MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{ημ^{2}g(x)}, ημg(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[σφg(x)+c\].
2. Έστω \[f\] συνεχής στο \[[α,β]\] και \[λ \in \mathbb{R}\], τότε \[\int_{α}^β λ f(x)dx= λ\int_{α}^β f(x)dx\].
3. Έστω \[f,g\] δύο συνεχείς συναρτήσεις στο \[[α,β]\]. Αν \[f(x) \le g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^βf(x)dx \le \int_{α}^βg(x)dx\].
4. Αν \[f\] συνεχής στο \[\mathbb{R}\] με \[f(x)>0\] για κάθε \[x \in \mathbb{R}\], τότε \[\int_{α}^β f(x)dx=0 \Leftrightarrow α=β\].
5. Έστω \[f\] συνεχής στο \[[α,β]\], αν \[f(x) \ge 0\] για κάθε \[x \in [α,β]\] και η \[f\] δεν είναι παντού μηδέν στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx>0\].
6. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{1}{2 \sqrt {g(x)}}, g(x)>0 \] για κάθε \[x \in Δ\], είναι της μορφής \[\sqrt {g(x)}+c , c \in \mathbb{R}\].
7. Αν \[f\] συνεχής στο \[[α,β]\] και \[\int_{α}^β f(x)dx = 0\], τότε \[f(ξ) = 0 \] για κάποιο \[ξ \in (α,β)\].
8. Αν η \[f\] συνεχής σε διάστημα \[Δ\] και \[α,β,γ \in Δ\], τότε \[\int_{α}^β f(x)dx =\int_{α}^γ f(x)dx+\int_{γ}^β f(x)dx\].
9. Έστω \[f(x)=x^{\nu}, x \in \mathbb{R}, \nu \in \mathbb{N}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= \frac{x^{\nu+1}}{\nu+1}+c, c \in \mathbb{R}\].
10. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=\int_{α}^β f(t)dt\].
11. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.
12. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
13. Αν \[f',g'\] συνεχείς στο \[[α,β]\] με \[g(α)g(β) \neq 0\], τότε \[\int_{α}^β \frac{f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}dx=\frac{f(β)}{g(β)}-\frac{f(α)}{g(α)}\].
14. Έστω \[f,g\] συνεχείς στο \[[α,β]\]. Αν \[f(x) \ge g(x)\] για κάθε \[x \in [α,β]\], τότε \[\int_{α}^β f(x)dx \ge \int_{α}^β g(x)dx\].
15. Έστω \[f\] συνεχής στο \[ [α,β] \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] και Ω το χωρίο που ορίζεται από τη γραφική παράσταση της \[f\], του άξονα των \[x\] και τις ευθείες \[x=α , χ=β\]. Αν \[S_{ν}=[f(ξ_{1})+...+f_(ξ_{ν})] \cdot Δx\], όπου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\] και \[Δx=\frac{β-α}{ν}\], τότε \[\lim_{ν \to +\infty} {S_{ν}}=Ε(Ω)\].
16. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[g΄(x)e^{g(x)}\] στο \[Δ\], είναι της μορφής \[e^{g(x)}+c , c \in \mathbb{R}\].
17. Έστω \[f,g\] συνεχείς στο \[[α,β]\] και \[λ,μ \in \mathbb{R}\], τότε \[\int_{α}^β( λ f(x)+μ g(x))dx= λ\int_{α}^β f(x)dx +μ \int_{α}^β g(x)dx\].
18. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(β)-G(α)\].
19. Έστω \[f\] συνεχής στο \[[α,β]\], τότε \[(\int_{α}^β f(x)dx)'=0\].
20. Έστω \[f:[-α,α] \to \mathbb{R}\] συνεχής στο \[[-α,α]\] και περιττή, τότε \[\int_{-α}^α f(x)dx=2\int_{0}^α f(x)dx\].

    +30

    CONTACT US
    CALL US