MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ισχύει ότι: \[|\eta\mu x|\le |x|\] για κάθε \[x\in \mathbb{R}\].
2. Κάθε συνάρτηση \[f\], για την οποία ισχύει \[f'(x)=0\] για κάθε \[x\in (\alpha,x_0)\cup(x_0,\beta)\] είναι σταθερή στο \[(\alpha,x_0)\cup(x_0,\beta)\].
3. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
4. Ισχύει \[|\eta\mu x| < |x| \] για κάθε \[x\in \mathbb{R}^* \].
5. Αν η συνάρτηση \[f\] είναι συνεχής στο διάστημα \[[\alpha,\beta]\] και υπάρχει \[x_0\in (\alpha, \beta)\] τέτοιο ώστε \[f(x_0)=0\], τότε κατ’ανάγκη θα ισχύει \[f(\alpha)\cdot f(\beta)<0\].
6. Για κάθε ζεύγος πραγματικών συναρτήσεων \[f,g:(0,+\infty)\to\mathbb{R}\], αν ισχύει \[\lim_{x\to 0} f(x)=+\infty\] και \[\lim_{x\to 0} g(x)=-\infty\], τότε \[\lim_{x\to 0} [f(x)+g(x)]=0\].
7. Για κάθε συνάρτηση \[f\], ορισμένη, παραγωγίσιμη και γνησίως αύξουσα στο \[\mathbb{R}\], ισχύει \[f'(x)>0\].
8. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
9. Το ολοκλήρωμα \[\int_\alpha^\beta f(x) dx\] είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από τον άξονα \[x'x\] μείον το άθροισμα των εμβαδών των χωρίων που βρίσκονται κάτω από τον άξονα \[x'x\].
10. Κάθε συνάρτηση \[f\], η οποία είναι συνεχής στο \[x_0\], είναι παραγωγίσιμη στο σημείο αυτό.
11. Έστω \[f\] μία συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν ισχύει ότι \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\] και η συνάρτηση \[f\] δεν είναι παντού μηδέν στο διάστημα αυτό, τότε \[\int_\alpha^\beta f(x) dx>0\].
12. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)>0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
13. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
14. Αν \[\alpha>1\], τότε \[\lim_{x\to -\infty}\alpha^x =0\].
15. Αν µία συνάρτηση \[f\] είναι συνεχής σ’ ένα σημείο \[x_0\] του πεδίου ορισμού της, τότε είναι και παραγωγίσιμη στο \[x_0\].
16. \[(\ln |x|)'=-\frac{1}{x}\] για κάθε \[x<0\].
17. Αν μια συνάρτηση \[f\] παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα.
18. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
19. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
20. Αν υπάρχει το \[\lim_{x\to x_0} (f(x)+g(x))\], τότε κατ’ ανάγκη υπάρχουν τα \[\lim_{x\to x_0} f(x)\] και \[\lim_{x\to x_0} g(x)\].
21. Ισχύει ότι: \[\lim_{x\to +\infty} \frac{\eta\mu x}{x}=1\].
22. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς και μη σταθερής συνάρτησης \[f\] είναι πάντα διάστημα.
23. Έστω μια συνάρτηση \[f\] παραγωγίσιμη σ’ ένα διάστημα \[(\alpha,\beta)\] με εξαίρεση ίσως ένα σημείο του \[x_0\]. Αν η \[f\] είναι κυρτή στο \[(\alpha,x_0)\] και κοίλη στο \[(x_0,\beta)\] ή αντιστρόφως, τότε το σημείο \[A(x_0,f(x_0))\] είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της \[f\].
24. Αν μια συνάρτηση \[f\] δεν είναι συνεχής σε ένα σημείο \[x_0\], τότε δεν μπορεί να είναι παραγωγίσιμη στο \[x_0\].
25. Η γραφική παράσταση μιας συνάρτησης \[f:\mathbb{R}\to\mathbb{R}\] μπορεί να τέμνει μια ασύμπτωτή της.
26. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\alpha) - G(\beta)\].
27. Αν \[\lim_{x\to x_0} f(x)>0\], τότε \[f(x)>0\] κοντά στο \[x_0\].
28. Αν ένα σημείο \[M(\alpha,\beta)\] ανήκει στη γραφική παράσταση μιας αντιστρέψιμης συνάρτησης \[f\], τότε το σημείο \[M'(\beta,\alpha)\] ανήκει στη γραφική παράσταση \[C'\] της \[f^{−1}\].
29. Αν \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)>0\] για κάθε \[x\] κοντά στο \[x_0\].
30. Αν \[f,g\] είναι δύο συναρτήσεις και ορίζονται οι συνθέσεις \[f\circ g\] και \[g\circ f\], τότε είναι υποχρεωτικά \[f\circ g = g\circ f\].

    +30

    CONTACT US
    CALL US