MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν η \[f\] έχει αντίστροφη συνάρτηση \[f^{-1}\] και η γραφική παράσταση της \[f\] έχει κοινό σημείο \[A\] με την ευθεία \[y = x\], τότε το σημείο \[A\] ανήκει και στη γραφική παράσταση της \[f^{-1}\].
2. Κάθε συνάρτηση, που είναι 1-1 στο πεδίο ορισμού της, είναι γνησίως μονότονη.
3. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο \[x_0\in A\], όταν \[f(x)\ge f(x_0)\] για κάθε \[x\in A\].
4. Αν μια συνάρτηση \[f\] δεν είναι συνεχής σε ένα σημείο \[x_0\], τότε δεν μπορεί να είναι παραγωγίσιμη στο \[x_0\].
5. Αν \[\lim_{x\to x_0} f(x) = +\infty\] ή \[–\infty\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = 0\].
6. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
7. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
8. Οι γραφικές παραστάσεις \[C\] και \[C'\] των συναρτήσεων \[f\] και \[f^{–1}\] είναι συμμετρικές ως προς την ευθεία \[y = x\] που διχοτομεί τις γωνίες \[xOy\] και \[x΄Oy΄\].
9. Έστω συνάρτηση \[f\], η οποία είναι συνεχής σ'ένα διάστημα \[\Delta\]. Αν \[f'(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι γνησίως φθίνουσα σε όλο το \[\Delta\].
10. Αν \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)>0\] για κάθε \[x\] κοντά στο \[x_0\].
11. Για κάθε ζεύγος πραγματικών συναρτήσεων \[f,g:(0,+\infty)\to\mathbb{R}\], αν ισχύει \[\lim_{x\to 0} f(x)=+\infty\] και \[\lim_{x\to 0} g(x)=-\infty\], τότε \[\lim_{x\to 0} [f(x)+g(x)]=0\].
12. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
13. \[\lim_{x\to -\infty }e^x = -\infty\].
14. Αν \[\lim_{x\to x_0} f(x) =-\infty\], τότε \[f(x)>0\] κοντά στο \[x_0\].
15. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και δεν μηδενίζεται σ’ αυτό, τότε η \[f\] διατηρεί πρόσημο στο διάστημα \[\Delta\].
16. Υπάρχει πολυωνυμική συνάρτηση βαθμού μεγαλύτερου ή ίσου του 2, της οποίας η γραφική παράσταση έχει ασύμπτωτη.
17. Ισχύει ότι: \[|\eta\mu x|\le |x|\] για κάθε \[x\in \mathbb{R}\].
18. Για κάθε \[x\ne 0\] ισχύει: \[ [\ln⁡|x|]'=\frac{1}{x}\].
19. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
20. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
21. Αν \[f(x) = a^x\], \[a>0\], τότε ισχύει \[(a^x)′=x\cdot a^{x−1}\].
22. Αν \[f(x) = \ln |x|\] για κάθε \[x\ne 0\], τότε \[f'(x) =\frac{1}{|x|}\], για κάθε \[x\ne 0\].
23. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς και μη σταθερής συνάρτησης \[f\] είναι πάντα διάστημα.
24. Αν η \[f\] δεν είναι συνεχής στο \[x_0\],τότε η \[f\] είναι παραγωγίσιμη στο \[x_0\].
25. Έστω μια συνάρτηση \[f\] ορισμένη σε ένα διάστημα \[\Delta\] και \[x_0\] ένα εσωτερικό σημείο του \[\Delta\]. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\] και \[f'(x_0)=0\], τότε η \[f\] παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο \[x_0\].
26. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\alpha) - G(\beta)\].
27. Για κάθε ζεύγος συναρτήσεων \[f,g\] για τις οποίες υπάρχουν τα όρια \[\lim_{x\to x_0} ⁡f(x)\], \[\lim_{x\to x_0}g(x)\] και \[f(x)<g(x)\] για κάθε x κοντά στο \[x_0\], ισχύει \[\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)\].
28. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].
29. Αν μια συνάρτηση \[f\] είναι 1-1 στο πεδίο ορισμού της, τότε υπάρχουν σημεία της γραφικής παράστασης της \[f\] με την ίδια τεταγμένη.
30. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].

    +30

    CONTACT US
    CALL US