MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για κάθε παραγωγίσιμη συνάρτηση \[f\] σε ένα διάστημα \[\Delta\], η οποία είναι γνησίως αύξουσα, ισχύει \[f'(x)>0\] για κάθε \[x \in\Delta\].
2. Ισχύει ότι: \[|\eta\mu x|\le |x|\] για κάθε \[x\in \mathbb{R}\].
3. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.
4. Μια συνεχής συνάρτηση \[f\] διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της \[f\] χωρίζουν το πεδίο ορισμού της.
5. \[(\sigma \upsilon \nu x)' = \eta \mu x\], \[x\in \mathbb{R}\].
6. Αν είναι \[0<a<1\], τότε \[\lim_{x\to +\infty} a^x = +\infty\].
7. Αν για δύο συναρτήσεις \[f,g\] ορίζονται οι \[fog\] και \[gof\],τότε είναι υποχρεωτικά \[f\circ g \ne g\circ f\].
8. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
9. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς συνάρτησης \[f\] είναι διάστημα.
10. Αν \[\lim_{x\to x_0} f(x) = +\infty\] ή \[–\infty\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = 0\].
11. Κάθε συνάρτηση \[f\], για την οποία ισχύει \[f'(x)=0\] για κάθε \[x\in (\alpha,x_0)\cup(x_0,\beta)\] είναι σταθερή στο \[(\alpha,x_0)\cup(x_0,\beta)\].
12. Αν είναι \[0<a<1\], τότε \[\lim_{x\to -\infty} a^x=0\].
13. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
14. \[(\sigma \varphi x)'=\frac{1}{\eta\mu^2 x}\], \[x\in \mathbb{R}-\{x|\eta \mu x \ne 0\}\].
15. Ισχύει ότι \[\lim_{x\to 0}\frac{\sigma\upsilon\nu x-1}{x}=1\].
16. Αν \[f\] συνάρτηση συνεχής στο διάστημα \[[\alpha,\beta]\] και για κάθε \[x\in [\alpha,\beta]\] ισχύει \[f(x)\ge 0\], τότε \[\int_\alpha^\beta f(x) dx >0 \].
17. \[\lim_{x\to x_0} f(x) = l\] αν και μόνο αν \[\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) =l \].
18. Ισχύει \[(3^x)' = x\cdot 3^{x-1} \], για κάθε \[x\in \mathbb{R}\].
19. Για κάθε συνάρτηση \[f\], συνεχή στο \[[\alpha,\beta]\], ισχύει: αν \[\int_\alpha^\beta f(x) dx >0\], τότε \[f(x)>0\] στο \[[\alpha,\beta]\].
20. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
21. Αν μια συνάρτηση \[f\] δεν είναι συνεχής σε ένα σημείο \[x_0\], τότε δεν μπορεί να είναι παραγωγίσιμη στο \[x_0\].
22. Αν \[\lim_{x\to x_0} f(x)=-\infty\], τότε \[\lim_{x\to x_0}(-f(x))=+\infty\].
23. Αν μια συνάρτηση \[f\] είναι δύο φορές παραγωγίσιμη στο \[\mathbb{R}\] και στρέφει τα κοίλα προς τα άνω, τότε κατ’ανάγκη θα ισχύει \[f''(x)>0\] για κάθε πραγματικό αριθμό \[x\].
24. Αν μία συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)<0\] για κάθε \[x\in [\alpha,\beta]\], τότε το εμβαδόν του χωρίου \[\Omega\] που ορίζεται από τη γραφική παράσταση της \[f\], τις ευθείες \[x=\alpha\], \[x=\beta\] και τον άξονα \[x'x\] είναι \[E(\Omega)=\int_\alpha^\beta f(x)dx \].
25. Αν μια συνάρτηση \[f\] είναι συνεχής στο κλειστό διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(x) dx \ge 0\].
26. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
27. Αν \[\alpha>1\], τότε \[\lim_{x\to -\infty}\alpha^x =0\].
28. Για κάθε ζεύγος συναρτήσεων \[f:\mathbb{R}\to \mathbb{R}\] και \[g:\mathbb{R}\to \mathbb{R}\], αν \[\lim_{x\to x_0} f(x)=0\] και \[\lim_{x\to x_0}g(x) = +\infty\],τότε \[\lim_{x\to x_0}[f(x)\cdot g(x)]=0\].
29. Ισχύει \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta + \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
30. Ισχύει \[|\eta\mu x| < |x| \] για κάθε \[x\in \mathbb{R}^* \].

    +30

    CONTACT US
    CALL US