MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Κάθε συνάρτηση, που είναι 1-1 στο πεδίο ορισμού της, είναι γνησίως μονότονη.
2. \[\lim_{x\to x_0} f(x) = l\] αν και μόνο αν \[\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) =l \].
3. Για κάθε παραγωγίσιμη συνάρτηση \[f\] σε ένα διάστημα \[\Delta\], η οποία είναι γνησίως αύξουσα, ισχύει \[f'(x)>0\] για κάθε \[x \in\Delta\].
4. Δίνεται ότι η συνάρτηση \[f\] παραγωγίζεται στο \[\mathbb{R}\] και ότι η γραφική της παράσταση είναι πάνω από τον άξονα \[x'x\]. Αν υπάρχει κάποιο σημείο \[A(x_0,f(x_0))\] της \[C_f\], του οποίου η απόσταση από τον άξονα \[x'x\] είναι μέγιστη (ή ελάχιστη), τότε σε αυτό το σημείο η εφαπτομένη της \[C_f\] είναι οριζόντια.
5. Ισχύει ότι \[\lim_{x\to 0}\frac{\sigma\upsilon\nu x-1}{x}=1\].
6. Έστω μια συνάρτηση \[f\] που είναι ορισμένη σε ένα σύνολο της μορφής \[(\alpha,x_0)∪(x_0,\beta)\]. Ισχύει η ισοδυναμία: \[\lim_{x\to x_0} f(x)=-\infty \Leftrightarrow \lim_{x\to x_0^-}f(x)=-\infty=\lim_{x\to x_0^+} f(x)\].
7. Ισχύει ότι: \[|\eta\mu x|\le |x|\] για κάθε \[x\in \mathbb{R}\].
8. Έστω συνάρτηση \[f\], η οποία είναι συνεχής σ'ένα διάστημα \[\Delta\]. Αν \[f'(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι γνησίως φθίνουσα σε όλο το \[\Delta\].
9. Αν μια συνάρτηση \[f\] είναι 1-1 στο πεδίο ορισμού της, τότε υπάρχουν σημεία της γραφικής παράστασης της \[f\] με την ίδια τεταγμένη.
10. Αν \[\int_\alpha^\beta f(x) dx \ge 0\], τότε κατ’ ανάγκη θα είναι \[f(x)\ge 0\] για κάθε \[x\in [\alpha,\beta]\].
11. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
12. Μία συνάρτηση \[f:A\to \mathbb{R}\] είναι συνάρτηση 1-1, αν και μόνο αν, για οποιαδήποτε \[x_1,x_2\in A\] ισχύει η συνεπαγωγή: αν \[x_1 = x_2\], τότε \[f(x_1) = f(x_2)\].
13. Αν \[\lim_{x\to x_0} f(x)=-\infty\], τότε \[\lim_{x\to x_0}(-f(x))=+\infty\].
14. Αν υπάρχει το \[\lim_{x\to x_0} (f(x)+g(x))\], τότε κατ’ ανάγκη υπάρχουν τα \[\lim_{x\to x_0} f(x)\] και \[\lim_{x\to x_0} g(x)\].
15. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)>0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
16. Αν η συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και \[\alpha, \beta, \gamma \in\Delta\], τότε ισχύει \[\int_\alpha^\beta f(x)dx = \int_\alpha^\gamma f(x) dx + \int_\gamma^\beta f(x) dx\].
17. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
18. Η γραφική παράσταση της συνάρτησης \[-f\] είναι συμμετρική, ως προς τον άξονα \[x'x\], της γραφικής παράστασης της \[f\].
19. Αν \[f(x) = \ln |x|\] για κάθε \[x\ne 0\], τότε \[f'(x) =\frac{1}{|x|}\], για κάθε \[x\ne 0\].
20. Για κάθε συνάρτηση \[f\] με \[\lim_{x\to x_0} f(x)=0\], ισχύει ότι \[\lim_{x\to x_0}\frac{1}{f(x)}=+\infty\] ή \[\lim_{x\to x_0} \frac{1}{f(x)}=-\infty\].
21. Ισχύει \[|\eta\mu x| < |x| \] για κάθε \[x\in \mathbb{R}^* \].
22. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
23. \[\lim_{x\to -\infty }e^x = -\infty\].
24. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
25. \[(\ln |x|)'=-\frac{1}{x}\] για κάθε \[x<0\].
26. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
27. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
28. Υπάρχει πολυωνυμική συνάρτηση βαθμού μεγαλύτερου ή ίσου του 2, της οποίας η γραφική παράσταση έχει ασύμπτωτη.
29. Έστω συνάρτηση \[f\] ορισμένη και παραγωγίσιμη στο διάστημα \[[\alpha,\beta]\] και \[x_0\in[\alpha,\beta]\] στο οποίο η \[f\] παρουσιάζει τοπικό μέγιστο. Τότε πάντα ισχύει ότι \[f'(x_0)=0\].
30. Ισχύει η σχέση \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta - \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].

    +30

    CONTACT US
    CALL US