MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
2. Αν \[\alpha>1\], τότε \[\lim_{x\to -\infty}\alpha^x =0\].
3. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
4. Αν \[\int_\alpha^\beta f(x) dx \ge 0\], τότε κατ’ ανάγκη θα είναι \[f(x)\ge 0\] για κάθε \[x\in [\alpha,\beta]\].
5. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
6. Αν μια συνάρτηση \[f\] είναι γνησίως μονότονη σε ένα διάστημα \[\Delta\], τότε είναι και 1-1 στο διάστημα αυτό.
7. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
8. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
9. Για κάθε συνάρτηση \[f\], ορισμένη, παραγωγίσιμη και γνησίως αύξουσα στο \[\mathbb{R}\], ισχύει \[f'(x)>0\].
10. Κάθε κατακόρυφη ευθεία έχει το πολύ ένα κοινό σημείο με τη γραφική παράσταση μιας συνάρτησης \[f\].
11. Για κάθε ζεύγος συναρτήσεων \[f,g\] για τις οποίες υπάρχουν τα όρια \[\lim_{x\to x_0} ⁡f(x)\], \[\lim_{x\to x_0}g(x)\] και \[f(x)<g(x)\] για κάθε x κοντά στο \[x_0\], ισχύει \[\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)\].
12. Αν \[\lim_{x\to x_0} f(x) = +\infty\] ή \[–\infty\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = 0\].
13. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
14. Για οποιαδήποτε αντιστρέψιμη συνάρτηση \[f\] με πεδίο ορισμού \[A\], ισχύει ότι \[f\left( f^{-1}(x) \right) =x\] για κάθε \[x\in A\].
15. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο \[x_0\in A\], όταν \[f(x)\ge f(x_0)\] για κάθε \[x\in A\].
16. Έστω \[f\] μια συνάρτηση συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε \[f΄(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\].
17. Έστω η συνάρτηση \[f(x)=\varepsilon \varphi x\]. H συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}_1=\mathbb{R}–\{x| \sigma \upsilon \nu x=0\} \] και ισχύει \[f'(x)=-\frac{1}{\sigma\upsilon \nu^2 x}\].
18. Αν µία συνάρτηση \[f\] είναι συνεχής σ’ ένα σημείο \[x_0\] του πεδίου ορισμού της, τότε είναι και παραγωγίσιμη στο \[x_0\].
19. Μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1–1, αν και μόνο αν,για κάθε στοιχείο \[y\] του συνόλου τιμών της η εξίσωση \[f(x)=y\] έχει ακριβώς μία λύση ως προς \[x\].
20. Αν η \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\in\Delta\], τότε ισχύει \[\left( \int_a^x f(t) dt \right)' = f(x)-f(a)\] για κάθε \[x\in\Delta\].
21. Αν η \[f\] έχει δεύτερη παράγωγο στο \[x_0\], τότε η \[f'\] είναι συνεχής στο \[x_0\].
22. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\], τότε η \[f'\] είναι πάντοτε συνεχής στο \[x_0\].
23. Για κάθε συνάρτηση \[f: A\to \mathbb{R}\], όταν υπάρχει το όριο της \[f\] καθώς το \[x\] τείνει στο \[x_0 \in A\], τότε αυτό το όριο ισούται με την τιμή της \[f\] στο \[x_0\].
24. Αν η \[f\] είναι συνεχής στο \[ [\alpha, \beta] \] με \[f(\alpha)\] μικρότερο του \[0\] και υπάρχει \[\xi\in[\alpha, \beta]\] ώστε \[f(\xi)=0,\] τότε κατ' ανάγκη \[f(\beta)> 0\].
25. Για κάθε συνάρτηση \[f\] ορισμένη και δύο φορές παραγωγίσιμη στο \[\mathbb{R}\], αν για κάποιο \[x_0\in\mathbb{R}\] ισχύει \[f''(x_0)=0\], τότε το \[x_0\] είναι θέση σημείου καμπής της \[f\].
26. Μία συνάρτηση \[f:A\to \mathbb{R}\] είναι συνάρτηση 1-1, αν και μόνο αν, για οποιαδήποτε \[x_1,x_2\in A\] ισχύει η συνεπαγωγή: αν \[x_1 = x_2\], τότε \[f(x_1) = f(x_2)\].
27. Για κάθε ζεύγος πραγματικών συναρτήσεων \[f,g:(0,+\infty)\to\mathbb{R}\], αν ισχύει \[\lim_{x\to 0} f(x)=+\infty\] και \[\lim_{x\to 0} g(x)=-\infty\], τότε \[\lim_{x\to 0} [f(x)+g(x)]=0\].
28. Ισχύει \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta + \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
29. Το ολοκλήρωμα \[\int_\alpha^\beta f(x) dx\] είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από τον άξονα \[x'x\] μείον το άθροισμα των εμβαδών των χωρίων που βρίσκονται κάτω από τον άξονα \[x'x\].
30. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].

    +30

    CONTACT US
    CALL US