MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν μια συνάρτηση \[f\] είναι γνησίως μονότονη σε ένα διάστημα \[\Delta\], τότε είναι και 1-1 στο διάστημα αυτό.
2. Αν ένα σημείο \[M(\alpha,\beta)\] ανήκει στη γραφική παράσταση μιας αντιστρέψιμης συνάρτησης \[f\], τότε το σημείο \[M'(\beta,\alpha)\] ανήκει στη γραφική παράσταση \[C'\] της \[f^{−1}\].
3. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
4. Δίνεται ότι η συνάρτηση \[f\] παραγωγίζεται στο \[\mathbb{R}\] και ότι η γραφική της παράσταση είναι πάνω από τον άξονα \[x'x\]. Αν υπάρχει κάποιο σημείο \[A(x_0,f(x_0))\] της \[C_f\], του οποίου η απόσταση από τον άξονα \[x'x\] είναι μέγιστη (ή ελάχιστη), τότε σε αυτό το σημείο η εφαπτομένη της \[C_f\] είναι οριζόντια.
5. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
6. Για κάθε συνάρτηση \[f\], η οποία είναι παραγωγίσιμη στο \[A=(-\infty,0)\cup (0,+\infty)\] με \[f'(x)=0\] για κάθε \[x\in A\], ισχύει ότι η \[f\] είναι σταθερή στο \[A\].
7. Αν μια συνάρτηση \[f\] είναι 1-1 στο πεδίο ορισμού της, τότε υπάρχουν σημεία της γραφικής παράστασης της \[f\] με την ίδια τεταγμένη.
8. Ισχύει η σχέση \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta - \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
9. \[(\sigma \varphi x)'=\frac{1}{\eta\mu^2 x}\], \[x\in \mathbb{R}-\{x|\eta \mu x \ne 0\}\].
10. Αν η \[f\] έχει δεύτερη παράγωγο στο \[x_0\], τότε η \[f'\] είναι συνεχής στο \[x_0\].
11. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
12. Αν \[f,g\] είναι δύο συναρτήσεις και ορίζονται οι συνθέσεις \[f\circ g\] και \[g\circ f\], τότε είναι υποχρεωτικά \[f\circ g = g\circ f\].
13. Για κάθε συνάρτηση \[f: A\to \mathbb{R}\], όταν υπάρχει το όριο της \[f\] καθώς το \[x\] τείνει στο \[x_0 \in A\], τότε αυτό το όριο ισούται με την τιμή της \[f\] στο \[x_0\].
14. Αν η \[f\] είναι μια συνεχής συνάρτηση στο \[[\alpha,\beta]\], η οποία δεν είναι παντού μηδέν στο διάστημα αυτό και \[\int_\alpha^\beta f(x) dx =0\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές στο \[[\alpha, \beta]\].
15. Κάθε συνάρτηση \[f\], η οποία είναι συνεχής στο \[x_0\], είναι παραγωγίσιμη στο σημείο αυτό.
16. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.
17. Ισχύει \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta + \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
18. Έστω συνάρτηση \[f\], η οποία είναι συνεχής σ'ένα διάστημα \[\Delta\]. Αν \[f'(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι γνησίως φθίνουσα σε όλο το \[\Delta\].
19. Ισχύει ότι: \[\lim_{x\to +\infty} \frac{\eta\mu x}{x}=1\].
20. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
21. Αν μια συνάρτηση \[f\] είναι δύο φορές παραγωγίσιμη στο \[\mathbb{R}\] και στρέφει τα κοίλα προς τα άνω, τότε κατ’ανάγκη θα ισχύει \[f''(x)>0\] για κάθε πραγματικό αριθμό \[x\].
22. Αν μια συνάρτηση \[f\] παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα.
23. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
24. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο \[x_0\in A\], όταν \[f(x)\ge f(x_0)\] για κάθε \[x\in A\].
25. Μια συνεχής συνάρτηση \[f\] διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της \[f\] χωρίζουν το πεδίο ορισμού της.
26. Αν \[f, g\] είναι δύο συναρτήσεις με πεδία ορισμού \[A,B\] αντίστοιχα, τότε η \[g\circ f\] ορίζεται αν \[f(A)\cap B\ne \emptyset\].
27. Για κάθε παραγωγίσιμη συνάρτηση \[f\] σε ένα διάστημα \[\Delta\], η οποία είναι γνησίως αύξουσα, ισχύει \[f'(x)>0\] για κάθε \[x \in\Delta\].
28. Για κάθε συνάρτηση \[f\], το μεγαλύτερο από τα τοπικά μέγιστα της \[f\], εφόσον υπάρχουν, είναι το ολικό μέγιστο της \[f\].
29. Αν μια συνάρτηση \[f\] είναι κυρτή σε ένα διάστημα \[\Delta\], τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται «πάνω» από τη γραφική της παράσταση.
30. Αν είναι \[0<a<1\], τότε \[\lim_{x\to -\infty} a^x=0\].

    +30

    CONTACT US
    CALL US