MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[\lim_{x\to x_0} f(x)=-\infty\], τότε \[\lim_{x\to x_0}(-f(x))=+\infty\].
2. \[(\ln |x|)'=-\frac{1}{x}\] για κάθε \[x<0\].
3. Ισχύει ότι: \[\lim_{x\to +\infty} \frac{\eta\mu x}{x}=1\].
4. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
5. Αν \[f\] συνάρτηση συνεχής στο διάστημα \[[\alpha,\beta]\] και για κάθε \[x\in [\alpha,\beta]\] ισχύει \[f(x)\ge 0\], τότε \[\int_\alpha^\beta f(x) dx >0 \].
6. Αν η \[f\] έχει αντίστροφη συνάρτηση \[f^{-1}\] και η γραφική παράσταση της \[f\] έχει κοινό σημείο \[A\] με την ευθεία \[y = x\], τότε το σημείο \[A\] ανήκει και στη γραφική παράσταση της \[f^{-1}\].
7. Έστω δύο συναρτήσεις \[f, g\] ορισμένες σε ένα διάστημα \[\Delta\]. Αν οι \[f, g\] είναι συνεχείς στο \[\Delta\] και \[f΄(x) = g΄(x)\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε ισχύει \[f(x) = g(x)\] για κάθε \[x\in \Delta\].
8. \[(\sigma \varphi x)'=\frac{1}{\eta\mu^2 x}\], \[x\in \mathbb{R}-\{x|\eta \mu x \ne 0\}\].
9. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\], τότε η \[f'\] είναι πάντοτε συνεχής στο \[x_0\].
10. Για κάθε συνεχή συνάρτηση \[f:[\alpha,\beta]\to\mathbb{R}\], η οποία είναι παραγωγίσιμη στο \[(\alpha,\beta)\], αν \[f(\alpha)=f(\beta)\], τότε υπάρχει ακριβώς ένα \[\xi\in(\alpha,\beta)\] τέτοιο ώστε \[f'(\xi) = 0\].
11. Αν μια συνάρτηση \[f\] είναι γνησίως φθίνουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
12. Αν η \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\in\Delta\], τότε ισχύει \[\left( \int_a^x f(t) dt \right)' = f(x)-f(a)\] για κάθε \[x\in\Delta\].
13. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως φθίνουσα στο \[\Delta\], τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του \[\Delta\].
14. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς και μη σταθερής συνάρτησης \[f\] είναι πάντα διάστημα.
15. Για κάθε ζεύγος πραγματικών συναρτήσεων \[f,g:(0,+\infty)\to\mathbb{R}\], αν ισχύει \[\lim_{x\to 0} f(x)=+\infty\] και \[\lim_{x\to 0} g(x)=-\infty\], τότε \[\lim_{x\to 0} [f(x)+g(x)]=0\].
16. Αν ένα σημείο \[M(\alpha,\beta)\] ανήκει στη γραφική παράσταση μιας αντιστρέψιμης συνάρτησης \[f\], τότε το σημείο \[M'(\beta,\alpha)\] ανήκει στη γραφική παράσταση \[C'\] της \[f^{−1}\].
17. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
18. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
19. Έστω μια συνάρτηση ορισμένη σ’ ένα σύνολο της μορφής \[(\alpha, x_0)\cup (x_0, \beta)\] και \[l\] ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία:\[\lim_{x\to x_0} f(x) =l \Leftrightarrow \lim_{x\to x_0}(f(x)-l)=0.\]
20. Αν \[f(x) = \ln |x|\] για κάθε \[x\ne 0\], τότε \[f'(x) =\frac{1}{|x|}\], για κάθε \[x\ne 0\].
21. Αν η συνάρτηση \[f\] είναι συνεχής στο διάστημα \[[\alpha,\beta]\] και υπάρχει \[x_0\in (\alpha, \beta)\] τέτοιο ώστε \[f(x_0)=0\], τότε κατ’ανάγκη θα ισχύει \[f(\alpha)\cdot f(\beta)<0\].
22. Το ολοκλήρωμα \[\int_\alpha^\beta f(x) dx\] είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από τον άξονα \[x'x\] μείον το άθροισμα των εμβαδών των χωρίων που βρίσκονται κάτω από τον άξονα \[x'x\].
23. Οι γραφικές παραστάσεις \[C\] και \[C'\] των συναρτήσεων \[f\] και \[f^{–1}\] είναι συμμετρικές ως προς την ευθεία \[y = x\] που διχοτομεί τις γωνίες \[xOy\] και \[x΄Oy΄\].
24. Έστω μια συνάρτηση \[f\] παραγωγίσιμη σ’ ένα διάστημα \[(\alpha,\beta)\] με εξαίρεση ίσως ένα σημείο του \[x_0\]. Αν η \[f\] είναι κυρτή στο \[(\alpha,x_0)\] και κοίλη στο \[(x_0,\beta)\] ή αντιστρόφως, τότε το σημείο \[A(x_0,f(x_0))\] είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της \[f\].
25. Αν οι συναρτήσεις \[f\] και \[g\] έχουν πεδίο ορισμού το \[[0,1]\] και σύνολο τιμών το \[[2,3]\], τότε ορίζεται η \[fog\] με πεδίο ορισμού το \[[0,1]\] και σύνολο τιμών το \[[2,3]\].
26. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
27. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.
28. Αν \[\lim_{x\to x_0} f(x)>0\], τότε \[f(x)>0\] κοντά στο \[x_0\].
29. Η συνάρτηση \[f\] είναι 1-1, αν και μόνο αν, κάθε οριζόντια ευθεία τέμνει τη γραφική παράσταση της \[f\] το πολύ σε ένα σημείο.
30. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.

    +30

    CONTACT US
    CALL US