MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για κάθε συνεχή συνάρτηση \[f\] στο διάστημα \[[\alpha,\beta]\], ισχύει: Αν \[\int_\alpha^\beta f(x) dx=0\], τότε \[f(x)=0\] για κάθε \[x\in[\alpha,\beta]\].
2. Αν οι συναρτήσεις \[f, g\] είναι παραγωγίσιμες στο \[x_0\], τότε η συνάρτηση \[f\cdot g\] είναι παραγωγίσιμη στο \[x_0\] και ισχύει:\[(f\cdot g)'(x_0) = f'(x_0) g'(x_0).\]
3. Για κάθε συνάρτηση \[f\], ορισμένη, παραγωγίσιμη και γνησίως αύξουσα στο \[\mathbb{R}\], ισχύει \[f'(x)>0\].
4. \[\lim_{x\to -\infty }e^x = -\infty\].
5. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς συνάρτησης \[f\] είναι διάστημα.
6. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
7. Κάθε συνάρτηση \[f\], η οποία είναι συνεχής στο \[x_0\], είναι παραγωγίσιμη στο σημείο αυτό.
8. Ισχύει ότι: \[|\eta\mu x|\le |x|\] για κάθε \[x\in \mathbb{R}\].
9. Αν \[\lim_{x\to x_0} f(x) = +\infty\] ή \[–\infty\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = 0\].
10. Αν \[f(x) = a^x\], \[a>0\], τότε ισχύει \[(a^x)′=x\cdot a^{x−1}\].
11. Ισχύει ότι: \[\lim_{x\to +\infty} \frac{\eta\mu x}{x}=1\].
12. Για κάθε συνάρτηση \[f\] ορισμένη και δύο φορές παραγωγίσιμη στο \[\mathbb{R}\], αν για κάποιο \[x_0\in\mathbb{R}\] ισχύει \[f''(x_0)=0\], τότε το \[x_0\] είναι θέση σημείου καμπής της \[f\].
13. Έστω δύο συναρτήσεις \[f, g\] ορισμένες σε ένα διάστημα \[\Delta\]. Αν οι \[f, g\] είναι συνεχείς στο \[\Delta\] και \[f΄(x) = g΄(x)\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε ισχύει \[f(x) = g(x)\] για κάθε \[x\in \Delta\].
14. Αν μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1−1, τότε για την αντίστροφη συνάρτηση \[f^{-1}\] ισχύει: \[f^{-1}(f(x))=x\], \[x\in A\], και \[f(f^{-1}(y))=y\], \[y\in f(A)\].
15. Μια πολυωνυμική συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] διατηρεί πρόσημο σε κάθε ένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της \[f\] χωρίζουν το πεδίο ορισμού της.
16. Υπάρχει πολυωνυμική συνάρτηση βαθμού μεγαλύτερου ή ίσου του 2, της οποίας η γραφική παράσταση έχει ασύμπτωτη.
17. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.
18. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)<0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
19. Αν μια συνάρτηση \[f\] δεν είναι συνεχής σε ένα σημείο \[x_0\], τότε δεν μπορεί να είναι παραγωγίσιμη στο \[x_0\].
20. Υπάρχουν συναρτήσεις που είναι 1–1, αλλά δεν είναι γνησίως μονότονες.
21. Αν \[f,g\] είναι δύο συναρτήσεις και ορίζονται οι συνθέσεις \[f\circ g\] και \[g\circ f\], τότε είναι υποχρεωτικά \[f\circ g = g\circ f\].
22. Η γραφική παράσταση μιας συνάρτησης \[f:\mathbb{R}\to\mathbb{R}\] μπορεί να τέμνει μια ασύμπτωτή της.
23. Αν μια συνάρτηση \[f\] είναι 1-1 στο πεδίο ορισμού της, τότε υπάρχουν σημεία της γραφικής παράστασης της \[f\] με την ίδια τεταγμένη.
24. Αν η συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}\] και δεν είναι αντιστρέψιμη, τότε υπάρχει κλειστό διάστημα \[[\alpha,\beta]\], στο οποίο η \[f\] ικανοποιεί τις προϋποθέσεις του θεωρήματος Rolle.
25. Ισχύει η σχέση \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta - \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
26. Οι γραφικές παραστάσεις \[C\] και \[C'\] των συναρτήσεων \[f\] και \[f^{–1}\] είναι συμμετρικές ως προς την ευθεία \[y = x\] που διχοτομεί τις γωνίες \[xOy\] και \[x΄Oy΄\].
27. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
28. Αν μια συνάρτηση \[f\] είναι γνησίως μονότονη σε ένα διάστημα \[\Delta\], τότε είναι και 1-1 στο διάστημα αυτό.
29. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
30. Έστω \[f\] μια συνεχής συνάρτηση σ’ ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\beta) - G(\alpha)\].

    +30

    CONTACT US
    CALL US