MENU

Τεστ στα Κύματα Α (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
1. Στην παρακάτω πειραματική διάταξη που αποτελείται από δύο σωλήνες Α, Β ένα διαπασών δημιουργεί ηχητικό κύμα μήκους κύματος \[λ\] πάνω απ’ την οπή Ο. Τα κύματα αυτά φτάνουν στην οπή Σ ακολουθώντας είτε τη διαδρομή ΟΑΣ είτε τη διαδρομή ΟΒΣ. Έτσι στο Σ έχουμε τη συμβολή δύο κυμάτων και δημιουργείται σύνθετος ήχος που η έντασή του ανιχνεύεται μέσω ενός ανιχνευτή που βρίσκεται ακριβώς έξω απ’ την οπή Σ. Ο δεξιός σωλήνας Β μπορεί να μετακινείται δεξιά ή αριστερά και έτσι η απόσταση \[x\] να μεταβάλλεται. Στη διάρκεια της μεταβολής αυτής αλλάζει και η ένταση του ήχου που μετρά ο ανιχνευτής στο Σ και μάλιστα αυξομειώνεται μεταξύ της τιμής μηδέν και μιας μέγιστης τιμής. Όταν η απόσταση έχει την τιμή \[x\] του παρακάτω σχήματος ο ανιχνευτής μετρά μέγιστη ένταση για τον σύνθετο ήχο στο Σ. Μετακινώ το δεξί σωλήνα Β προς τα δεξιά και όταν η μετακίνηση γίνει \[Δx=0,3\, m\], τότε ο ανιχνευτής καταγράφει τη δεύτερη παύση του ήχου στη διάρκεια της μετακίνησης αυτής. Το μήκος κύματος \[λ\] του κύματος που παράγει το διαπασών είναι:
2. Σε οριζόντια ελαστική χορδή που ταυτίζεται με τον άξονα \[x' Ox\] διαδίδεται εγκάρσιο αρμονικό κύμα. Σημείο Κ που βρίσκεται στη θέση \[x_K=-1,5\, m\] έχει τη χρονική στιγμή \[t_1\] φάση \[φ_{Κ,1}=6π\, rad\] ενώ σημείο Λ που βρίσκεται στη θέση \[x_Λ=1,5\, m\] έχει τη χρονική στιγμή \[t_2=t_1-\frac{3T}{2}\] και φάση \[φ_{Λ,2}=5π\, rad\].
3. Κατά μήκος ελαστικής χορδής διαδίδεται εγκάρσιο αρμονικό κύμα περιόδου \[Τ\]. Το ελάχιστο τμήμα της χορδής που απαιτείται για να σχηματιστούν \[10\] όρη είναι \[Δx_1\]. Μεταβάλλουμε την περίοδο ταλάντωσης της πηγής του κύματος και της δίνουμε την τιμή \[T'\]. Τότε παρατηρούμε ότι το ελάχιστο τμήμα της χορδής που απαιτείται για να δημιουργηθούν ακριβώς \[4\] όρη είναι \[Δx_1\]. Η νέα περίοδος \[Τ'\] είναι:
4. Στην επιφάνεια υγρού δύο σύγχρονες πηγές κυμάτων δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\] και περιόδου \[Τ\]. Η ευθεία \[ε\] της επιφάνειας του υγρού είναι κάθετη στο ευθύγραμμο τμήμα \[Π_1Π_2\]. Το μήκος του \[Π_1Π_2\] είναι \[d=3,7\, λ\]. Στο σημείο Ζ της ευθείας \[ε\] τα κύματα που συμβάλλουν φτάνουν με χρονοκαθυστέρηση το ένα απ’ το άλλο ίση με \[\frac{3T }{2}\]. Πάνω στην ευθεία \[ε\] και μεταξύ των σημείων \[Π_2\] και Ζ, ο αριθμός των σημείων που παρουσιάζουν αποσβεστική συμβολή είναι:
5. Σε οριζόντια ελαστική επιφάνεια δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2\] που βρίσκονται στα σημεία της Κ, Λ αντίστοιχα δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ_1\]. Μεταξύ του μέσου Μ του ευθύγραμμου τμήματος ΚΛ και της πηγής \[Π_1\] δημιουργούνται \[2\] σημεία που παρουσιάζουν αποσβεστική συμβολή. Το κοντινότερο απ’ τα σημεία στην πηγή \[Π_1\] απέχει απ’ αυτή απόσταση \[d_1=0,15\, λ_1\]. Αυξάνουμε τη συχνότητα των δύο πηγών κατά \[300\, \%\] έτσι ώστε αυτές να παραμένουν σύγχρονες και να έχουν ίδιο πλάτος \[A\]. Η απόσταση του πιο κοντινού σημείου του τμήματος ΚΛ που παρουσιάζει απόσβεση απ’ την πηγή \[Π_2\] συναρτήσει του μήκους κύματος \[λ_2\] που προκύπτει μετά την αύξηση της συχνότητας είναι:
