MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Υπάρχουν συναρτήσεις που είναι 1–1, αλλά δεν είναι γνησίως μονότονες.
2. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].
3. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
4. Αν η συνάρτηση \[f\] είναι συνεχής στο \[x_0\] και η συνάρτηση \[g\] είναι συνεχής στο \[x_0\], τότε η \[g\circ f\] είναι συνεχής στο \[x_0\].
5. Αν μια συνάρτηση \[f\] είναι δύο φορές παραγωγίσιμη στο \[\mathbb{R}\] και στρέφει τα κοίλα προς τα άνω, τότε κατ’ανάγκη θα ισχύει \[f''(x)>0\] για κάθε πραγματικό αριθμό \[x\].
6. Αν µία συνάρτηση \[f\] είναι συνεχής σ’ ένα σημείο \[x_0\] του πεδίου ορισμού της, τότε είναι και παραγωγίσιμη στο \[x_0\].
7. Αν ένα σημείο \[M(\alpha,\beta)\] ανήκει στη γραφική παράσταση μιας αντιστρέψιμης συνάρτησης \[f\], τότε το σημείο \[M'(\beta,\alpha)\] ανήκει στη γραφική παράσταση \[C'\] της \[f^{−1}\].
8. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\alpha) - G(\beta)\].
9. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
10. Για κάθε ζεύγος συναρτήσεων \[f,g\] για τις οποίες υπάρχουν τα όρια \[\lim_{x\to x_0} ⁡f(x)\], \[\lim_{x\to x_0}g(x)\] και \[f(x)<g(x)\] για κάθε x κοντά στο \[x_0\], ισχύει \[\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)\].
11. Για κάθε συνάρτηση \[f\], η οποία είναι παραγωγίσιμη στο \[A=(-\infty,0)\cup (0,+\infty)\] με \[f'(x)=0\] για κάθε \[x\in A\], ισχύει ότι η \[f\] είναι σταθερή στο \[A\].
12. Αν η \[f\] δεν είναι συνεχής στο \[x_0\],τότε η \[f\] είναι παραγωγίσιμη στο \[x_0\].
13. \[\lim_{x\to -\infty }e^x = -\infty\].
14. Αν η συνάρτηση \[f\] είναι ορισμένη στο \[[\alpha,\beta]\] και συνεχής στο \[(\alpha,\beta]\], τότε η \[f\] παίρνει πάντοτε στο \[[\alpha,\beta]\] μία μέγιστη τιμή.
15. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
16. Η γραφική παράσταση της συνάρτησης \[-f\] είναι συμμετρική, ως προς τον άξονα \[x'x\], της γραφικής παράστασης της \[f\].
17. Έστω μια συνάρτηση \[f\] που είναι ορισμένη σε ένα σύνολο της μορφής \[(\alpha,x_0)∪(x_0,\beta)\]. Ισχύει η ισοδυναμία: \[\lim_{x\to x_0} f(x)=-\infty \Leftrightarrow \lim_{x\to x_0^-}f(x)=-\infty=\lim_{x\to x_0^+} f(x)\].
18. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)>0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
19. Αν μια συνάρτηση \[f\] δεν είναι συνεχής σε ένα σημείο \[x_0\], τότε δεν μπορεί να είναι παραγωγίσιμη στο \[x_0\].
20. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.
21. Κάθε συνάρτηση \[f\], η οποία είναι συνεχής στο \[x_0\], είναι παραγωγίσιμη στο σημείο αυτό.
22. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
23. Αν \[f,g\] είναι δύο συναρτήσεις και ορίζονται οι συνθέσεις \[f\circ g\] και \[g\circ f\], τότε είναι υποχρεωτικά \[f\circ g = g\circ f\].
24. Αν είναι \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)<0\] κοντά στο \[x_0\].
25. Τα εσωτερικά σημεία του διαστήματος \[\Delta\], στα οποία η \[f\] δεν παραγωγίζεται ή η παράγωγός της είναι ίση με το 0, λέγονται κρίσιμα σημεία της \[f\] στο διάστημα \[\Delta\].
26. Ισχύει ότι: \[\lim_{x\to +\infty} \frac{\eta\mu x}{x}=1\].
27. Αν οι συναρτήσεις \[f\] και \[g\] έχουν πεδίο ορισμού το \[[0,1]\] και σύνολο τιμών το \[[2,3]\], τότε ορίζεται η \[fog\] με πεδίο ορισμού το \[[0,1]\] και σύνολο τιμών το \[[2,3]\].
28. Αν μια συνάρτηση \[f\] είναι γνησίως φθίνουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
29. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
30. Η γραφική παράσταση μιας συνάρτησης \[f:\mathbb{R}\to\mathbb{R}\] μπορεί να τέμνει μια ασύμπτωτή της.

    +30

    CONTACT US
    CALL US