MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν μια συνάρτηση \[f\] είναι γνησίως φθίνουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
2. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
3. Αν μια συνάρτηση \[f\] παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα.
4. Αν η \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\in\Delta\], τότε ισχύει \[\left( \int_a^x f(t) dt \right)' = f(x)-f(a)\] για κάθε \[x\in\Delta\].
5. Αν µία συνάρτηση \[f\] είναι συνεχής σ’ ένα σημείο \[x_0\] του πεδίου ορισμού της, τότε είναι και παραγωγίσιμη στο \[x_0\].
6. Αν οι συναρτήσεις \[f, g\] είναι παραγωγίσιμες στο \[x_0\] και \[g(x_0) \ne 0\], τότε η συνάρτηση είναι παραγωγίσιμη στο \[x_0\] και ισχύει:\[\left( \frac{f}{g} \right)' (x_0) = \frac{f(x_0)g'(x_0) - f'(x_0) g(x_0)}{[g(x_0)]^2}.\]
7. Για κάθε συνάρτηση \[f\] με \[\lim_{x\to x_0} f(x)=0\], ισχύει ότι \[\lim_{x\to x_0}\frac{1}{f(x)}=+\infty\] ή \[\lim_{x\to x_0} \frac{1}{f(x)}=-\infty\].
8. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο \[x_0\in A\], όταν \[f(x)\ge f(x_0)\] για κάθε \[x\in A\].
9. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)<0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
10. Αν μια συνάρτηση \[f\] είναι συνεχής στο κλειστό διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(x) dx \ge 0\].
11. Αν υπάρχει το όριο της \[f\] στο \[x_0\], τότε \[\lim_{x\to x_0}\sqrt[k]{f(x)}=\sqrt[k]{\lim_{x\to x_0}f(x)}\], εφόσον \[f(x)\ge 0\] κοντά στο \[x_0\], µε \[k\in\mathbb{N}\] και \[k\ge 2\].
12. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] θα λέμε ότι παρουσιάζει στο \[x_0\in A\] (ολικό) μέγιστο το \[f(x_0)\], όταν \[f(x)\le f(x_0)\] για κάθε \[x\in A\].
13. Η γραφική παράσταση της συνάρτησης \[-f\] είναι συμμετρική, ως προς τον άξονα \[x'x\], της γραφικής παράστασης της \[f\].
14. Αν \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)>0\] για κάθε \[x\] κοντά στο \[x_0\].
15. Αν οι συναρτήσεις \[f\] και \[g\] έχουν πεδίο ορισμού το \[[0,1]\] και σύνολο τιμών το \[[2,3]\], τότε ορίζεται η \[fog\] με πεδίο ορισμού το \[[0,1]\] και σύνολο τιμών το \[[2,3]\].
16. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
17. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς συνάρτησης \[f\] είναι διάστημα.
18. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].
19. Αν μια συνάρτηση \[f\] είναι κυρτή σε ένα διάστημα \[\Delta\], τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται «πάνω» από τη γραφική της παράσταση.
20. Η γραφική παράσταση μιας συνάρτησης \[f:\mathbb{R}\to\mathbb{R}\] μπορεί να τέμνει μια ασύμπτωτή της.
21. Για κάθε συνάρτηση \[f: A\to \mathbb{R}\], όταν υπάρχει το όριο της \[f\] καθώς το \[x\] τείνει στο \[x_0 \in A\], τότε αυτό το όριο ισούται με την τιμή της \[f\] στο \[x_0\].
22. Έστω \[f\] μια συνεχής συνάρτηση σ’ ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\beta) - G(\alpha)\].
23. Για οποιαδήποτε αντιστρέψιμη συνάρτηση \[f\] με πεδίο ορισμού \[A\], ισχύει ότι \[f\left( f^{-1}(x) \right) =x\] για κάθε \[x\in A\].
24. Αν η \[f\] δεν είναι συνεχής στο \[x_0\],τότε η \[f\] είναι παραγωγίσιμη στο \[x_0\].
25. Ισχύει ότι \[\lim_{x\to 0}\frac{\sigma\upsilon\nu x-1}{x}=1\].
26. Αν η συνάρτηση \[f\] είναι συνεχής στο \[x_0\] και η συνάρτηση \[g\] είναι συνεχής στο \[x_0\], τότε η \[g\circ f\] είναι συνεχής στο \[x_0\].
27. Κάθε κατακόρυφη ευθεία έχει το πολύ ένα κοινό σημείο με τη γραφική παράσταση μιας συνάρτησης \[f\].
28. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
29. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
30. Έστω μία συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δύο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν \[f''(x)>0\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι κυρτή στο \[\Delta\].

    +30

    CONTACT US
    CALL US