MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Για κάθε συνάρτηση \[f\] με \[\lim_{x\to x_0} f(x)=0\], ισχύει ότι \[\lim_{x\to x_0}\frac{1}{f(x)}=+\infty\] ή \[\lim_{x\to x_0} \frac{1}{f(x)}=-\infty\].
2. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] θα λέμε ότι παρουσιάζει στο \[x_0\in A\] (ολικό) μέγιστο το \[f(x_0)\], όταν \[f(x)\le f(x_0)\] για κάθε \[x\in A\].
3. Αν η \[f\] έχει δεύτερη παράγωγο στο \[x_0\], τότε η \[f'\] είναι συνεχής στο \[x_0\].
4. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
5. Αν υπάρχει το \[\lim_{x\to x_0} (f(x)+g(x))\], τότε κατ’ ανάγκη υπάρχουν τα \[\lim_{x\to x_0} f(x)\] και \[\lim_{x\to x_0} g(x)\].
6. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
7. Η γραφική παράσταση μιας συνάρτησης \[f:\mathbb{R}\to\mathbb{R}\] μπορεί να τέμνει μια ασύμπτωτή της.
8. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
9. Για κάθε ζεύγος συναρτήσεων \[f,g\] για τις οποίες υπάρχουν τα όρια \[\lim_{x\to x_0} ⁡f(x)\], \[\lim_{x\to x_0}g(x)\] και \[f(x)<g(x)\] για κάθε x κοντά στο \[x_0\], ισχύει \[\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)\].
10. \[\lim_{x\to -\infty }e^x = -\infty\].
11. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
12. Αν \[f\] συνάρτηση συνεχής στο διάστημα \[[\alpha,\beta]\] και για κάθε \[x\in [\alpha,\beta]\] ισχύει \[f(x)\ge 0\], τότε \[\int_\alpha^\beta f(x) dx >0 \].
13. Αν \[\lim_{x\to x_0} f(x)=-\infty\], τότε \[\lim_{x\to x_0}(-f(x))=+\infty\].
14. Αν ένα σημείο \[M(\alpha,\beta)\] ανήκει στη γραφική παράσταση μιας αντιστρέψιμης συνάρτησης \[f\], τότε το σημείο \[M'(\beta,\alpha)\] ανήκει στη γραφική παράσταση \[C'\] της \[f^{−1}\].
15. \[\lim_{x\to x_0} f(x) = l\] αν και μόνο αν \[\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) =l \].
16. Υπάρχει πολυωνυμική συνάρτηση βαθμού μεγαλύτερου ή ίσου του 2, της οποίας η γραφική παράσταση έχει ασύμπτωτη.
17. Έστω μια συνάρτηση \[f\] ορισμένη σε ένα διάστημα \[\Delta\] και \[x_0\] ένα εσωτερικό σημείο του \[\Delta\]. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\] και \[f'(x_0)=0\], τότε η \[f\] παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο \[x_0\].
18. Αν \[\int_\alpha^\beta f(x) dx \ge 0\], τότε κατ’ ανάγκη θα είναι \[f(x)\ge 0\] για κάθε \[x\in [\alpha,\beta]\].
19. Για κάθε συνάρτηση \[f\] ορισμένη και δύο φορές παραγωγίσιμη στο \[\mathbb{R}\], αν για κάποιο \[x_0\in\mathbb{R}\] ισχύει \[f''(x_0)=0\], τότε το \[x_0\] είναι θέση σημείου καμπής της \[f\].
20. Αν η \[f\] έχει αντίστροφη συνάρτηση \[f^{-1}\] και η γραφική παράσταση της \[f\] έχει κοινό σημείο \[A\] με την ευθεία \[y = x\], τότε το σημείο \[A\] ανήκει και στη γραφική παράσταση της \[f^{-1}\].
21. Αν η συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και \[\alpha, \beta, \gamma \in\Delta\], τότε ισχύει \[\int_\alpha^\beta f(x)dx = \int_\alpha^\gamma f(x) dx + \int_\gamma^\beta f(x) dx\].
22. \[(\sigma \varphi x)'=\frac{1}{\eta\mu^2 x}\], \[x\in \mathbb{R}-\{x|\eta \mu x \ne 0\}\].
23. \[\lim_{x\to 0} \left(\frac{1}{x^{2\nu+1}} \right) =0\], για κάθε \[\nu\in\mathbb{N}\].
24. Η συνάρτηση \[f\] είναι 1-1, αν και μόνο αν, κάθε οριζόντια ευθεία τέμνει τη γραφική παράσταση της \[f\] το πολύ σε ένα σημείο.
25. Αν μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1−1, τότε για την αντίστροφη συνάρτηση \[f^{-1}\] ισχύει: \[f^{-1}(f(x))=x\], \[x\in A\], και \[f(f^{-1}(y))=y\], \[y\in f(A)\].
26. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο \[x_0\in A\], όταν \[f(x)\ge f(x_0)\] για κάθε \[x\in A\].
27. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\alpha) - G(\beta)\].
28. Κάθε συνάρτηση \[f\], η οποία είναι συνεχής στο \[x_0\], είναι παραγωγίσιμη στο σημείο αυτό.
29. \[(\sigma \upsilon \nu x)' = \eta \mu x\], \[x\in \mathbb{R}\].
30. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς συνάρτησης \[f\] είναι διάστημα.

    +30

    CONTACT US
    CALL US