MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] θα λέμε ότι παρουσιάζει στο \[x_0\in A\] (ολικό) μέγιστο το \[f(x_0)\], όταν \[f(x)\le f(x_0)\] για κάθε \[x\in A\].
2. Τα εσωτερικά σημεία του διαστήματος \[\Delta\], στα οποία η \[f\] δεν παραγωγίζεται ή η παράγωγός της είναι ίση με το 0, λέγονται κρίσιμα σημεία της \[f\] στο διάστημα \[\Delta\].
3. Οι γραφικές παραστάσεις \[C\] και \[C'\] των συναρτήσεων \[f\] και \[f^{–1}\] είναι συμμετρικές ως προς την ευθεία \[y = x\] που διχοτομεί τις γωνίες \[xOy\] και \[x΄Oy΄\].
4. Αν η \[f\] έχει δεύτερη παράγωγο στο \[x_0\], τότε η \[f'\] είναι συνεχής στο \[x_0\].
5. Αν η \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\in\Delta\], τότε ισχύει \[\left( \int_a^x f(t) dt \right)' = f(x)-f(a)\] για κάθε \[x\in\Delta\].
6. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
7. Έστω μια συνάρτηση \[f\] που είναι ορισμένη σε ένα σύνολο της μορφής \[(\alpha,x_0)∪(x_0,\beta)\]. Ισχύει η ισοδυναμία: \[\lim_{x\to x_0} f(x)=-\infty \Leftrightarrow \lim_{x\to x_0^-}f(x)=-\infty=\lim_{x\to x_0^+} f(x)\].
8. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\alpha) - G(\beta)\].
9. Αν μία συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)<0\] για κάθε \[x\in [\alpha,\beta]\], τότε το εμβαδόν του χωρίου \[\Omega\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=\alpha\], \[x=\beta\] και τον άξονα \[x'x\] είναι \[E(\Omega)=\int_\alpha^\beta f(x)dx \].
10. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως φθίνουσα στο \[\Delta\], τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του \[\Delta\].
11. \[(\sigma \upsilon \nu x)' = \eta \mu x\], \[x\in \mathbb{R}\].
12. Αν μια συνάρτηση \[f\] είναι 1-1 στο πεδίο ορισμού της, τότε υπάρχουν σημεία της γραφικής παράστασης της \[f\] με την ίδια τεταγμένη.
13. Για κάθε συνεχή συνάρτηση \[f\] στο διάστημα \[[\alpha,\beta]\], ισχύει: Αν \[\int_\alpha^\beta f(x) dx=0\], τότε \[f(x)=0\] για κάθε \[x\in[\alpha,\beta]\].
14. Αν \[f\] είναι μία συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\] είναι ένα σημείο του \[\Delta\], τότε \[\left(\int_a^x f(t) dt\right)' = f(x)\] για κάθε \[x\in\Delta\].
15. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
16. Αν \[f,g,g'\] είναι συνεχείς συναρτήσεις στο διάστημα \[[\alpha, \beta]\], τότε \[\int_\alpha^\beta f(x) \cdot g'(x) dx =\int_\alpha^\beta f(x) dx \cdot \int_\alpha^\beta g'(x) dx \].
17. Αν μια συνάρτηση \[f\] είναι κυρτή σε ένα διάστημα \[\Delta\], τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται «πάνω» από τη γραφική της παράσταση.
18. Αν η συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και \[\alpha, \beta, \gamma \in\Delta\], τότε ισχύει \[\int_\alpha^\beta f(x)dx = \int_\alpha^\gamma f(x) dx + \int_\gamma^\beta f(x) dx\].
19. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
20. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
21. Κάθε κατακόρυφη ευθεία έχει το πολύ ένα κοινό σημείο με τη γραφική παράσταση μιας συνάρτησης \[f\].
22. Αν \[\lim_{x\to x_0} f(x)>0\], τότε \[f(x)>0\] κοντά στο \[x_0\].
23. Αν η \[f\] είναι συνεχής στο \[ [\alpha, \beta] \] με \[f(\alpha)\] μικρότερο του \[0\] και υπάρχει \[\xi\in[\alpha, \beta]\] ώστε \[f(\xi)=0,\] τότε κατ' ανάγκη \[f(\beta)> 0\].
24. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
25. Για κάθε ζεύγος συναρτήσεων \[f:\mathbb{R}\to \mathbb{R}\] και \[g:\mathbb{R}\to \mathbb{R}\], αν \[\lim_{x\to x_0} f(x)=0\] και \[\lim_{x\to x_0}g(x) = +\infty\],τότε \[\lim_{x\to x_0}[f(x)\cdot g(x)]=0\].
26. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
27. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
28. Αν μια συνάρτηση \[f\] είναι δύο φορές παραγωγίσιμη στο \[\mathbb{R}\] και στρέφει τα κοίλα προς τα άνω, τότε κατ’ανάγκη θα ισχύει \[f''(x)>0\] για κάθε πραγματικό αριθμό \[x\].
29. Αν η \[f\] είναι συνεχής στο \[[\alpha,\beta]\], τότε η \[f\] παίρνει στο \[[\alpha,\beta]\] μία μέγιστη \[M\] και μία ελάχιστη τιμή \[m\].
30. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].

    +30

    CONTACT US
    CALL US