MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ισχύει ότι \[\lim_{x\to 0}\frac{\sigma\upsilon\nu x-1}{x}=1\].
2. Αν είναι \[0<a<1\], τότε \[\lim_{x\to +\infty} a^x = +\infty\].
3. Αν η \[f\] έχει αντίστροφη συνάρτηση \[f^{-1}\] και η γραφική παράσταση της \[f\] έχει κοινό σημείο \[A\] με την ευθεία \[y = x\], τότε το σημείο \[A\] ανήκει και στη γραφική παράσταση της \[f^{-1}\].
4. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
5. Υπάρχουν συναρτήσεις που είναι 1–1, αλλά δεν είναι γνησίως μονότονες.
6. Αν \[f\] συνάρτηση συνεχής στο διάστημα \[[\alpha,\beta]\] και για κάθε \[x\in [\alpha,\beta]\] ισχύει \[f(x)\ge 0\], τότε \[\int_\alpha^\beta f(x) dx >0 \].
7. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
8. Αν μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1−1, τότε για την αντίστροφη συνάρτηση \[f^{-1}\] ισχύει: \[f^{-1}(f(x))=x\], \[x\in A\], και \[f(f^{-1}(y))=y\], \[y\in f(A)\].
9. Για κάθε παραγωγίσιμη συνάρτηση \[f\] σε ένα διάστημα \[\Delta\], η οποία είναι γνησίως αύξουσα, ισχύει \[f'(x)>0\] για κάθε \[x \in\Delta\].
10. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
11. Αν η συνάρτηση \[f\] είναι συνεχής στο διάστημα \[[\alpha,\beta]\] και υπάρχει \[x_0\in (\alpha, \beta)\] τέτοιο ώστε \[f(x_0)=0\], τότε κατ’ανάγκη θα ισχύει \[f(\alpha)\cdot f(\beta)<0\].
12. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως φθίνουσα στο \[\Delta\], τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του \[\Delta\].
13. Αν ένα σημείο \[M(\alpha,\beta)\] ανήκει στη γραφική παράσταση μιας αντιστρέψιμης συνάρτησης \[f\], τότε το σημείο \[M'(\beta,\alpha)\] ανήκει στη γραφική παράσταση \[C'\] της \[f^{−1}\].
14. Αν μια συνάρτηση \[f\] είναι συνεχής στο κλειστό διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(x) dx \ge 0\].
15. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\], τότε η \[f'\] είναι πάντοτε συνεχής στο \[x_0\].
16. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] θα λέμε ότι παρουσιάζει στο \[x_0\in A\] (ολικό) μέγιστο το \[f(x_0)\], όταν \[f(x)\le f(x_0)\] για κάθε \[x\in A\].
17. Αν \[f\] είναι μία συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\] είναι ένα σημείο του \[\Delta\], τότε \[\left(\int_a^x f(t) dt\right)' = f(x)\] για κάθε \[x\in\Delta\].
18. Έστω συνάρτηση \[f\] ορισμένη και παραγωγίσιμη στο διάστημα \[[\alpha,\beta]\] και \[x_0\in[\alpha,\beta]\] στο οποίο η \[f\] παρουσιάζει τοπικό μέγιστο. Τότε πάντα ισχύει ότι \[f'(x_0)=0\].
19. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
20. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
21. Μία συνάρτηση \[f:A\to \mathbb{R}\] είναι συνάρτηση 1-1, αν και μόνο αν, για οποιαδήποτε \[x_1,x_2\in A\] ισχύει η συνεπαγωγή: αν \[x_1 = x_2\], τότε \[f(x_1) = f(x_2)\].
22. Αν οι συναρτήσεις \[f,g\] έχουν όριο στο \[x_0\] και ισχύει \[f(x)\le g(x)\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x)\].
23. Αν η συνάρτηση \[f\] είναι συνεχής στο \[x_0\] και η συνάρτηση \[g\] είναι συνεχής στο \[x_0\], τότε η \[g\circ f\] είναι συνεχής στο \[x_0\].
24. Αν είναι \[0<a<1\], τότε \[\lim_{x\to -\infty} a^x=0\].
25. Έστω μια συνάρτηση ορισμένη σ’ ένα σύνολο της μορφής \[(\alpha, x_0)\cup (x_0, \beta)\] και \[l\] ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία:\[\lim_{x\to x_0} f(x) =l \Leftrightarrow \lim_{x\to x_0}(f(x)-l)=0.\]
26. Έστω μια συνάρτηση \[f\] παραγωγίσιμη σ’ ένα διάστημα \[(\alpha,\beta)\] με εξαίρεση ίσως ένα σημείο του \[x_0\]. Αν η \[f\] είναι κυρτή στο \[(\alpha,x_0)\] και κοίλη στο \[(x_0,\beta)\] ή αντιστρόφως, τότε το σημείο \[A(x_0,f(x_0))\] είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της \[f\].
27. Έστω \[f\] μια συνεχής συνάρτηση σ’ ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\beta) - G(\alpha)\].
28. Έστω μία συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δύο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν \[f''(x)>0\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι κυρτή στο \[\Delta\].
29. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
30. Αν μια συνάρτηση \[f\] είναι γνησίως φθίνουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].

    +30

    CONTACT US
    CALL US