MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Δύο σώματα με μάζες \[m_1, m_2\], όπου \[m_1>m_2\] είναι δεμένα και ισορροπούν ακίνητα στα ελεύθερα κάτω άκρα δύο ιδανικών όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα σε οροφή. Εκτρέπω και τα δύο σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια να αποκτήσουν τα φυσικά τους μήκη. Απ’ τις θέσεις αυτές τα αφήνω ταυτόχρονα ελεύθερα και εκτελούν α.α.τ.
2. Σώμα ισορροπεί ακίνητο δεμένο στο ένα άκρο ιδανικού οριζόντιου ελατηρίου που το άλλο του άκρο είναι ακλόνητα στερεωμένο. Η Θ.Ι. του σώματος ταυτίζεται με τη θέση που το ελατήριο έχει το φυσικό του μήκος. Ασκώ στο σώμα σταθερή οριζόντια δύναμη μέτρου \[F\] κατά τη διεύθυνση του άξονα του ελατηρίου και αυτό αρχίζει να επιμηκύνεται μέχρι το σώμα να σταματήσει στιγμιαία για πρώτη φορά στη θέση \[x_0\]. Ακριβώς τη στιγμή αυτή προσδίνω στο σώμα ταχύτητα μέτρου \[υ_0\], ομόρροπη της δύναμης και ταυτόχρονα καταργώ τη δύναμη αυτή. Το σώμα εκτελεί α.α.τ. Η ενέργεια της α.α.τ. είναι:
3. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη με μικρή σταθερά απόσβεσης \[b\]. Αρχικά η συχνότητα του διεγέρτη έχει σταθερή τιμή \[f_1\] και το πλάτος της ταλάντωσης έχει σταθερή τιμή \[A_1\]. Αυξάνω αργά τη συχνότητα του διεγέρτη και όταν η συχνότητα του διεγέρτη αποκτά την τιμή \[f_2\] τότε το πλάτος της ταλάντωσης γίνεται πάλι \[Α_1\]. Για την ιδιοσυχνότητα του ταλαντωτή και τη συχνότητα \[f_1\] του διεγέρτη ισχύει:
4. Σε μια απλή φθίνουσα αρμονική ταλάντωση σώματος μάζας \[m\], η δύναμη της αντίστασης \[F_{αν}\] με την ταχύτητα του ταλαντωτή \[υ\] συνδέονται απ’ τη σχέση \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η γωνιακή συχνότητα της φθίνουσας ταλάντωσης δίνεται απ’ τη σχέση \[ ω = \sqrt{ \frac{D}{m}-\left( \frac{b}{2m} \right)^2 }\] όπου \[D\] η σταθερά επαναφοράς της ταλάντωσης. Σύμφωνα με τη σχέση αυτή μπορούμε να ταυτίσουμε προσεγγιστικά την περίοδο της φθίνουσας ταλάντωσης με την περίοδο \[T_0\] που θα είχε ο ταλαντωτής όταν εκτελούσε α.α.τ. αν:
5. Ταλαντωτής εκτελεί φθίνουσα ταλάντωση με αρχικό πλάτος \[Α_0\] που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Αν ο ίδιος ταλαντωτής εκτελούσε ίδιας μορφής ταλάντωση με ίδιο αρχικό πλάτος αλλά με μεγαλύτερη σταθερά απόσβεσης τότε:
6. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].                                         
β. \[ Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{  2  }\].   
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].                                           
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].

Β. Για τις μέγιστες ταχύτητες  και  ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{  υ_{max,2}   }{  2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]

7. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac 12}\]. Από τη χρονική στιγμή \[t=0\] ως τη χρονική στιγμή \[t_1=3t_{\frac 12}\] το επί τοις εκατό ποσοστό μείωσης της ενέργειας της ταλάντωσης είναι:
8. Ένα κρυστάλλινο ποτήρι μπορεί να σπάσει λόγω ενός ηχητικού κύματος όταν:
9. Τρία σώματα με ίσες μάζες \[m_1 = m_2 = m_3 = 1\, kg\] έχουν προσδεθεί στα κάτω άκρα κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους στερεώνονται σε οριζόντια μεταλλική ράβδο όπως φαίνεται στο παρακάτω σχήμα. Τα ελατήρια έχουν σταθερές \[k_1 = 25 \frac Nm,\, k_2=100 \frac Nm\] και \[k_3=200 \frac Nm\] αντίστοιχα. Με τη βοήθεια κατακόρυφης περιοδικής δύναμης που ασκώ στη ράβδο, εξαναγκάζω τα τρία συστήματα σε ταλάντωση. Η συχνότητα της διεγείρουσας δύναμης είναι σταθερή και ίση με \[f_δ=\frac{5}{π} Hz\], ενώ η ράβδος παραμένει συνεχώς οριζόντια. Η σταθερά απόσβεσης είναι μικρή και για τα τρία συστήματα.

