MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για κάθε συνεχή συνάρτηση \[f:[\alpha,\beta]\to\mathbb{R}\], η οποία είναι παραγωγίσιμη στο \[(\alpha,\beta)\], αν \[f(\alpha)=f(\beta)\], τότε υπάρχει ακριβώς ένα \[\xi\in(\alpha,\beta)\] τέτοιο ώστε \[f'(\xi) = 0\].
2. Αν είναι \[0<a<1\], τότε \[\lim_{x\to +\infty} a^x = +\infty\].
3. Αν η συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και \[\alpha, \beta, \gamma \in\Delta\], τότε ισχύει \[\int_\alpha^\beta f(x)dx = \int_\alpha^\gamma f(x) dx + \int_\gamma^\beta f(x) dx\].
4. Αν η συνάρτηση \[f\] είναι ορισμένη στο \[[\alpha,\beta]\] και συνεχής στο \[(\alpha,\beta]\], τότε η \[f\] παίρνει πάντοτε στο \[[\alpha,\beta]\] μία μέγιστη τιμή.
5. Αν η \[f\] έχει αντίστροφη συνάρτηση \[f^{-1}\] και η γραφική παράσταση της \[f\] έχει κοινό σημείο \[A\] με την ευθεία \[y = x\], τότε το σημείο \[A\] ανήκει και στη γραφική παράσταση της \[f^{-1}\].
6. \[\lim_{x\to -\infty }e^x = -\infty\].
7. Μια συνάρτηση \[f:A\to \mathbb{R}\] λέγεται συνάρτηση 1-1, όταν για οποιαδήποτε \[x_1, x_2\in A\] ισχύει η συνεπαγωγή:αν \[x_1\ne x_2\], τότε \[f(x_1) \ne  f(x_2)\].
8. Αν μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1−1, τότε για την αντίστροφη συνάρτηση \[f^{-1}\] ισχύει: \[f^{-1}(f(x))=x\], \[x\in A\], και \[f(f^{-1}(y))=y\], \[y\in f(A)\].
9. Μία συνάρτηση \[f:A\to \mathbb{R}\] είναι συνάρτηση 1-1, αν και μόνο αν, για οποιαδήποτε \[x_1,x_2\in A\] ισχύει η συνεπαγωγή: αν \[x_1 = x_2\], τότε \[f(x_1) = f(x_2)\].
10. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως φθίνουσα στο \[\Delta\], τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του \[\Delta\].
11. Οι γραφικές παραστάσεις \[C\] και \[C'\] των συναρτήσεων \[f\] και \[f^{–1}\] είναι συμμετρικές ως προς την ευθεία \[y = x\] που διχοτομεί τις γωνίες \[xOy\] και \[x΄Oy΄\].
12. Έστω μια συνάρτηση \[f\] παραγωγίσιμη σ’ ένα διάστημα \[(\alpha,\beta)\] με εξαίρεση ίσως ένα σημείο του \[x_0\]. Αν η \[f\] είναι κυρτή στο \[(\alpha,x_0)\] και κοίλη στο \[(x_0,\beta)\] ή αντιστρόφως, τότε το σημείο \[A(x_0,f(x_0))\] είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της \[f\].
13. Αν η \[f\] είναι συνεχής στο \[[\alpha,\beta]\], τότε η \[f\] παίρνει στο \[[\alpha,\beta]\] μία μέγιστη \[M\] και μία ελάχιστη τιμή \[m\].
14. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
15. Υπάρχει πολυωνυμική συνάρτηση βαθμού μεγαλύτερου ή ίσου του 2, της οποίας η γραφική παράσταση έχει ασύμπτωτη.
16. Αν μια συνάρτηση \[f\] είναι συνεχής στο κλειστό διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(x) dx \ge 0\].
17. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
18. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
19. Αν μια συνάρτηση \[f\] δεν είναι συνεχής σε ένα σημείο \[x_0\], τότε δεν μπορεί να είναι παραγωγίσιμη στο \[x_0\].
20. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
21. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] θα λέμε ότι παρουσιάζει στο \[x_0\in A\] (ολικό) μέγιστο το \[f(x_0)\], όταν \[f(x)\le f(x_0)\] για κάθε \[x\in A\].
22. Αν η \[f\] δεν είναι συνεχής στο \[x_0\],τότε η \[f\] είναι παραγωγίσιμη στο \[x_0\].
23. Για κάθε συνάρτηση \[f\], συνεχή στο \[[\alpha,\beta]\], ισχύει: αν \[\int_\alpha^\beta f(x) dx >0\], τότε \[f(x)>0\] στο \[[\alpha,\beta]\].
24. Αν υπάρχει το \[\lim_{x\to x_0} (f(x)+g(x))\], τότε κατ’ ανάγκη υπάρχουν τα \[\lim_{x\to x_0} f(x)\] και \[\lim_{x\to x_0} g(x)\].
25. Αν \[f,g,g'\] είναι συνεχείς συναρτήσεις στο διάστημα \[[\alpha, \beta]\], τότε \[\int_\alpha^\beta f(x) \cdot g'(x) dx =\int_\alpha^\beta f(x) dx \cdot \int_\alpha^\beta g'(x) dx \].
26. Αν η \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\in\Delta\], τότε ισχύει \[\left( \int_a^x f(t) dt \right)' = f(x)-f(a)\] για κάθε \[x\in\Delta\].
27. Αν \[\lim_{x\to x_0} f(x)=-\infty\], τότε \[\lim_{x\to x_0}(-f(x))=+\infty\].
28. Για κάθε παραγωγίσιμη συνάρτηση \[f\] σε ένα διάστημα \[\Delta\], η οποία είναι γνησίως αύξουσα, ισχύει \[f'(x)>0\] για κάθε \[x \in\Delta\].
29. Αν μία συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)<0\] για κάθε \[x\in [\alpha,\beta]\], τότε το εμβαδόν του χωρίου \[\Omega\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=\alpha\], \[x=\beta\] και τον άξονα \[x'x\] είναι \[E(\Omega)=\int_\alpha^\beta f(x)dx \].
30. Η γραφική παράσταση της συνάρτησης \[-f\] είναι συμμετρική, ως προς τον άξονα \[x'x\], της γραφικής παράστασης της \[f\].

    +30

    CONTACT US
    CALL US