MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Τα δύο ιδανικά ελατήρια του παρακάτω σχήματος έχουν σταθερές \[k_1, k_2\] και το σώμα μάζας \[m\] είναι προσδεμένο σ’ αυτά και εκτελεί α.α.τ. σε λείο οριζόντιο επίπεδο. Στη Θ.Ι. του σώματος τα ελατήρια έχουν το φυσικό τους μήκος. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
2. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ελατηρίου που το πάνω άκρο του είναι ακλόνητα στερεωμένο σε οροφή. Στο σώμα αρχικά ασκείται η δύναμη του ελατηρίου και το βάρος του. Στη Θ.Ι. του το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Ασκώ στο σώμα κατακόρυφη σταθερή δύναμη μέτρου \[F\] και το σώμα αρχίζει να ανέρχεται. Όταν το σώμα φτάνει στη θέση που το ελατήριο έχει το φυσικό του μήκος καταργώ ακαριαία τη δύναμη και το σώμα εκτελεί α.α.τ. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
3. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση και το πλάτος της μεταβάλλεται σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[A_0\] το πλάτος τη στιγμή \[t=0\] και \[Λ\] μια θετική σταθερά. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για συγκεκριμένη τιμή της σταθεράς απόσβεσης \[b\]:
4. Οι παρακάτω γραφικές παραστάσεις απεικονίζουν την ταλάντωση που εκτελούν τα συστήματα ανάρτησης τριών αυτοκινήτων τα οποία κινούνται με την ίδια ταχύτητα όταν συναντούν το ίδιο εξόγκωμα στο δρόμο. Ποιο απ’ τα τρία συστήματα ανάρτησης λειτουργεί καλύτερα;
5. Στο διπλανό σχήμα ο ταλαντωτής εκτελεί φθίνουσα ταλάντωση σε μη λείο οριζόντιο επίπεδο λόγω των απωλειών ενέργειας μέσω του έργου της τριβής ολίσθησης. Το πλάτος της ταλάντωσης:
6. Δύο κατακόρυφα ιδανικά ελατήρια με σταθερές \[k_1, k_2\] έχουν τα πάνω άκρα τους στερεωμένα σε οροφή ενώ στα κάτω άκρα δένουμε από ένα σώμα. Τα σώματα έχουν μάζες \[m_1, m_2\] αντίστοιχα με \[m_1 > m_2\] και ισορροπούν ακίνητα. Στις Θ.Ι. των σωμάτων τα ελατήρια έχουν την ίδια επιμήκυνση. Εκτρέπω τα σώματα κατά ίδιο \[x_0\] κατακόρυφα προς τα κάτω και τα αφήνω ταυτόχρονα από εκεί ελεύθερα. Τα σώματα εκτελούν α.α.τ. Επιλέξτε τις σωστές απαντήσεις.
7. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Απ’ τη θέση αυτή εκτρέπω το σώμα κατά \[x_0\] απ’ τη Θ.Ι. του κατά τη διεύθυνση του άξονα του ελατηρίου και απ’ τη θέση αυτή την \[t=0\] του προσδίνω ταχύτητα \[υ_0\] ίδιας διεύθυνσης με αυτήν της \[x_0\]. Το σώμα αρχίζει να εκτελεί α.α.τ. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
8. Σε μια α.α.τ. με περίοδο \[Τ\] η αρχική φάση είναι \[φ_0=\frac{3π}{2} \; rad\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
9. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού και με μικρή σταθερά απόσβεσης. Αυξάνω αργά τη συχνότητα του διεγέρτη από μια τιμή \[f_1\] ως μια τιμή \[f_2=40\, Hz\]. Στη διάρκεια της αύξησης αυτής παρατηρώ ότι το πλάτος της ταλάντωσης συνεχώς αυξάνεται ακόμα και αν η συχνότητα του διεγέρτη γίνει λίγο μεγαλύτερη απ’ την \[f_2\]. Απ’ αυτό συμπεραίνουμε ότι η ιδιοσυχνότητα του συστήματος είναι:
10. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί ταλάντωση σε θάλαμο που η πίεση του αέρα στο εσωτερικό του μπορεί να μεταβληθεί. Αρχικά το πλάτος έχει τιμή \[A_1\] και ο διεγέρτης συχνότητα \[f_δ\]. Αυξάνω την πίεση του αέρα στο θάλαμο χωρίς να μεταβάλω τη συχνότητα του διεγέρτη και τότε το πλάτος της ταλάντωσης είναι \[Α_2\] και ισχύει: (Να θεωρήσετε ότι και για τις δύο παραπάνω συχνότητες οι σταθερές απόσβεσης είναι πολύ μικρές.)
11. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Την \[t=0\] ο ταλαντωτής έχει ενέργεια \[E_{T,0}\].A. Ο χρόνος υποδιπλασιασμού της ενέργειας της ταλάντωσης είναι:

α) \[ t_{\frac 12}' = \frac{ln2}{Λ} \].                 
β) \[t_{\frac 12}' = \frac{2ln2}{Λ} \].               
γ) \[ t_{\frac 12}'=\frac{ \sqrt{2}  }{2}  \frac{ln2}{Λ} \].                    
δ) \[ t_{\frac 12}'=\frac{ln2}{2Λ}\].

Β. Απ’ τη χρονική στιγμή \[t=0\] μέχρι τη χρονική στιγμή \[t_1=\frac{2ln2}{Λ}\]  απ’ τον ταλαντωτή έχει εκλυθεί θερμότητα \[Q\] όπου:

α) \[Q=\frac{7E_{T,0}}{8} \].                 
β) \[Q=\frac{E_{T,0}}{16}\].                   
γ) \[Q=\frac{15}{16} E_{T,0}\].               
δ) \[Q=\frac{31}{32} E_{T,0}\].

12. Το σύστημα των σωμάτων \[Σ_1\], \[Σ_2\] του διπλανού σχήματος εκτελεί α.α.τ. Το \[Σ_1\] είναι δεμένο στο ιδανικό ελατήριο, ενώ το \[Σ_2\] ακουμπάει πάνω στο \[Σ_1\]. Ποιες από τις επόμενες προτάσεις είναι σωστές;
13. Η χρονοεξίσωση της δυναμικής ενέργειας ταλαντωτή που εκτελεί εξαναγκασμένη μηχανική ταλάντωση σταθερού πλάτους \[A\] είναι \[U_T=\frac{1}{2} mω_1^2 Α^2 ημ^2 (ω_2 t+φ_0)\].
14. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια φθίνουσα μηχανική ταλάντωση που η αντιτιθέμενη δύναμη στην κίνηση είναι της μορφής \[F_{αν}=-bυ\], όπου \[b\] η σταθερά απόσβεσης, αν αυξήσω ελάχιστα τη σταθερά απόσβεσης τότε:
15. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί δεμένο στο κάτω άκρο ιδανικού ελατηρίου σταθεράς \[k\] πάνω σε λείο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\] με \[ημφ=0,6\]. Στη θέση ισορροπίας το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Την \[t=0\] ασκώ στο σώμα σταθερή δύναμη \[F\] που έχει τη διεύθυνση του άξονα του ελατηρίου με φορά προς τα πάνω και μέτρο \[F=0,3w\] όπου \[w\] το βάρος του σώματος. Το σώμα αρχίζει να εκτελεί α.α.τ. με \[D=k\] χωρίς να καταργήσουμε την \[F\] με θετική φορά πάνω

Α) Η ενέργεια της α.α.τ. του σώματος είναι:

α) \[\frac{kΔl^2}{2}\],                         β) \[\frac{kΔl^2}{4}\],                         γ) \[\frac{kΔl^2}{8}\].

B) Το σώμα περνά απ’ τη Θ.Φ.Μ. του ελατηρίου για πρώτη φορά την που είναι:

α) \[π\sqrt{    \frac{m}{k}  }\],                      
β) \[\frac{ π}{2} \sqrt{   \frac{m}{k}   }\],                      
γ) \[\frac{π}{6} \sqrt{ \frac{m}{k}     } \].

16. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Εκτρέπω το σώμα απ’ τη Θ.Ι. του κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και απ’ τη θέση αυτή το αφήνω ελεύθερο να κινηθεί. Το σύστημα εκτελεί α.α.τ. Αν επαναλάβω το ίδιο πείραμα διπλασιάζοντας την αρχική εκτροπή \[x_0\], ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Το σύστημα των σωμάτων \[Σ_1\], \[Σ_2\] του διπλανού σχήματος ισορροπεί ακίνητο σε λείο οριζόντιο επίπεδο. Το \[Σ_1\] είναι δεμένο στο ιδανικό ελατήριο, ενώ το \[Σ_2\] ακουμπά στο \[Σ_1\]. Εκτρέπω το σύστημα προς τα αριστερά κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και το αφήνω ελεύθερο να εκτελέσει α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
18. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος μειώνεται σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\]. Η αρχική ενέργεια της ταλάντωσης είναι \[E_{T,0}\]. Τη χρονική στιγμή που ο ταλαντωτής έχει ολοκληρώσει τις πρώτες \[8\] πλήρεις ταλαντώσεις του, το πλάτος της ταλάντωσης υποτετραπλασιάζεται. Από τη στιγμή \[t=0\] μέχρι τη στιγμή που απ’ τον ταλαντωτή έχει εκλυθεί θερμότητα \[Q=\frac{63}{64} E_{T,0}\] αυτός έχει εκτελέσει \[Ν\] πλήρεις ταλαντώσεις όπου:
19. Σώμα προσδένεται στο άκρο ιδανικού κατακόρυφου ελατηρίου που το άλλο άκρο του είναι ακλόνητα στερεωμένο σε οροφή. Το σώμα ισορροπεί ακίνητο και σ’ αυτό ασκούνται η δύναμη ελατηρίου και το βάρος του. Απ’ τη θέση αυτή ασκώ στο σώμα δύναμη \[F\] κατά τη διεύθυνση του άξονα του ελατηρίου και ομόρροπη του βάρους του σώματος. Το σώμα εκτρέπεται κατά \[x_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή καταργώ τη δύναμη \[F\]. Το σώμα αρχίζει να εκτελεί α.α.τ. Η δύναμη επαναφοράς της α.α.τ. είναι:
20. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά.

Α. Να δείξετε ότι το επί τοις εκατό ποσοστό μείωσης της ενέργειας της ταλάντωσης στη διάρκεια μιας περιόδου είναι σταθερό και ίσο με:
α) \[π_2=e^{2Λt}⋅100\%\].                                                  
β) \[π_2=e^{-2Λt}⋅100\%\].          
γ) \[π_2=(1-e^{-Λt} )⋅100\%\].                                          
δ) \[π_2=(1-e^{-2Λt} )⋅100\%\].

Β. Αν η ενέργεια της ταλάντωσης την \[t=0\] είναι \[Ε_{Τ,0}=0,6 J\] και το επί τοις εκατό ποσοστό μείωσης της ενέργειας ανά περίοδο είναι \[π_2=20\%\] , τότε η ενέργεια που έχει χαθεί απ’ τον ταλαντωτή μέχρι τη στιγμή \[t_1=2T\] είναι:

α) \[|ΔΕ_Τ |=0,48 J\].      β) \[|ΔΕ_Τ |=0,384 J\].    γ) \[|ΔΕ_Τ |=0,216 J\].     δ) \[|ΔΕ_Τ |=0,36 J\].

Γ. Αν απ’ τη στιγμή \[t_0=0\] ως την \[t_1\]  έχει χαθεί ενέργεια \[0,2 J\], απ’ την \[t_1\]  ως την \[t_2=2t_1\]  πιθανόν να έχει χαθεί ενέργεια:

α) \[0,2 J\].                       β) \[0,3 J\].                       γ) \[0,1 J\].

Δ. Η μείωση της ενέργειας της ταλάντωσης (εκλυόμενη θερμότητα) ανά περίοδο με το πέρασμα του χρόνου:

α) αυξάνεται.                β) μειώνεται.                γ) μένει σταθερή.

21. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη ταλάντωση και βρίσκεται σε κατάσταση συντονισμού. Στην κατάσταση αυτή:
22. Σε μια εξαναγκασμένη μηχανική ταλάντωση με σταθερή συχνότητα, ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
23. Μικρό σώμα μάζας \[m\] ισορροπεί δεμένο στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το πάνω άκρο του είναι δεμένο στην οροφή του πειραματικού θαλάμου της φθίνουσας ταλάντωσης και περιέχει αέρα σταθερής πίεσης. Εκτρέπω το σώμα κατακόρυφα με φορά προς τα κάτω που τη θεωρώ θετική κατά \[x_0=A_0\] απ’ τη θέση ισορροπίας Α \[(x=0)\] και κατόπιν το αφήνω ελεύθερο. Το σώμα κατά την κίνησή του δέχεται δύναμη αντίστασης της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Στη διάρκεια της πρώτης περιόδου η μέγιστη ταχύτητα που αποκτά έχει μέτρο \[υ_{max,0}\]. Ο ταλαντωτής στην παραπάνω διάρκεια αποκτά μέγιστη κατά μέτρο ταχύτητα:
24. Στο άκρο ιδανικού ελατηρίου σταθεράς \[k\] έχουμε συνδέσει σώμα μάζας \[m_1=m\] που με τη σειρά του είναι συνδεμένο μέσω αβαρούς και μη εκτετού νήματος με δεύτερο σώμα μάζας \[m_2=m\]. Το συνολικό σύστημα εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη που έχει σταθερή συχνότητα \[f_δ=\frac{1}{2π} \sqrt{\frac km}\] . Κάποια χρονική στιγμή κόβουμε το νήμα και το σώμα μάζας \[m_1\] εξακολουθεί να εκτελεί εξαναγκασμένη ταλάντωση.

Α) Αν οι συχνότητες των ταλαντώσεων πριν και μετά το κόψιμο του νήματος είναι αντίστοιχα \[f_1\]  και \[f_2\]  τότε ισχύει:

α) \[f_1=\frac{1}{2π} \sqrt{ \frac{k}{2m} }\]  ,  \[f_2=\frac{1}{2π} \sqrt{  \frac km  }\].

β) \[ f_1 = f_2 = \frac{1}{2π} \sqrt{\frac{k}{2m}} \].

γ) \[f_1 = f_2 = \frac{1}{2π} \sqrt{\frac{ k }{ m }  } \].

Β) Αν τα πλάτη των ταλαντώσεων πριν και μετά το κόψιμο του νήματος είναι αντίστοιχα \[A_1,\, A_2\]  τότε ισχύει:

α) \[Α_1 = Α_2\].               β) \[ Α_2 > Α_1 \].                           γ) \[Α_1  > Α_2\].