Α. Για τις συχνότητες ταλάντωσης των τριών συστημάτων ισχύει:

α) \[f_3 > f_2 > f_1\].          β) \[ f_1 > f_2 > f_3\].          γ) \[ f_1 = f_2 = f_3\].

B. Για τα πλάτη ταλάντωσης των τριών συστημάτων ισχύει:

α) το Σ1 έχει το μεγαλύτερο πλάτος.

β) το Σ2 έχει το μεγαλύτερο πλάτος.

γ) το Σ3 έχει το μεγαλύτερο πλάτος.

δ) και τα τρία σώματα έχουν ίσα πλάτη.

Γ. Αν αυξήσω τη συχνότητα της διεγείρουσας δύναμης, τότε το πλάτος του σώματος Σ1:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερό.

10. Σώμα εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Η διαφορά φάσης:
11. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δύναμης επαναφοράς που δέχεται ένας ταλαντωτής που εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=0,3e^{-Λt}\] (S.I.) όπου \[Λ\] μια θετική σταθερά. Το πλάτος γίνεται \[Α_1=0,15\, m\] τη χρονική στιγμή \[t_1=2\, s\]. Αν το αρχικό πλάτος στην ίδια ταλάντωση ήταν \[A_0'=0,4\, m\] το χρονικό διάστημα που απαιτείται για να γίνει \[Α_1'=0,2\, m\] είναι:
13. Ταλαντωτής εκτελεί ταλάντωση με συχνότητα \[f_α\]. Η δυναμική και η κινητική ενέργεια της α.α.τ. μεταβάλλονται περιοδικά με συχνότητα \[f_β\]. Η σχέση που συνδέει τις \[f_α\] και \[f_β\] είναι:
14. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή προσδίνω στο σώμα ταχύτητα \[υ_0\] που έχει τη διεύθυνση του άξονα του ελατηρίου. Το σύστημα αρχίζει να εκτελεί α.α.τ. Επαναλαμβάνω ακριβώς το ίδιο πείραμα διπλασιάζοντας το μέτρο της \[υ_0\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Η επιτάχυνση σε μια α.α.τ.
16. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη αντίστασης στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[Α_0\], ενώ τη χρονική στιγμή \[t_1=4\, s\] το πλάτος του γίνεται \[Α_1=\frac{Α_0}{2}\]. Η χρονική διάρκεια \[Δt\] απ’ την \[t_1\] ως τη στιγμή \[t_2\] που το πλάτος γίνεται \[Α_2=\frac{Α_0}{8}\] είναι:
17. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
18. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
19. Το σώμα \[Σ_1\] μάζας \[m_1\] του διπλανού σχήματος εκτελεί α.α.τ. Στη θέση \[x_0\] πάνω απ’ τη Θ.Ι. του, τη στιγμή που κατέρχεται, συγκρούεται μετωπικά και πλαστικά με σώμα \[Σ_2\] που ανέρχεται με ταχύτητα \[υ_2\]. Αμέσως μετά την κρούση το συσσωμάτωμα ακινητοποιείται στιγμιαία και κατόπιν εκτελεί α.α.τ. Για την α.α.τ. του συσσωματώματος ισχύει:
20. Στο παρακάτω σχήμα φαίνεται η μεταβολή της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με το χρόνο. Η αρχική φάση της ταλάντωσης είναι \[φ_0=\frac{π}{2}\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Σε μια α.α.τ. η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι \[x=A συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι:
22. Σε μια φθίνουσα μηχανική ταλάντωση με περίοδο \[T\], το πλάτος μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η αρχική ενέργεια της ταλάντωσης είναι \[E_{T,0}\]. Αν \[Ε_{Τ,1},\, Ε_{Τ,2},\, Ε_{Τ,κ},\, Ε_{Τ,κ+1}\] είναι οι ενέργειες της ταλάντωσης τις χρονικές στιγμές \[t_1=T,\, t_2=2T,\, t_κ=κT,\, t_{κ+1}=(κ+1)Τ\] (όπου \[κ\] θετικός ακέραιος) αντίστοιχα, τότε ισχύει: \[\frac{ Ε_{Τ,0} }{ Ε_{Τ,1} } =\frac{ Ε_{Τ,1} }{ Ε_{Τ,2} }=⋯=\frac{ Ε_{Τ,κ} }{ Ε_{Τ,κ+1} } =λ_2\]. Η σταθερά \[λ_2\] είναι:
23. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική ενέργειά του:
24. Στο θάλαμο της πειραματικής διάταξης της φθίνουσας ταλάντωσης, τοποθετούμε αέρα πίεσης \[P\] και προσδίνουμε στο σύστημα ελατήριο-σώμα αρχικό πλάτος \[Α_0\]. Το πλάτος της ταλάντωσης υποδιπλασιάζεται σε χρόνο \[t_{\frac 12}\]. Κατόπιν αλλάζουμε την ποσότητα του αέρα ώστε η πίεσή του να γίνει \[P'=2P\] και προσδίνω στο σύστημα αρχικό πλάτος \[Α_0'=2Α_0\]. Στην περίπτωση αυτή το πλάτος υποδιπλασιάζεται σε χρόνο \[ t_{ \frac{1}{2} }' \] . Για τους χρόνους \[t_{ \frac{1}{2} },\, t_{ \frac{1}{2} }'\] ισχύει:
25. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις των φάσεων δύο α.α.τ. σε συνάρτηση με το χρόνο. Οι ευθείες των διαγραμμάτων είναι παράλληλες. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
26. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει:

