2. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Εκτρέπω το σώμα απ’ τη Θ.Ι. του κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και την \[t=0\] το αφήνω ελεύθερο να κινηθεί. Το σύστημα εκτελεί α.α.τ. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; 5. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της απομάκρυνσης του ταλαντωτή απ’ τη Θ.Ι. του σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
10. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή προσδίνω στο σώμα ταχύτητα \[υ_0\] που έχει τη διεύθυνση του άξονα του ελατηρίου. Το σύστημα αρχίζει να εκτελεί α.α.τ. Επαναλαμβάνω ακριβώς το ίδιο πείραμα διπλασιάζοντας το μέτρο της \[υ_0\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 13. Στο θάλαμο της πειραματικής διάταξης για τη μελέτη μιας φθίνουσας ταλάντωσης τοποθετούμε ορισμένη ποσότητα αέρα μέσω της αεραντλίας και θέτουμε το σύστημα ελατήριο-σώμα σε ταλάντωση. Αν η πίεση του αέρα στο θάλαμο παραμένει συνεχώς σταθερή, ποιες από τις παρακάτω προτάσεις είναι σωστές; 18. Υλικό σημείο εκτελεί α.α.τ. μεταξύ των ακραίων θέσεων Κ, Λ γύρω απ’ τη θέση ισορροπίας Ο. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς:
19. Ο δίσκος μάζας \[m_1\] του παρακάτω σχήματος εκτελεί α.α.τ. πλάτους \[Α_1=Δ\ell\] όπου \[Δ \ell\] η συσπείρωση του ελατηρίου στη Θ.Ι. του δίσκου. Όταν ο δίσκος βρίσκεται στην ανώτερη ακραία θέση του, τοποθετούμε σ’ αυτόν δεύτερο σώμα ίσης μάζας \[m_2=m_1\]. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με πλάτος \[A_2\].
Α. Για τα πλάτη \[Α_1\, , \, Α_2\] ισχύει: α. \[Α_1=Α_2\]. β. \[Α_1=\frac{Α_2}{ 2 } \]. γ. \[Α_1=3Α_2\]. δ. \[Α_1=2Α_2\].
Β. Για τις μέγιστες δυναμικές ενέργειες του ελατηρίου \[U_{ελ,max,1}\, , \, U_{ελ,max,2}\] ισχύει:
α. \[U_{ελ,max,1}=U_{ελ,max,2}\].
β. \[U_{ελ,max,1}= \frac{ U_{ελ,max,2} }{ 4 }\].
γ. \[U_{ελ,max,1}=\frac{ U_{ ελ,max,2 } }{ 2 }\].
δ. \[U_{ελ,max,1}=\frac{ U_{ελ,max,2} }{ 16 }\].
21. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές με μάζες \[m_1\] και \[2m_1\] αντίστοιχα.
Α. Ο λόγος των γωνιακών συχνοτήτων για τους δύο ταλαντωτές είναι:
α. \[ \frac{ω_1}{ω_2} =\sqrt{3} \].
β. \[ \frac{ω_1}{ω_2} =\frac{\sqrt{3} }{3}\].
γ. \[ \frac{ω_1}{ω_2} =3\].
δ. \[ \frac{ω_1}{ω_2} =\frac{1}{3} \].
Β. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:
α. \[\frac{ Ε_{Τ,1} }{ Ε_{Τ,2} } =\frac{1}{2}\].
β. \[ \frac{ Ε_{Τ,1} }{ Ε_{Τ,2} } =\frac{ 3}{ 2}\].
γ. \[ \frac{ Ε_{Τ,1} } {Ε_{Τ,2} } =\frac{2}{3} \].
δ. \[ \frac{ Ε_{Τ,1} }{Ε_{Τ,2} } =\frac{9}{2} \].
22. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική του ενέργεια: 24. Σε μια φθίνουσα μηχανική ταλάντωση που η δύναμη αντίστασης στην κίνηση συνδέεται με την ταχύτητα του ταλαντωτή σύμφωνα με τη σχέση \[F_{αν}=-bυ\], η περίοδος της φθίνουσας ταλάντωσης: 25. Δύο σώματα με μάζες \[m_1, m_2\], όπου \[m_1>m_2\] είναι δεμένα και ισορροπούν ακίνητα στα ελεύθερα κάτω άκρα δύο ιδανικών όμοιων κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους είναι προσδεμένα σε οροφή. Εκτρέπω και τα δύο σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια να αποκτήσουν τα φυσικά τους μήκη. Απ’ τις θέσεις αυτές τα αφήνω ταυτόχρονα ελεύθερα και εκτελούν α.α.τ. 26. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του: 27. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της μεταβολής των φάσεων σε συνάρτηση με το χρόνο για δύο απλούς αρμονικούς ταλαντωτές. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
28. Στα κάτω άκρα ιδανικών κατακόρυφων ελατηρίων έχουν προσδεθεί σώματα μάζας \[m_1=m,\, m_2=4m\] και \[m_3=\frac m2\] αντίστοιχα. Τα πάνω άκρα των ελατηρίων στερεώνονται σε ελαστική χορδή όπως φαίνεται στο παρακάτω σχήμα. Ασκώ στη χορδή κατακόρυφη περιοδική δύναμη σταθερής συχνότητας \[f_δ\]. Έτσι τα σώματα αρχίζουν να εκτελούν εξαναγκασμένες ταλαντώσεις και διαπιστώνω ότι τα σώματα με μάζες \[m_2,\, m_3\] ταλαντώνονται με μέγιστο πλάτος.
Α. Για τις συχνότητες των τριών ταλαντώσεων ισχύει: α) \[f_1 < f_2 = f_3\]. β) \[f_2=f_3 < f_1\]. γ) \[f_1 = f_2 = f_3\].
Β. Για τις σταθερές των ελατηρίων \[k_2\] και \[k_3\] ισχύει:
α) \[k_2 = 8 k_3\]. β) \[k_2 =4 k_3\]. γ) \[k_2=16 k_3\].
Γ. Αν γνωρίζω ότι \[k_1=k_2\] και αρχίζω να αυξάνω αργά τη συχνότητα της διεγείρουσας δύναμης τότε το πλάτος της ταλάντωσης του ταλαντωτή με μάζα \[m_1\] αρχικά:
α) θα αυξάνεται. β) θα μειώνεται. γ) θα μένει σταθερό.
29. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\], το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο ν’ αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω να εκτελέσει α.α.τ. Η επιμήκυνση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 30. Ταλαντωτής εκτελεί φθίνουσα ταλάντωση με αρχικό πλάτος \[Α_0\] που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Αν ο ίδιος ταλαντωτής εκτελούσε ίδιας μορφής ταλάντωση με ίδιο αρχικό πλάτος αλλά με μεγαλύτερη σταθερά απόσβεσης τότε: