4. Σώμα ισορροπεί ακίνητο και δεμένο στο κάτω άκρο κατακόρυφου ελατηρίου που το πάνω άκρο του είναι ακλόνητα στερεωμένο σε οροφή. Στο σώμα αρχικά ασκείται η δύναμη του ελατηρίου και το βάρος του. Στη Θ.Ι. του το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Ασκώ στο σώμα κατακόρυφη σταθερή δύναμη μέτρου \[F\] και το σώμα αρχίζει να ανέρχεται. Όταν το σώμα φτάνει στη θέση που το ελατήριο έχει το φυσικό του μήκος καταργώ ακαριαία τη δύναμη και το σώμα εκτελεί α.α.τ. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; 5. Σε μια εξαναγκασμένη ταλάντωση ο ταλαντωτής έχει συντονιστεί με το διεγέρτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 6. Δύο ταλαντωτές με ίσες σταθερές επαναφοράς δέχονται δυνάμεις αντίστασης της μορφής \[F_{αν}=-bυ\] και εκτελούν φθίνουσες ταλαντώσεις. Στο παρακάτω διάγραμμα φαίνονται οι μεταβολές των πλατών των δύο ταλαντωτών με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Ο ρυθμός μεταβολής της δυναμικής ενέργειας της α.α.τ. 11. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Εκτρέπω το σώμα απ’ τη Θ.Ι. του κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και απ’ τη θέση αυτή το αφήνω ελεύθερο να κινηθεί. Το σύστημα εκτελεί α.α.τ. Αν επαναλάβω το ίδιο πείραμα διπλασιάζοντας την αρχική εκτροπή \[x_0\], ποιες από τις παρακάτω προτάσεις είναι σωστές; 12. Το σώμα του παρακάτω σχήματος ισορροπεί δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι ακλόνητα δεμένο σε τοίχο. Το σώμα βρίσκεται σε λείο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\]. Εκτρέπω το σώμα απ’ τη Θ.Ι. του μέχρι το ελατήριο να αποκτήσει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω ελεύθερο. Το σώμα εκτελεί α.α.τ. με \[D=k\] πλάτους \[Α\] και περιόδου \[Τ\]. Αυξάνω τη γωνία του κεκλιμένου επιπέδου ώστε να γίνει \[φ'\] με \[ημφ'=2ημφ\] και επαναλαμβάνω το ίδιο ακριβώς πείραμα. Το σώμα εκτελεί πάλι α.α.τ. με σταθερά \[D=k\] πλάτους \[Α'\] και περιόδου \[Τ'\].
A) Για τα πλάτη των δύο ταλαντώσεων ισχύει:
α) \[Α'=Α\], β) \[Α'=Α/2\], γ) \[Α'=2Α\].
B) Για τις περιόδους των δύο ταλαντώσεων ισχύει:
α) \[Τ'=2Τ\], β) \[Τ'=Τ\], γ) \[Τ'=Τ/2\].
15. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Στη θέση αυτή το ελατήριο έχει επιμήκυνση \[Δ \ell \]. Την \[t=0\] ασκώ στο σώμα σταθερή κατακόρυφη δύναμη με φορά προς τα πάνω και μέτρου \[F=2\, mg\] όπου \[g\] η επιτάχυνση της βαρύτητας. Το σώμα εκτελεί α.α.τ. με \[D=k\] χωρίς η δύναμη να καταργηθεί και με θετική φορά πάνω
A) Το πλάτος της ταλάντωσης είναι:
α) \[Δ \ell \], β) \[2Δ\ell\], γ) \[3Δ\ell\].
B) Η χρονική στιγμή που το σώμα περνά για πρώτη φορά απ’ τη θέση που το ελατήριο έχει το φυσικό του μήκος είναι:
α) \[t_1=\frac{π}{2} \sqrt{ \frac{m}{k} }\],
β) \[t_1=\frac{π}{3} \sqrt{ \frac{m}{k} }\],
γ) \[t_1=π\sqrt{ \frac{m}{k} }\].
