το βέλτιστο τρόπο χωρίς ν’ αλλάξουμε τη συχνότητα του διεγέρτη πρέπει η μάζα του σώματος να μεταβληθεί κατά:
3. Σε μια φθίνουσα αρμονική ταλάντωση η αντιτιθέμενη δύναμη είναι της μορφής \[F_{αν}=-bυ\], όπου \[b\] είναι μια θετική σταθερά. Η δύναμη επαναφοράς του ταλαντωτή και η αντιτιθέμενη δύναμη:
4. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
5. Σε φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α = Α_0\, e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Για το πηλίκο \[ \frac{ Α_κ } {Α_{κ+1} } \] όπου \[Α_κ\] και \[Α_{κ+1}\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[t_1=κΤ\] και \[t_2=(κ+1)Τ\] (\[κ\] θετικός ακέραιος) ισχύει ότι:
6. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής έχει αρνητική επιτάχυνση και επιταχύνεται ενώ την ίδια στιγμή η δυναμική του ενέργεια είναι ίση με την κινητική. Η αρχική φάση της α.α.τ. είναι:
7. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις των φάσεων δύο α.α.τ. σε συνάρτηση με το χρόνο. Οι ευθείες των διαγραμμάτων είναι παράλληλες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
8. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της μεταβολής των φάσεων σε συνάρτηση με το χρόνο για δύο απλούς αρμονικούς ταλαντωτές. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
9. Η διαφορά φάσης της απομάκρυνσης \[x\] και της επιτάχυνσης \[α\] σε μια α.α.τ., \[Δφ=φ_x-φ_α\] έχει τιμή:
10. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει επιτάχυνση \[α=α_0>0\]. Αυτό σημαίνει ότι τη στιγμή \[t=0\]:
11. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή δίνεται απ’ τη σχέση \[υ=υ_{max}\; ημ(ωt)\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
12. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
13. Τα σώματα \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος ηρεμούν δεμένα στα κάτω άκρα πανομοιότυπων κατακόρυφων ελατηρίων που τα άλλα άκρα τους είναι ακλόνητα στερεωμένα σε οροφή. Τα σώματα έχουν μάζες \[m_1\] και \[m_2=2m_1\] αντίστοιχα. Εκτρέπω τα σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια ν’ αποκτήσουν το φυσικό τους μήκος και απ’ τη θέση αυτή τα αφήνω ελεύθερα να κινηθούν. Τα σώματα εκτελούν α.α.τ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ελατηρίων κατά τη διάρκεια των ταλαντώσεων είναι:
14. Το πλάτος σε μια α.α.τ. εξαρτάται:
15. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που το πλάτος της δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος \[t_{\frac 12}\] που απαιτείται ώστε το πλάτος της να γίνει ίσο με \[\frac{Α_0}{2}\] είναι:
16. Ταλαντωτές κινούνται σε διαφορετικά μέσα και η δύναμη αντίστασης που δέχονται σε συνάρτηση με την αλγεβρική τιμή της ταχύτητάς τους είναι της μορφής \[ΣF=-bυ\], όπου \[b\] θετικές σταθερές. Στη δεξιά στήλη έχουν σχεδιαστεί τα χρονοδιαγράμματα των απομακρύνσεων των ταλαντωτών \[x\] απ’ τη Θ.Ι. τους. Να αντιστοιχήσετε τα στοιχεία της πάνω στήλης που συμβολίζονται με αριθμούς και εκφράζουν τον βαθμό της απόσβεσης, με τα διαγράμματα της κάτω στήλης.1. μικρή απόσβεση
2. μεσαία απόσβεση
3. πολύ μεγάλη απόσβεση
4. μηδενική απόσβεση

17. Σε μια α.α.τ. τη χρονική στιγμή \[t_1\] η φάση είναι \[φ_1=\frac{25π}{6}\]. Τη στιγμή αυτή ισχύει:
18. Σώμα εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η διαφορά φάσης:
19. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Αρχικά η συχνότητα περιστροφής του διεγέρτη είναι απειροελάχιστη. Αρχίζω ν’ αυξάνω αργά τη συχνότητα του διεγέρτη και τότε:
20. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
21. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. πάνω σε λείο οριζόντιο επίπεδο πλάτους Α και περιόδου \[Τ_1\]. Κάποια στιγμή που περνά απ’ τη Θ.Ι. του συγκρούεται με αρχικά ακίνητο σώμα ίσης μάζας \[m_2=m_1\]. Η κρούση είναι μετωπική και πλαστική. Μετά την κρούση το συσσωμάτωμα εκτελεί α.α.τ. με περίοδο \[T_2\].


Α. Για τις περιόδους \[Τ_1, Τ_2\] των δύο α.α.τ. ισχύει:
α. \[Τ_1=Τ_2\].                  
β. \[Τ_1=2Τ_2\].               
γ. \[Τ_1=4Τ_2\].                
δ. \[Τ_1=\frac{Τ_2 \sqrt{2}}{2}\].