6. Εγκάρσιο κύμα διαδίδεται κατά μήκος γραμμικού ελαστικού μέσου που η διεύθυνσή του ταυτίζεται με τον άξονα \[x' Ox\]. Το κύμα διαδίδεται κατά τη θετική φορά. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή της απομάκρυνσης σημείου Σ που βρίσκεται στη θέση \[x_Σ=3,2\, m\]. Την \[t=0\] αρχίζει να ταλαντώνεται η αρχή του άξονα Ο. Τη στιγμή που το Σ αρχίζει να ταλαντώνεται, η αρχή Ο έχει φάση \[φ=8π\, rad\]. Η εξίσωση του τρέχοντος κύματος είναι:
7. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο τη στιγμή \[t_1\] εγκάρσιου αρμονικού κύματος που διαδίδεται κατά τη διεύθυνση του άξονα \[x' x\]. Το κύμα περιγράφεται απ’ την εξίσωση \[y=A ημ2π\left( \frac{t}{T} - \frac{ x }{ λ } \right) \]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Σε κάποιο σημείο ενός υγρού δημιουργούμε αρμονικά κύματα με την πηγή Π. Στο σημείο Σ της επιφάνειας σε απόσταση \[α\] απ’ την πηγή τα κύματα μπορούν να φτάσουν ή απευθείας (ακολουθώντας τη διαδρομή \[ΠΣ=α\]) ή αφού ανακλαστούν στον ανακλαστήρα που βρίσκεται στην επιφάνεια του υγρού και πάνω στη μεσοκάθετο ΑΜ του τμήματος ΠΣ. Ο ανακλαστήρας απέχει απόσταση \[Η\] απ’ το τμήμα ΜΣ (είναι στη θέση Α) και το Σ παραμένει συνεχώς ακίνητο μετά τη συμβολή των κυμάτων. Aλλάζουμε τη συχνότητα της πηγής Π ώστε πάλι το Σ να παραμένει ακίνητο. Μετακινούμε τον ανακλαστήρα στη διεύθυνση της μεσοκαθέτου του ΠΣ πλησιάζοντάς τον στο τμήμα αυτό. Όταν ο ανακλαστήρας φτάνει στη θέση Δ που απέχει \[d_2\] απ’ την αρχική του θέση, το πλάτος του Σ μεγιστοποιείται για 2η φορά στη διάρκεια αυτής της μετακίνησης. Το νέο μήκος κύματος \[λ_2\] του παραγόμενου κύματος απ’ την πηγή \[Π_2\] είναι:
9. Σε κάποιο σημείο ενός υγρού δημιουργούμε αρμονικά κύματα με την πηγή Π. Στο σημείο Σ της επιφάνειας σε απόσταση \[α\] απ’ την πηγή τα κύματα μπορούν να φτάσουν ή απευθείας (ακολουθώντας τη διαδρομή \[ΠΣ=α\]) ή αφού ανακλαστούν στον ανακλαστήρα που βρίσκεται στην επιφάνεια του υγρού και πάνω στη μεσοκάθετο ΑΜ του τμήματος ΠΣ. Αρχικά ο ανακλαστήρας απέχει απόσταση \[H\] απ’ το τμήμα ΠΣ (θέση Α) και το Σ ταλαντώνεται με μέγιστο πλάτος μετά τη συμβολή των κυμάτων. Αρχίζουμε να μετακινούμε αργά τον ανακλαστήρα πάνω στη διεύθυνση της μεσοκαθέτου ΑΜ απομακρύνοντάς τον απ’ το τμήμα ΠΣ. Όταν ο ανακλαστήρας μετατοπιστεί απ’ την αρχική του θέση Α κατά \[d\] (θέση Β) τότε το Σ ακινητοποιείται μόνιμα για πρώτη φορά κατά την μετακίνηση αυτή. Το μήκος κύματος \[λ\] του παραγόμενου κύματος απ’ την πηγή Π είναι:
10. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, ,\, Π_2\] παράγουν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα πλάτους \[Α\] και μήκους κύματος \[λ\]. Η εξίσωση ταλάντωσης της πηγής \[Π_1\] είναι \[y_{Π_1 }=Α ημωt\]. Η απόσταση των δύο πηγών είναι \[Π_1Π_2=d=3,5λ\]. Σημείο Κ της επιφάνειας του υγρού και του ευθύγραμμου τμήματος \[Π_1Π_2\] αρχίζει να ταλαντώνεται λόγω του κύματος που φτάνει απ’ την πηγή \[Π_2\]. Στο σημείο Κ αρχίζει η συμβολή τη στιγμή που αυτό περνά απ’ τη Θ.Ι. του για τρίτη φορά απ’ την έναρξη της ταλάντωσής του. Στο παρακάτω σχήμα φαίνεται η χρονική μεταβολή του πλάτους του σημείου Κ. Το σημείο Κ απέχει απ’ την πηγή \[Π_1\]:
11. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο τη στιγμή \[t_1\] εγκάρσιου αρμονικού κύματος που διαδίδεται κατά την αρνητική φορά στον άξονα \[Ox'\]. Η αρχή του άξονα Ο αρχίζει να ταλαντώνεται την \[t=0\] με θετική ταχύτητα. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
12. Δύο σύγχρονες πηγές κυμάτων δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\], μήκους κύματος \[λ\] και περιόδου \[Τ\]. Στο διπλανό σχήμα φαίνονται οι υπερβολές ενισχυτικής συμβολής (συνεχείς γραμμές) και οι υπερβολές αναιρετικής συμβολής (διακεκομμένες γραμμές). Το σημείο Μ είναι το μέσο του ευθύγραμμου τμήματος \[Π_1Π_2\].
13. Σε οριζόντιο ελαστικό μέσο που εκτείνεται στη διεύθυνση του άξονα \[x' Ox\] δημιουργείται εγκάρσιο αρμονικό κύμα. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο του κύματος τη χρονική στιγμή \[t_1\] στο τμήμα ΚΛ του μέσου. Η ταχύτητα διάδοσης του κύματος είναι \[υ_δ=2\, \frac{m}{s}\] και η περίοδός του είναι \[Τ\]. Τη στιγμή \[t_1\] το μέτρο της ταχύτητας του Ζ είναι:
14. Δύο σύγχρονες πηγές κυμάτων δημιουργούν πάνω στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και χωρίς αρχική φάση. Τα σημεία της επιφάνειας στα οποία παρουσιάζεται απόσβεση τη στιγμή που αρχίζει η συμβολή σ’ αυτά:
15. Εγκάρσιο αρμονικό κύμα διαδίδεται κατά τη διεύθυνση του άξονα \[x' x\] σε γραμμικό ελαστικό μέσο. Η εξίσωση της ταχύτητας των σημείων του μέσου είναι \[υ=0,02π\, συνπ(2t+x)\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
16. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, , \, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\]. Το σημείο \[Κ\] βρίσκεται σε αποσβεστική υπερβολή που αντιστοιχεί στον ακέραιο αριθμό \[Ν\], ενώ το σημείο \[Λ\] βρίσκεται σε ενισχυτική υπερβολή που αντιστοιχεί στον ακέραιο αριθμό \[Ν'\] όπως φαίνεται στο σχήμα. Αν μεταξύ των \[Κ\, ,\, Λ\] έχουν δημιουργηθεί \[11\] υπερβολές απόσβεσης, τότε:
17. Σε κάποιο σημείο ενός υγρού δημιουργούμε αρμονικά κύματα με την πηγή Π. Στο σημείο Σ της επιφάνειας σε απόσταση \[α\] απ’ την πηγή τα κύματα μπορούν να φτάσουν ή απευθείας (ακολουθώντας τη διαδρομή \[ΠΣ=α\]) ή αφού ανακλαστούν στον ανακλαστήρα που βρίσκεται στην επιφάνεια του υγρού και πάνω στη μεσοκάθετο ΑΜ του τμήματος ΠΣ. Ο ανακλαστήρας απέχει απόσταση \[Η\] απ’ το τμήμα ΜΣ (είναι στη θέση Α) και το Σ παραμένει συνεχώς ακίνητο μετά τη συμβολή των κυμάτων. Αρχίζουμε να μετακινούμε αργά τον ανακλαστήρα πάνω στη διεύθυνση της μεσοκαθέτου ΑΜ του τμήματος ΠΣ απομακρύνοντάς τον απ’ το τμήμα αυτό. Όταν ο ανακλαστήρας μετατοπιστεί απ’ την αρχική του θέση Α κατά \[d\] (θέση Β) τότε το Σ ακινητοποιείται μόνιμα για πρώτη φορά στη διάρκεια της μετακίνησής του αυτής. Το μήκος κύματος \[λ\] του κύματος που παράγει η πηγή Π είναι:
