MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για κάθε συνάρτηση \[f\] με \[\lim_{x\to x_0} f(x)=0\], ισχύει ότι \[\lim_{x\to x_0}\frac{1}{f(x)}=+\infty\] ή \[\lim_{x\to x_0} \frac{1}{f(x)}=-\infty\].
2. Για κάθε ζεύγος συναρτήσεων \[f:\mathbb{R}\to \mathbb{R}\] και \[g:\mathbb{R}\to \mathbb{R}\], αν \[\lim_{x\to x_0} f(x)=0\] και \[\lim_{x\to x_0}g(x) = +\infty\],τότε \[\lim_{x\to x_0}[f(x)\cdot g(x)]=0\].
3. Αν \[\int_\alpha^\beta f(x) dx \ge 0\], τότε κατ’ ανάγκη θα είναι \[f(x)\ge 0\] για κάθε \[x\in [\alpha,\beta]\].
4. Αν η συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και \[\alpha, \beta, \gamma \in\Delta\], τότε ισχύει \[\int_\alpha^\beta f(x)dx = \int_\alpha^\gamma f(x) dx + \int_\gamma^\beta f(x) dx\].
5. Για οποιαδήποτε αντιστρέψιμη συνάρτηση \[f\] με πεδίο ορισμού \[A\], ισχύει ότι \[f\left( f^{-1}(x) \right) =x\] για κάθε \[x\in A\].
6. Έστω μια συνάρτηση ορισμένη σ’ ένα σύνολο της μορφής \[(\alpha, x_0)\cup (x_0, \beta)\] και \[l\] ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία:\[\lim_{x\to x_0} f(x) =l \Leftrightarrow \lim_{x\to x_0}(f(x)-l)=0.\]
7. \[\lim_{x\to -\infty }e^x = -\infty\].
8. Έστω δύο συναρτήσεις \[f, g\] ορισμένες σε ένα διάστημα \[\Delta\]. Αν οι \[f, g\] είναι συνεχείς στο \[\Delta\] και \[f΄(x) = g΄(x)\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε ισχύει \[f(x) = g(x)\] για κάθε \[x\in \Delta\].
9. Αν είναι \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)<0\] κοντά στο \[x_0\].
10. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].
11. Για κάθε συνάρτηση \[f\] ορισμένη και δύο φορές παραγωγίσιμη στο \[\mathbb{R}\], αν για κάποιο \[x_0\in\mathbb{R}\] ισχύει \[f''(x_0)=0\], τότε το \[x_0\] είναι θέση σημείου καμπής της \[f\].
12. Αν \[f, g\] είναι δύο συναρτήσεις με πεδία ορισμού \[A,B\] αντίστοιχα, τότε η \[g\circ f\] ορίζεται αν \[f(A)\cap B\ne \emptyset\].
13. Για κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\], που είναι παραγωγίσιμη και δεν παρουσιάζει ακρότατα, ισχύει \[f'(x)\ne 0\] για κάθε \[x\in\mathbb{R}\].
14. Αν μια συνάρτηση \[f\] είναι δύο φορές παραγωγίσιμη στο \[\mathbb{R}\] και στρέφει τα κοίλα προς τα άνω, τότε κατ’ανάγκη θα ισχύει \[f''(x)>0\] για κάθε πραγματικό αριθμό \[x\].
15. Κάθε συνάρτηση, που είναι 1-1 στο πεδίο ορισμού της, είναι γνησίως μονότονη.
16. Αν \[\lim_{x\to x_0} f(x)>0\], τότε \[f(x)>0\] κοντά στο \[x_0\].
17. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
18. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
19. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο \[x_0\in A\], όταν \[f(x)\ge f(x_0)\] για κάθε \[x\in A\].
20. Αν η συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}\] και δεν είναι αντιστρέψιμη, τότε υπάρχει κλειστό διάστημα \[[\alpha,\beta]\], στο οποίο η \[f\] ικανοποιεί τις προϋποθέσεις του θεωρήματος Rolle.
21. Κάθε κατακόρυφη ευθεία έχει το πολύ ένα κοινό σημείο με τη γραφική παράσταση μιας συνάρτησης \[f\].
22. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς και μη σταθερής συνάρτησης \[f\] είναι πάντα διάστημα.
23. Για κάθε \[x\ne 0\] ισχύει: \[ [\ln⁡|x|]'=\frac{1}{x}\].
24. Αν η συνάρτηση \[f\] είναι ορισμένη στο \[[\alpha,\beta]\] και συνεχής στο \[(\alpha,\beta]\], τότε η \[f\] παίρνει πάντοτε στο \[[\alpha,\beta]\] μία μέγιστη τιμή.
25. Ισχύει ότι: \[\lim_{x\to +\infty} \frac{\eta\mu x}{x}=1\].
26. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\alpha) - G(\beta)\].
27. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
28. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
29. Για κάθε συνεχή συνάρτηση \[f:[\alpha,\beta]\to\mathbb{R}\], η οποία είναι παραγωγίσιμη στο \[(\alpha,\beta)\], αν \[f(\alpha)=f(\beta)\], τότε υπάρχει ακριβώς ένα \[\xi\in(\alpha,\beta)\] τέτοιο ώστε \[f'(\xi) = 0\].
30. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.

    +30

    CONTACT US
    CALL US