Β. Το ποσοστό μεταβολής της ενέργειας της ταλάντωσης κατά τη διάρκεια της κρούσης είναι:
α. \[π=-50 \%\].           
β. \[π=50 \%\].              
γ. \[π=-25 \%\].           
δ. \[π=25 \%\].

22. Ο δίσκος μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. πλάτους \[Α_1=Δ\ell\] όπου \[Δ \ell\] η συσπείρωση του ελατηρίου στη Θ.Ι. του δίσκου. Όταν ο δίσκος βρίσκεται στην ανώτερη ακραία θέση του, τοποθετούμε σ’ αυτόν δεύτερο σώμα ίσης μάζας \[m_2=m_1\]. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με πλάτος \[A_2\].
Α. Για τα πλάτη  \[Α_1\, , \, Α_2\] ισχύει:

α. \[Α_1=Α_2\].                  β. \[Α_1=\frac{Α_2}{ 2 }  \].                   γ. \[Α_1=3Α_2\].                δ. \[Α_1=2Α_2\].

Β. Για τις μέγιστες δυναμικές ενέργειες του ελατηρίου \[U_{ελ,max,1}\, , \, U_{ελ,max,2}\] ισχύει:

α. \[U_{ελ,max,1}=U_{ελ,max,2}\].                                 
β. \[U_{ελ,max,1}= \frac{  U_{ελ,max,2}   }{    4  }\].
γ. \[U_{ελ,max,1}=\frac{  U_{     ελ,max,2      }   }{      2    }\].                                   
δ. \[U_{ελ,max,1}=\frac{    U_{ελ,max,2}   }{   16   }\].

23. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.

Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:

α. \[ \frac{ω_1}{ω_2} =\sqrt{3}  \].                 
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3}  }{3}\].      

γ. \[  \frac{ω_1}{ω_2} =3\].                    
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3}  \].

Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:

α. \[\frac{ Ε_{Τ,1}   }{   Ε_{Τ,2}   } =\frac{1}{2}\].                   
β. \[  \frac{ Ε_{Τ,1}  }{  Ε_{Τ,2}   } =\frac{  3}{  2}\].       

γ. \[ \frac{ Ε_{Τ,1}  }  {Ε_{Τ,2}  } =\frac{2}{3}   \].                   
δ. \[ \frac{ Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{9}{2}  \].

24. Σώμα εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Για να διπλασιάσω τη μέγιστη δύναμη επαναφοράς πρέπει να προσφέρω επιπλέον ενέργεια στον ταλαντωτή ίση με:
25. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
26. Σώμα ισορροπεί ακίνητο δεμένο στο ένα άκρο ιδανικού οριζόντιου ελατηρίου που το άλλο του άκρο είναι ακλόνητα στερεωμένο. Η Θ.Ι. του σώματος ταυτίζεται με τη θέση που το ελατήριο έχει το φυσικό του μήκος. Ασκώ στο σώμα σταθερή οριζόντια δύναμη μέτρου \[F\] κατά τη διεύθυνση του άξονα του ελατηρίου και αυτό αρχίζει να επιμηκύνεται μέχρι το σώμα να σταματήσει στιγμιαία για πρώτη φορά στη θέση \[x_0\]. Ακριβώς τη στιγμή αυτή προσδίνω στο σώμα ταχύτητα μέτρου \[υ_0\], ομόρροπη της δύναμης και ταυτόχρονα καταργώ τη δύναμη αυτή. Το σώμα εκτελεί α.α.τ. Η ενέργεια της α.α.τ. είναι:
27. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Όταν μεταβάλλω τη συχνότητα του διεγέρτη μεταβάλλεται:
28. Ταλαντωτής εκτελεί ταλάντωση με συχνότητα \[f_α\]. Η δυναμική και η κινητική ενέργεια της α.α.τ. μεταβάλλονται περιοδικά με συχνότητα \[f_β\]. Η σχέση που συνδέει τις \[f_α\] και \[f_β\] είναι:
29. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη αντίστασης στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[Α_0\], ενώ τη χρονική στιγμή \[t_1=4\, s\] το πλάτος του γίνεται \[Α_1=\frac{Α_0}{2}\]. Η χρονική διάρκεια \[Δt\] απ’ την \[t_1\] ως τη στιγμή \[t_2\] που το πλάτος γίνεται \[Α_2=\frac{Α_0}{8}\] είναι:
30. Σε μια φθίνουσα ταλάντωση η αντιτιθέμενη δύναμη είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητας του ταλαντωτή. Τη χρονική στιγμή \[t_1\] που η ταχύτητα του ταλαντωτή είναι \[υ_1\]. ο στιγμιαίος ρυθμός μεταβολής της ενέργειας της ταλάντωσης τη στιγμή \[t_1\] είναι:

    +30

    CONTACT US
    CALL US