25. Σύστημα ελατήριο-σώμα στο οποίο το σώμα βρίσκεται σε παχύρρευστο υγρό όπως φαίνεται στο σχήμα τίθεται σε κατακόρυφη κίνηση κατά τη διεύθυνση του άξονα του ελατηρίου. Η κίνηση του συστήματος είναι:
26. Σε μια φθίνουσα μηχανική ταλάντωση που η δύναμη της αντίστασης στην κίνηση συνδέεται με την ταχύτητα του ταλαντωτή σύμφωνα με τη σχέση \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Τότε για τη γωνιακή ταχύτητα της ταλάντωσης ισχύει η σχέση \[ω=\sqrt{ \frac{D } {m}-\left( \frac{b}{2m} \right)^2 }\]. Αν αυξήσω τη σταθερά \[b\], θα αυξηθεί και η περίοδος της φθίνουσας ταλάντωσης. Για να θεωρηθεί η αύξηση αυτή της περιόδου αμελητέα, πρέπει:
27. Το σώμα του παρακάτω σχήματος ισορροπεί δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι ακλόνητα δεμένο σε τοίχο. Το σώμα βρίσκεται σε λείο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\]. Εκτρέπω το σώμα απ’ τη Θ.Ι. του μέχρι το ελατήριο να αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω ελεύθερο. Το σώμα εκτελεί α.α.τ. με \[D=k\] πλάτους \[Α\] και περιόδου \[Τ\]. Αυξάνω τη γωνία του κεκλιμένου επιπέδου ώστε να γίνει \[φ'\] με \[ημφ'=2ημφ\] και επαναλαμβάνω το ίδιο ακριβώς πείραμα. Το σώμα εκτελεί πάλι α.α.τ. με σταθερά \[D=k\] πλάτους \[Α'\] και περιόδου \[Τ'\].

A) Για τα πλάτη των δύο ταλαντώσεων ισχύει:

α) \[Α'=Α\],                    β) \[Α'=Α/2\],                    γ) \[Α'=2Α\].

B) Για τις περιόδους των δύο ταλαντώσεων ισχύει:

α) \[Τ'=2Τ\],                 β) \[Τ'=Τ\],                   γ) \[Τ'=Τ/2\].

28. Το ιδανικό ελατήριο σταθεράς \[k\] του παρακάτω σχήματος έχει το κάτω άκρο του στερεωμένο σε δάπεδο ενώ στο πάνω άκρο του έχουμε στερεώσει μάζα \[m\]. Το ελατήριο είναι συσπειρωμένο με τη βοήθεια κατακόρυφου αβαρούς νήματος και το σώμα στη θέση αυτή ισορροπεί ενώ το μέτρο της τάσης του νήματος είναι \[3mg\] όπου \[g\] η επιτάχυνση της βαρύτητας. Μια χρονική στιγμή κόβω το νήμα ακαριαία και το σώμα εκτελεί α.α.τ. με σταθερά επαναφοράς \[D=k\]. Η μέγιστη επιτάχυνση της α.α.τ. του σώματος είναι:
29. Τρεις ανεξάρτητοι πανομοιότυποι ταλαντωτές βρίσκονται αντίστοιχα σε τρεις πειραματικούς θαλάμους και μπορούν να εκτελούν φθίνουσες μηχανικές ταλαντώσεις με δύναμη αντίστασης που εξαρτάται απ’ την ταχύτητα του καθενός σύμφωνα με τη σχέση \[F_{αν}=-bυ\], όπου \[b\] η σταθερά απόσβεσης που αντιστοιχεί στον καθένα. Οι θάλαμοι περιέχουν αέρα που στον καθένα η πίεση είναι \[P_1,\, P_2,\, P_3\] αντίστοιχα. Προσφέρουμε στον καθένα την ίδια ενέργεια \[E_{T,0}\] και ταυτόχρονα την \[t=0\] τους αφήνουμε ελεύθερους να ταλαντωθούν. Στο παραπάνω διάγραμμα φαίνονται οι μεταβολές των ενεργειών τους με το χρόνο σε κοινό σύστημα αξόνων. Για τις σχέσεις των πιέσεων στους τρεις θαλάμους ισχύει:
30. Ταλαντωτής έχει μάζα \[m\] και γωνιακή ιδιοσυχνότητα \[ω_0\] και εκτελεί εξαναγκασμένη μηχανική ταλάντωση με μικρή σταθερά απόσβεσης και σταθερού πλάτους \[Α\] με την επίδραση διεγείρουσας δύναμης \[F_δ\] που έχει τη μορφή \[F_δ=F_0 συνω_δ t\]. Η χρονοεξίσωση της δυναμικής ενέργειας της ταλάντωσης για μεγάλους χρόνους \[t\] γράφεται:

    +30

    CONTACT US
    CALL US