α) \[f_1 < f_2 = f_3\].          β) \[f_2=f_3 <  f_1\].                      γ) \[f_1 = f_2 = f_3\].

Β. Για τις σταθερές των ελατηρίων \[k_2\]  και \[k_3\]  ισχύει:

α) \[k_2 = 8 k_3\].                 β) \[k_2 =4 k_3\].                          γ) \[k_2=16 k_3\].

Γ. Αν γνωρίζω ότι \[k_1=k_2\]  και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\]  αρχικά:

α) θα αυξάνεται.          β) θα μειώνεται.                      γ) θα μένει σταθερό.

27. Υλικό σημείο εκτελεί απλή αρμονική ταλάντωση περιόδου \[Τ\]. Ο χρόνος μεταξύ δύο διαδοχικών φορών που η δυναμική ενέργεια της α.α.τ. γίνεται ίση με την κινητική είναι:
28. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική του ενέργεια:
29. Τα σώματα \[Σ_1\], \[Σ_2\] ισορροπούν στα πάνω άκρα κατακόρυφων ιδανικών ελατηρίων σταθεράς \[k_1\, ,\, k_2\] που τα άλλα άκρα τους είναι στερεωμένα σε οριζόντιο δάπεδο. Τα σώματα έχουν ίσες μάζες. Εκτοξεύω τα δύο σώματα απ’ τις Θ.Ι. τους με κατακόρυφες ταχύτητες μέτρων \[υ_1\] και \[υ_2=\frac{υ_1}{2}\] αντίστοιχα και αυτά αρχίζουν να εκτελούν α.α.τ. Παρατηρώ ότι τη στιγμή που το \[Σ_1\] επιστρέφει στη Θ.Ι. του για 1η φορά μετά την εκτόξευση του, το \[Σ_2\] ακινητοποιείται για πρώτη φορά.

Α. Για τις σταθερές των ελατηρίων \[k_1\, ,\,  k_2\]  ισχύει:
α. \[k_1=k_2 \sqrt{2}\].                        
β. \[k_1=4k_2\].               
γ. \[k_1=\frac{k_2}{4}\].      
δ. \[k_1=\frac{k_2}{   \sqrt{2}   }\].

Β. Για τις μέγιστες επιταχύνσεις των σωμάτων \[α_{max,1}\, ,\, α_{max,2}\] ισχύει:
α. \[α_{max,1}=α_{max,2}\].                                        
β. \[α_{max,1}=2α_{max,2}\].              
γ. \[α_{max,1}=4α_{max,2}\].                                      
δ. \[α_{max,1}=\sqrt{2} α_{max,2}\].

30. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η σταθερά απόσβεσης είναι πολύ μικρή. Η συχνότητα του διεγέρτη είναι \[f_δ\] και η ιδιοσυχνότητα του συστήματος είναι \[f_0\]. Αν αρχικά \[f_δ < f_0\], για να βρεθεί το σύστημα σε κατάσταση συντονισμού πρέπει:

    +30

    CONTACT US
    CALL US