16. Το σύστημα των σωμάτων \[Σ_1\], \[Σ_2\] του διπλανού σχήματος ισορροπεί ακίνητο σε λείο οριζόντιο επίπεδο. Το \[Σ_1\] είναι δεμένο στο ιδανικό ελατήριο, ενώ το \[Σ_2\] ακουμπά στο \[Σ_1\]. Εκτρέπω το σύστημα προς τα αριστερά κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και το αφήνω ελεύθερο να εκτελέσει α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Σώμα ισορροπεί ακίνητο και δεμένο στο πάνω άκρο κατακόρυφου ελατηρίου το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε δάπεδο. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο να αποκτήσει το φυσικό του μήκος. Απ’ τη θέση αυτή την \[t=0\] το αφήνω να εκτελέσει α.α.τ. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Η συσπείρωση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 19. Σε μια εξαναγκασμένη μηχανική ταλάντωση ο ταλαντωτής απορροφά επιλεκτικά ενέργεια απ’ το διεγέρτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 21. Το πλάτος της εξαναγκασμένης μηχανικής ταλάντωσης: 23. Το σώμα \[Σ_1\] του σχήματος εκτελεί α.α.τ. σε λείο οριζόντιο επίπεδο δεμένο στο άκρο του ιδανικού ελατηρίου σταθεράς \[k\]. Η περίοδος της α.α.τ. του \[Σ_1\] είναι \[Τ\] και το πλάτος της \[Α\]. Όταν το σώμα φτάνει στη δεξιά ακραία θέση του συγκρούεται μετωπικά και ελαστικά με βλήμα \[Σ_2\] . Το συσσωμάτωμα εκτελεί α.α.τ. Η α.α.τ. του συσσωματώματος:
24. Σε μια μηχανική ταλάντωση η δύναμη της αντίστασης με την ταχύτητα συνδέεται με τη σχέση \[F_{αν}=-bυ\]. Αν αυξήσω το συντελεστή απόσβεσης \[b\] τότε: 26. Ταλαντωτής έχει κυκλική ιδιοσυχνότητα \[ω_0\] και εκτελεί εξαναγκασμένη μηχανική ταλάντωση σταθερού πλάτους \[Α\] με την επίδραση διεγείρουσας δύναμης \[F_δ\] που έχει τη μορφή \[F_δ=F_0\, συνω_δ t\]. Οι χρονοεξισώσεις της απομάκρυνσης και της ταχύτητας του ταλαντωτή για μεγάλους χρόνους \[t\] γράφονται: 27. Δύο σώματα Α, Β με ίσες μάζες είναι δεμένα στα άκρα δύο ανεξάρτητων ιδανικών ελατηρίων και εκτελούν φθίνουσες ταλαντώσεις μικρής απόσβεσης με ίδιο αρχικό πλάτος \[Α_0\]. Οι συνισταμένες δυνάμεις για την κάθε ταλάντωση δίνονται απ’ τις σχέσεις \[ΣF_A=-100 x_A-2υ_Α\] (S.I.), \[ΣF_B=-100x_A-4υ_Α\] (S.I.) όπου \[x,\, υ\] οι αλγεβρικές τιμές της απομάκρυνσης και της ταχύτητας αντίστοιχα για τον κάθε ταλαντωτή.Α. Τη χρονική στιγμή \[t=0\]:
α) το σώμα Α έχει μεγαλύτερη ενέργεια ταλάντωσης.
β) το σώμα Β έχει μεγαλύτερη ενέργεια ταλάντωσης.
γ) τα δύο σώματα έχουν ίσες ενέργειες ταλάντωσης.
Β. Για τις συχνότητες των δύο ταλαντωτών ισχύει:
α) \[f_A=f_B\]. β) \[f_A > f_B\]. γ) \[ f_A < f_B\].
Γ. Για τους χρόνους ημιζωής των δύο ταλαντώσεων \[t_{\frac 12 A},\, t_{\frac 12 B}\] ισχύει:
α) \[t_{\frac 12 A}=t_{\frac 12 B}\].
β) \[t_{\frac 12 A} < t_{\frac 12 B} \].
γ) \[t_{\frac 12 A} > t_{\frac 12 B} \].
28. Σε μια φθίνουσα μηχανική ταλάντωση που η δύναμη της αντίστασης στην κίνηση συνδέεται με την ταχύτητα του ταλαντωτή σύμφωνα με τη σχέση \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Τότε για τη γωνιακή ταχύτητα της ταλάντωσης ισχύει η σχέση \[ω=\sqrt{ \frac{D } {m}-\left( \frac{b}{2m} \right)^2 }\]. Αν αυξήσω τη σταθερά \[b\], θα αυξηθεί και η περίοδος της φθίνουσας ταλάντωσης. Για να θεωρηθεί η αύξηση αυτή της περιόδου αμελητέα, πρέπει: 29. Μικρό σώμα του παρακάτω σχήματος αρχικά ισορροπεί πάνω σε λείο οριζόντιο επίπεδο δεμένο στο άκρο ιδανικού ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[x_0=A_0\] κατά τη διεύθυνση του άξονα του ελατηρίου και φορά προς τα δεξιά που θεωρώ θετική και απ’ τη θέση αυτή το αφήνω ελεύθερο. Το σώμα στη διάρκεια της κίνησής του δέχεται αντιτιθέμενη δύναμη απ’ τον αέρα της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Στη διάρκεια της πρώτης περιόδου της κίνησης έχει μέγιστη ταχύτητα μέτρου \[υ_{max,0}\].
A. Τη μέγιστη κατά μέτρο ταχύτητα την αποκτά όταν περνά:
α) απ’ τη θέση \[ x=0 \] για πρώτη φορά.
β) απ’ τη θέση \[ x=\frac{ bυ_{max,0} } { k } \] για πρώτη φορά.
γ) απ’ τη θέση \[x=-\frac{bυ_{max,0} }{k} \] για πρώτη φορά.
Β. Στην παραπάνω κίνηση όσο αυξάνεται ο αριθμός των ταλαντώσεων, η θέση που αποκτά την μέγιστη κατά μέτρο ταχύτητα στη διάρκεια κάθε περιόδου:
α) πλησιάζει τη Θ.Φ.Μ. \[(x=0)\]
β) απομακρύνεται απ’ τη Θ.Φ.Μ.
γ) είναι σταθερή και ταυτίζεται με τη Θ.Φ.Μ.
30. Σώμα εκτελεί α.α.τ. με περίοδο \[ T \]. Στο παρακάτω σχήμα φαίνεται η μεταβολή της επιτάχυνσης του σώματος σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;