MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω δύο συναρτήσεις \[f, g\] ορισμένες σε ένα διάστημα \[\Delta\]. Αν οι \[f, g\] είναι συνεχείς στο \[\Delta\] και \[f΄(x) = g΄(x)\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε ισχύει \[f(x) = g(x)\] για κάθε \[x\in \Delta\].
2. Το ολοκλήρωμα \[\int_\alpha^\beta f(x) dx\] είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από τον άξονα \[x'x\] μείον το άθροισμα των εμβαδών των χωρίων που βρίσκονται κάτω από τον άξονα \[x'x\].
3. Υπάρχουν συναρτήσεις που είναι 1–1, αλλά δεν είναι γνησίως μονότονες.
4. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
5. Αν η συνάρτηση \[f\] είναι συνεχής στο διάστημα \[[\alpha,\beta]\] και υπάρχει \[x_0\in (\alpha, \beta)\] τέτοιο ώστε \[f(x_0)=0\], τότε κατ’ανάγκη θα ισχύει \[f(\alpha)\cdot f(\beta)<0\].
6. Αν μια συνάρτηση \[f\] παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα.
7. Έστω μια συνάρτηση \[f\] που είναι ορισμένη σε ένα σύνολο της μορφής \[(\alpha,x_0)∪(x_0,\beta)\]. Ισχύει η ισοδυναμία: \[\lim_{x\to x_0} f(x)=-\infty \Leftrightarrow \lim_{x\to x_0^-}f(x)=-\infty=\lim_{x\to x_0^+} f(x)\].
8. Αν \[f(x) = a^x\], \[a>0\], τότε ισχύει \[(a^x)′=x\cdot a^{x−1}\].
9. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς και μη σταθερής συνάρτησης \[f\] είναι πάντα διάστημα.
10. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
11. Αν η \[f\] είναι μια συνεχής συνάρτηση στο \[[\alpha,\beta]\], η οποία δεν είναι παντού μηδέν στο διάστημα αυτό και \[\int_\alpha^\beta f(x) dx =0\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές στο \[[\alpha, \beta]\].
12. Έστω η συνάρτηση \[f(x)=\varepsilon \varphi x\]. H συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}_1=\mathbb{R}–\{x| \sigma \upsilon \nu x=0\} \] και ισχύει \[f'(x)=-\frac{1}{\sigma\upsilon \nu^2 x}\].
13. Αν είναι \[0<a<1\], τότε \[\lim_{x\to -\infty} a^x=0\].
14. Ισχύει ότι: \[\lim_{x\to +\infty} \frac{\eta\mu x}{x}=1\].
15. Για κάθε συνάρτηση \[f\] με \[\lim_{x\to x_0} f(x)=0\], ισχύει ότι \[\lim_{x\to x_0}\frac{1}{f(x)}=+\infty\] ή \[\lim_{x\to x_0} \frac{1}{f(x)}=-\infty\].
16. Για κάθε συνάρτηση \[f: A\to \mathbb{R}\], όταν υπάρχει το όριο της \[f\] καθώς το \[x\] τείνει στο \[x_0 \in A\], τότε αυτό το όριο ισούται με την τιμή της \[f\] στο \[x_0\].
17. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)>0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
18. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
19. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].
20. Η γραφική παράσταση της συνάρτησης \[-f\] είναι συμμετρική, ως προς τον άξονα \[x'x\], της γραφικής παράστασης της \[f\].
21. Έστω \[f\] μια συνάρτηση συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε \[f΄(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\].
22. Αν υπάρχει το όριο της \[f\] στο \[x_0\], τότε \[\lim_{x\to x_0}\sqrt[k]{f(x)}=\sqrt[k]{\lim_{x\to x_0}f(x)}\], εφόσον \[f(x)\ge 0\] κοντά στο \[x_0\], µε \[k\in\mathbb{N}\] και \[k\ge 2\].
23. Αν \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)>0\] για κάθε \[x\] κοντά στο \[x_0\].
24. Αν μια συνάρτηση \[f\] δεν είναι συνεχής σε ένα σημείο \[x_0\], τότε δεν μπορεί να είναι παραγωγίσιμη στο \[x_0\].
25. Μια συνάρτηση \[f:A\to \mathbb{R}\] λέγεται συνάρτηση 1-1, όταν για οποιαδήποτε \[x_1, x_2\in A\] ισχύει η συνεπαγωγή:αν \[x_1\ne x_2\], τότε \[f(x_1) \ne  f(x_2)\].
26. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
27. Οι γραφικές παραστάσεις \[C\] και \[C'\] των συναρτήσεων \[f\] και \[f^{–1}\] είναι συμμετρικές ως προς την ευθεία \[y = x\] που διχοτομεί τις γωνίες \[xOy\] και \[x΄Oy΄\].
28. \[(\sigma \upsilon \nu x)' = \eta \mu x\], \[x\in \mathbb{R}\].
29. Ισχύει η σχέση \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta - \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
30. Για κάθε ζεύγος πραγματικών συναρτήσεων \[f,g:(0,+\infty)\to\mathbb{R}\], αν ισχύει \[\lim_{x\to 0} f(x)=+\infty\] και \[\lim_{x\to 0} g(x)=-\infty\], τότε \[\lim_{x\to 0} [f(x)+g(x)]=0\].

    +30

    CONTACT US
    CALL US