MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
2. Έστω μια συνάρτηση ορισμένη σ’ ένα σύνολο της μορφής \[(\alpha, x_0)\cup (x_0, \beta)\] και \[l\] ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία:\[\lim_{x\to x_0} f(x) =l \Leftrightarrow \lim_{x\to x_0}(f(x)-l)=0.\]
3. Η γραφική παράσταση της συνάρτησης \[-f\] είναι συμμετρική, ως προς τον άξονα \[x'x\], της γραφικής παράστασης της \[f\].
4. Έστω η συνάρτηση \[f(x)=\varepsilon \varphi x\]. H συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}_1=\mathbb{R}–\{x| \sigma \upsilon \nu x=0\} \] και ισχύει \[f'(x)=-\frac{1}{\sigma\upsilon \nu^2 x}\].
5. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
6. Η γραφική παράσταση μιας συνάρτησης \[f:\mathbb{R}\to\mathbb{R}\] μπορεί να τέμνει μια ασύμπτωτή της.
7. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\], τότε η \[f'\] είναι πάντοτε συνεχής στο \[x_0\].
8. Έστω \[f\] μια συνεχής συνάρτηση σ’ ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\beta) - G(\alpha)\].
9. Υπάρχει πολυωνυμική συνάρτηση βαθμού μεγαλύτερου ή ίσου του 2, της οποίας η γραφική παράσταση έχει ασύμπτωτη.
10. Αν \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)>0\] για κάθε \[x\] κοντά στο \[x_0\].
11. Αν είναι \[0<a<1\], τότε \[\lim_{x\to +\infty} a^x = +\infty\].
12. Έστω μια συνάρτηση \[f\] παραγωγίσιμη σ’ ένα διάστημα \[(\alpha,\beta)\] με εξαίρεση ίσως ένα σημείο του \[x_0\]. Αν η \[f\] είναι κυρτή στο \[(\alpha,x_0)\] και κοίλη στο \[(x_0,\beta)\] ή αντιστρόφως, τότε το σημείο \[A(x_0,f(x_0))\] είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της \[f\].
13. Αν οι συναρτήσεις \[f, g\] είναι παραγωγίσιμες στο \[x_0\] και \[g(x_0) \ne 0\], τότε η συνάρτηση είναι παραγωγίσιμη στο \[x_0\] και ισχύει:\[\left( \frac{f}{g} \right)' (x_0) = \frac{f(x_0)g'(x_0) - f'(x_0) g(x_0)}{[g(x_0)]^2}.\]
14. \[\lim_{x\to -\infty }e^x = -\infty\].
15. Για κάθε ζεύγος συναρτήσεων \[f,g\] για τις οποίες υπάρχουν τα όρια \[\lim_{x\to x_0} ⁡f(x)\], \[\lim_{x\to x_0}g(x)\] και \[f(x)<g(x)\] για κάθε x κοντά στο \[x_0\], ισχύει \[\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)\].
16. Ισχύει ότι: \[|\eta\mu x|\le |x|\] για κάθε \[x\in \mathbb{R}\].
17. Ισχύει η σχέση \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta - \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
18. Μια πολυωνυμική συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] διατηρεί πρόσημο σε κάθε ένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της \[f\] χωρίζουν το πεδίο ορισμού της.
19. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
20. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
21. Αν \[\alpha>1\], τότε \[\lim_{x\to -\infty}\alpha^x =0\].
22. Για κάθε συνάρτηση \[f: A\to \mathbb{R}\], όταν υπάρχει το όριο της \[f\] καθώς το \[x\] τείνει στο \[x_0 \in A\], τότε αυτό το όριο ισούται με την τιμή της \[f\] στο \[x_0\].
23. Αν είναι \[0<a<1\], τότε \[\lim_{x\to -\infty} a^x=0\].
24. Κάθε συνάρτηση, που είναι 1-1 στο πεδίο ορισμού της, είναι γνησίως μονότονη.
25. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
26. Για κάθε συνεχή συνάρτηση \[f:[\alpha,\beta]\to\mathbb{R}\], η οποία είναι παραγωγίσιμη στο \[(\alpha,\beta)\], αν \[f(\alpha)=f(\beta)\], τότε υπάρχει ακριβώς ένα \[\xi\in(\alpha,\beta)\] τέτοιο ώστε \[f'(\xi) = 0\].
27. Αν \[f,g,g'\] είναι συνεχείς συναρτήσεις στο διάστημα \[[\alpha, \beta]\], τότε \[\int_\alpha^\beta f(x) \cdot g'(x) dx =\int_\alpha^\beta f(x) dx \cdot \int_\alpha^\beta g'(x) dx \].
28. Αν η \[f\] δεν είναι συνεχής στο \[x_0\],τότε η \[f\] είναι παραγωγίσιμη στο \[x_0\].
29. \[\lim_{x\to 0} \left(\frac{1}{x^{2\nu+1}} \right) =0\], για κάθε \[\nu\in\mathbb{N}\].
30. Για κάθε συνάρτηση \[f\], ορισμένη, παραγωγίσιμη και γνησίως αύξουσα στο \[\mathbb{R}\], ισχύει \[f'(x)>0\].

    +30

    CONTACT US
    CALL US