MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1−1, τότε για την αντίστροφη συνάρτηση \[f^{-1}\] ισχύει: \[f^{-1}(f(x))=x\], \[x\in A\], και \[f(f^{-1}(y))=y\], \[y\in f(A)\].
2. Για κάθε ζεύγος συναρτήσεων \[f:\mathbb{R}\to \mathbb{R}\] και \[g:\mathbb{R}\to \mathbb{R}\], αν \[\lim_{x\to x_0} f(x)=0\] και \[\lim_{x\to x_0}g(x) = +\infty\],τότε \[\lim_{x\to x_0}[f(x)\cdot g(x)]=0\].
3. \[(\sigma \varphi x)'=\frac{1}{\eta\mu^2 x}\], \[x\in \mathbb{R}-\{x|\eta \mu x \ne 0\}\].
4. \[\lim_{x\to 0} \left(\frac{1}{x^{2\nu+1}} \right) =0\], για κάθε \[\nu\in\mathbb{N}\].
5. Έστω μία συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δύο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν \[f''(x)>0\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι κυρτή στο \[\Delta\].
6. Αν η \[f\] είναι συνεχής στο \[[\alpha,\beta]\], τότε η \[f\] παίρνει στο \[[\alpha,\beta]\] μία μέγιστη \[M\] και μία ελάχιστη τιμή \[m\].
7. Για κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\], που είναι παραγωγίσιμη και δεν παρουσιάζει ακρότατα, ισχύει \[f'(x)\ne 0\] για κάθε \[x\in\mathbb{R}\].
8. Αν μια συνάρτηση \[f\] είναι γνησίως φθίνουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
9. Ισχύει \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta + \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
10. Αν \[\alpha>1\], τότε \[\lim_{x\to -\infty}\alpha^x =0\].
11. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\], τότε η \[f'\] είναι πάντοτε συνεχής στο \[x_0\].
12. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
13. Αν οι συναρτήσεις \[f, g\] είναι παραγωγίσιμες στο \[x_0\], τότε η συνάρτηση \[f\cdot g\] είναι παραγωγίσιμη στο \[x_0\] και ισχύει:\[(f\cdot g)'(x_0) = f'(x_0) g'(x_0).\]
14. Αν η \[f\] έχει δεύτερη παράγωγο στο \[x_0\], τότε η \[f'\] είναι συνεχής στο \[x_0\].
15. Έστω δύο συναρτήσεις \[f, g\] ορισμένες σε ένα διάστημα \[\Delta\]. Αν οι \[f, g\] είναι συνεχείς στο \[\Delta\] και \[f΄(x) = g΄(x)\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε ισχύει \[f(x) = g(x)\] για κάθε \[x\in \Delta\].
16. Για κάθε συνάρτηση \[f\] με \[\lim_{x\to x_0} f(x)=0\], ισχύει ότι \[\lim_{x\to x_0}\frac{1}{f(x)}=+\infty\] ή \[\lim_{x\to x_0} \frac{1}{f(x)}=-\infty\].
17. Έστω μια συνάρτηση \[f\] ορισμένη σε ένα διάστημα \[\Delta\] και \[x_0\] ένα εσωτερικό σημείο του \[\Delta\]. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\] και \[f'(x_0)=0\], τότε η \[f\] παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο \[x_0\].
18. Αν η \[f\] είναι συνεχής στο \[ [\alpha, \beta] \] με \[f(\alpha)\] μικρότερο του \[0\] και υπάρχει \[\xi\in[\alpha, \beta]\] ώστε \[f(\xi)=0,\] τότε κατ' ανάγκη \[f(\beta)> 0\].
19. Αν \[\lim_{x\to x_0} f(x)>0\], τότε \[f(x)>0\] κοντά στο \[x_0\].
20. Κάθε συνάρτηση \[f\] συνεχής σε ένα σημείο του πεδίου ορισμού της είναι και παραγωγίσιμη στο σημείο αυτό.
21. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
22. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
23. Ισχύει \[|\eta\mu x| < |x| \] για κάθε \[x\in \mathbb{R}^* \].
24. Αν υπάρχει το όριο της \[f\] στο \[x_0\], τότε \[\lim_{x\to x_0}\sqrt[k]{f(x)}=\sqrt[k]{\lim_{x\to x_0}f(x)}\], εφόσον \[f(x)\ge 0\] κοντά στο \[x_0\], µε \[k\in\mathbb{N}\] και \[k\ge 2\].
25. Ισχύει η σχέση \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta - \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
26. Για κάθε ζεύγος πραγματικών συναρτήσεων \[f,g:(0,+\infty)\to\mathbb{R}\], αν ισχύει \[\lim_{x\to 0} f(x)=+\infty\] και \[\lim_{x\to 0} g(x)=-\infty\], τότε \[\lim_{x\to 0} [f(x)+g(x)]=0\].
27. Η εικόνα \[f(\Delta)\] ενός διαστήματος \[\Delta\] μέσω μιας συνεχούς συνάρτησης \[f\] είναι διάστημα.
28. Αν µία συνάρτηση \[f\] είναι συνεχής σ’ ένα σημείο \[x_0\] του πεδίου ορισμού της, τότε είναι και παραγωγίσιμη στο \[x_0\].
29. \[\lim_{x\to -\infty }e^x = -\infty\].
30. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.

    +30

    CONTACT US
    CALL US