18. Κατά μήκος οριζόντιου ελαστικού μέσου που ταυτίζεται με τη διεύθυνση του άξονα \[x' x\] διαδίδεται εγκάρσιο αρμονικό κύμα που περιγράφεται απ’ την εξίσωση \[y=0,1 ημ \frac{π}{2} (t-8x)\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Στην επιφάνεια υγρού δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Η ευθεία \[yy'\] της επιφάνειας είναι κάθετη στο ευθύγραμμο τμήμα \[Π_1Π_2\]. Η απόσταση \[Π_1Π_2\] είναι ίση με \[d=2,7\, λ\]. Το σημείο Η στο παραπάνω σχήμα είναι το πιο απομακρυσμένο σημείο της ημιευθείας \[Π_1y\] απ’ την πηγή \[Π_1\] που εμφανίζει αποσβεστική συμβολή. Μεταξύ των \[Π_1\] και Η και πάνω στο ευθύγραμμο τμήμα \[Π_1Η\] ο αριθμός των σημείων σε απόσβεση είναι:
20. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο τη χρονική στιγμή \[t_1\] εγκάρσιου αρμονικού κύματος που διαδίδεται στον άξονα \[x' x\]. Το κύμα περιγράφεται απ’ την εξίσωση \[y=0,1 ημπ\left( 4t+\frac{x}{2} \right) \] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο με φορά προς τα δεξιά. Η απόσταση ΖΗ είναι \[5\, m\], ενώ η απόσταση των Θ.Ι. ενός όρους με την επόμενη κοιλάδα του είναι \[0,5\, m\]. Τη χρονική στιγμή που η φάση της ταλάντωσης του Η είναι \[14π\, rad\], η φάση της ταλάντωσης του Ζ είναι:
22. Αρμονικό κύμα διαδίδεται κατά τη διεύθυνση του άξονα \[x' Ox\] και έχει εξίσωση της μορφής \[y=A ημ2π\left(\frac{t}{T}+\frac{x}{λ}\right)\]. Στο παρακάτω σχήμα φαίνεται το στιγμιότυπο του κύματος τη στιγμή \[t_1\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
23. Δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν στην επιφάνεια ελαστικού μέσου εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και μήκους κύματος \[λ\]. Η εξίσωση της ταλάντωσης της πηγής \[Π_2\] είναι \[y_{Π_2 }=0,01 ημ2πt\] (S.I.). Σημείο Ζ της επιφάνειας έχει αποστάσεις \[r_{1Z}\, , \, r_{2Z}\] αντίστοιχα απ’ τις δύο πηγές και αρχίζει να ταλαντώνεται λόγω του κύματος απ’ την πηγή \[Π_1\]. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της συνάρτησης της απομάκρυνσης του σημείου Ζ απ’ τη Θ.Ι. του με το χρόνο. Τη χρονική στιγμή \[t_1\] αρχίζει η συμβολή των δύο κυμάτων στο Ζ. Το σημείο Ζ ανήκει σε ενισχυτική υπερβολή που είναι:
24. Στην επιφάνεια υγρού δύο σύγχρονες πηγές \[Π_1\, , \, Π_2\] δημιουργούν εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\]. Το σημείο Η του σχήματος ανήκει στη δεύτερη ενισχυτική υπερβολή μετά τη μεσοκάθετο \[ε\] του ευθύγραμμου τμήματος \[Π_1Π_2\]. Μεταβάλλουμε τη συχνότητα των δύο πηγών ώστε αυτές να παραμένουν σύγχρονες. Το σημείο Η ανήκει τώρα στην πρώτη αποσβεστική υπερβολή μετά τη μεσοκάθετο. Το ποσοστό μεταβολής της συχνότητας των πηγών είναι:
