MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
2. Το ολοκλήρωμα \[\int_\alpha^\beta f(x) dx\] είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από τον άξονα \[x'x\] μείον το άθροισμα των εμβαδών των χωρίων που βρίσκονται κάτω από τον άξονα \[x'x\].
3. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
4. Για κάθε ζεύγος συναρτήσεων \[f:\mathbb{R}\to \mathbb{R}\] και \[g:\mathbb{R}\to \mathbb{R}\], αν \[\lim_{x\to x_0} f(x)=0\] και \[\lim_{x\to x_0}g(x) = +\infty\],τότε \[\lim_{x\to x_0}[f(x)\cdot g(x)]=0\].
5. Έστω δύο συναρτήσεις \[f, g\] ορισμένες σε ένα διάστημα \[\Delta\]. Αν οι \[f, g\] είναι συνεχείς στο \[\Delta\] και \[f΄(x) = g΄(x)\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε ισχύει \[f(x) = g(x)\] για κάθε \[x\in \Delta\].
6. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\], τότε η \[f'\] είναι πάντοτε συνεχής στο \[x_0\].
7. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
8. Αν \[f, g\] είναι δύο συναρτήσεις με πεδία ορισμού \[A,B\] αντίστοιχα, τότε η \[g\circ f\] ορίζεται αν \[f(A)\cap B\ne \emptyset\].
9. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)>0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
10. Αν η \[f\] είναι συνεχής στο \[ [\alpha, \beta] \] με \[f(\alpha)\] μικρότερο του \[0\] και υπάρχει \[\xi\in[\alpha, \beta]\] ώστε \[f(\xi)=0,\] τότε κατ' ανάγκη \[f(\beta)> 0\].
11. Αν η \[f\] έχει δεύτερη παράγωγο στο \[x_0\], τότε η \[f'\] είναι συνεχής στο \[x_0\].
12. Αν µία συνάρτηση \[f\] είναι συνεχής σ’ ένα σημείο \[x_0\] του πεδίου ορισμού της, τότε είναι και παραγωγίσιμη στο \[x_0\].
13. Κάθε συνάρτηση, που είναι 1-1 στο πεδίο ορισμού της, είναι γνησίως μονότονη.
14. \[\lim_{x\to 0} \left(\frac{1}{x^{2\nu+1}} \right) =0\], για κάθε \[\nu\in\mathbb{N}\].
15. Κάθε συνάρτηση \[f\], για την οποία ισχύει \[f'(x)=0\] για κάθε \[x\in (\alpha,x_0)\cup(x_0,\beta)\] είναι σταθερή στο \[(\alpha,x_0)\cup(x_0,\beta)\].
16. Αν μια συνάρτηση \[f\] είναι γνησίως φθίνουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
17. Έστω συνάρτηση \[f\] ορισμένη και παραγωγίσιμη στο διάστημα \[[\alpha,\beta]\] και \[x_0\in[\alpha,\beta]\] στο οποίο η \[f\] παρουσιάζει τοπικό μέγιστο. Τότε πάντα ισχύει ότι \[f'(x_0)=0\].
18. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
19. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
20. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
21. Για κάθε συνάρτηση \[f\] ορισμένη και δύο φορές παραγωγίσιμη στο \[\mathbb{R}\], αν για κάποιο \[x_0\in\mathbb{R}\] ισχύει \[f''(x_0)=0\], τότε το \[x_0\] είναι θέση σημείου καμπής της \[f\].
22. Αν οι συναρτήσεις \[f,g\] έχουν όριο στο \[x_0\] και ισχύει \[f(x)\le g(x)\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x)\].
23. Αν \[\lim_{x\to x_0} f(x) =-\infty\], τότε \[f(x)>0\] κοντά στο \[x_0\].
24. Αν η συνάρτηση \[f\] είναι ορισμένη στο \[[\alpha,\beta]\] και συνεχής στο \[(\alpha,\beta]\], τότε η \[f\] παίρνει πάντοτε στο \[[\alpha,\beta]\] μία μέγιστη τιμή.
25. Για κάθε ζεύγος πραγματικών συναρτήσεων \[f,g:(0,+\infty)\to\mathbb{R}\], αν ισχύει \[\lim_{x\to 0} f(x)=+\infty\] και \[\lim_{x\to 0} g(x)=-\infty\], τότε \[\lim_{x\to 0} [f(x)+g(x)]=0\].
26. Για κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\], που είναι παραγωγίσιμη και δεν παρουσιάζει ακρότατα, ισχύει \[f'(x)\ne 0\] για κάθε \[x\in\mathbb{R}\].
27. Αν \[f\] είναι μία συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\] είναι ένα σημείο του \[\Delta\], τότε \[\left(\int_a^x f(t) dt\right)' = f(x)\] για κάθε \[x\in\Delta\].
28. Αν η \[f\] είναι συνεχής στο \[[\alpha,\beta]\], τότε η \[f\] παίρνει στο \[[\alpha,\beta]\] μία μέγιστη \[M\] και μία ελάχιστη τιμή \[m\].
29. Για κάθε συνάρτηση \[f\] με \[\lim_{x\to x_0} f(x)=0\], ισχύει ότι \[\lim_{x\to x_0}\frac{1}{f(x)}=+\infty\] ή \[\lim_{x\to x_0} \frac{1}{f(x)}=-\infty\].
30. Έστω μια συνάρτηση \[f\] ορισμένη σε ένα διάστημα \[\Delta\] και \[x_0\] ένα εσωτερικό σημείο του \[\Delta\]. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\] και \[f'(x_0)=0\], τότε η \[f\] παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο \[x_0\].

    +30

    CONTACT US
    CALL US