25. Σε ομογενές ελαστικό μέσο που εκτείνεται κατά τη διεύθυνση του άξονα \[x' x\] διαδίδεται εγκάρσιο αρμονικό κύμα με μηδενική αρχική φάση. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της απομάκρυνσης σημείου Ζ του μέσου με το χρόνο. Το σημείο Ζ βρίσκεται στη θέση \[x_Z=1,6\, m\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Τρέχον αρμονικό μηχανικό κύμα που διαδίδεται κατά τη διεύθυνση του άξονα \[x' Ox\] έχει φάση \[φ=2π\left( \frac{t}{2}-\frac{x}{40} \right) \] (S.I.). Να επιλέξετε τη σωστή απάντηση. Το σημείο Σ του μέσου διάδοσης που βρίσκεται στη θέση \[x_Σ=40\, m\] αποκτά μέγιστη επιτάχυνση για πρώτη φορά τη στιγμή:
27. Δύο σύγχρονες πηγές κυμάτων \[Π_1,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα πλάτους \[Α\] και μήκους κύματος \[λ=2\, m\]. Σημείο Κ βρίσκεται στην πρώτη αποσβεστική υπερβολή που συναντάμε καθώς μεταβαίνουμε απ’ το μέσο Μ του ευθύγραμμου τμήματος \[Π_1Π_2\] προς την πηγή \[Π_2\]. Αν η απόσταση του Κ απ’ την πηγή \[Π_2\] είναι \[r_{2K}=3\, m\], η απόσταση του Κ απ’ την πηγή \[Π_1\] είναι:
28. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, , \, Π_2 \] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\] και περιόδου \[Τ\]. Σημείο Ζ της επιφάνειας απέχει απ’ τις δύο πηγές αποστάσεις \[r_1=2\, m\] και \[r_2=1,75\, m\]. Η ταχύτητα διάδοσης του κύματος είναι \[υ_δ=2\, \frac{m}{s}\]. Αν η συχνότητα των δύο πηγών γίνει \[f=72\, Hz\], τότε μεταξύ της μεσοκαθέτου του τμήματος \[Π_1Π_2\] και του σημείου Ζ ο αριθμός των ενισχυτικών υπερβολών που δημιουργούνται είναι:
29. Δύο σύγχρονες πηγές \[Π_1\, ,\, Π_2\] που βρίσκονται αντίστοιχα στα σημεία Κ και Λ της επιφάνειας του υγρού παράγουν πανομοιότυπα εγκάρσια αρμονικά κύματα με ίδιο πλάτος \[Α\], μήκος κύματος \[λ_1\] και συχνότητα \[f_1\]. Μεταξύ των δύο πηγών και πάνω στο ευθύγραμμο τμήμα ΚΛ δημιουργούνται \[5\] σημεία που μετά τη συμβολή ταλαντώνονται με μέγιστο πλάτος. Το κοντινότερο απ’ τα παραπάνω σημεία απ’ την πηγή \[Π_1\] απέχει απ’ αυτήν \[0,1λ_1\]. Αυξάνω κατά \[100\, \%\] τη συχνότητα των δύο πηγών ώστε αυτές να παραμένουν σύγχρονες και να έχουν το ίδιο πλάτος \[Α\]. Ο αριθμός των σημείων του ΚΛ που παρουσιάζουν τώρα ενισχυτική συμβολή είναι:
30. Δύο σύγχρονες πηγές κυμάτων \[Π_1\, ,\, Π_2\] δημιουργούν στην επιφάνεια υγρού εγκάρσια αρμονικά κύματα ίδιου πλάτους \[Α\]. Τα σημεία \[Ζ\, ,\, Η\] ανήκουν πάνω σε ενισχυτικές υπερβολές και η υπερβολή που περνάει απ’ το \[Ζ\] αντιστοιχεί στον ακέραιο αριθμό \[Ν\]. Αν μεταξύ των δύο παρακάτω υπερβολών σχηματίζονται \[15\] υπερβολές ενίσχυσης συμπεριλαμβανομένης και της μεσοκαθέτου, τότε ο ακέραιος αριθμός \[Ν'\] που αντιστοιχεί στην υπερβολή που διέρχεται απ’ το \[Η\] είναι:

    +30

    CONTACT US
    CALL US