MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν \[\lim_{x\to x_0} f(x) =-\infty\], τότε \[f(x)>0\] κοντά στο \[x_0\].
2. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
3. Αν η συνάρτηση \[f\] είναι ορισμένη στο \[[\alpha,\beta]\] και συνεχής στο \[(\alpha,\beta]\], τότε η \[f\] παίρνει πάντοτε στο \[[\alpha,\beta]\] μία μέγιστη τιμή.
4. Έστω \[f\] μια συνάρτηση συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε \[f΄(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\].
5. Η συνάρτηση \[f\] είναι 1-1, αν και μόνο αν, κάθε οριζόντια ευθεία τέμνει τη γραφική παράσταση της \[f\] το πολύ σε ένα σημείο.
6. \[\lim_{x\to 0} \left(\frac{1}{x^{2\nu+1}} \right) =0\], για κάθε \[\nu\in\mathbb{N}\].
7. Αν µία συνάρτηση \[f\] είναι συνεχής σ’ ένα σημείο \[x_0\] του πεδίου ορισμού της, τότε είναι και παραγωγίσιμη στο \[x_0\].
8. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] θα λέμε ότι παρουσιάζει στο \[x_0\in A\] (ολικό) μέγιστο το \[f(x_0)\], όταν \[f(x)\le f(x_0)\] για κάθε \[x\in A\].
9. Αν η συνάρτηση \[f\] είναι συνεχής στο \[x_0\] και η συνάρτηση \[g\] είναι συνεχής στο \[x_0\], τότε η \[g\circ f\] είναι συνεχής στο \[x_0\].
10. Αν \[\lim_{x\to x_0} f(x) = +\infty\] ή \[–\infty\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = 0\].
11. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
12. Για οποιαδήποτε αντιστρέψιμη συνάρτηση \[f\] με πεδίο ορισμού \[A\], ισχύει ότι \[f\left( f^{-1}(x) \right) =x\] για κάθε \[x\in A\].
13. Μια συνεχής συνάρτηση \[f\] διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της \[f\] χωρίζουν το πεδίο ορισμού της.
14. Αν οι συναρτήσεις \[f,g\] έχουν όριο στο \[x_0\] και ισχύει \[f(x)\le g(x)\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x)\].
15. Για κάθε συνάρτηση \[f\], το μεγαλύτερο από τα τοπικά μέγιστα της \[f\], εφόσον υπάρχουν, είναι το ολικό μέγιστο της \[f\].
16. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
17. Για κάθε συνάρτηση \[f\], ορισμένη, παραγωγίσιμη και γνησίως αύξουσα στο \[\mathbb{R}\], ισχύει \[f'(x)>0\].
18. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
19. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
20. Η γραφική παράσταση της συνάρτησης \[-f\] είναι συμμετρική, ως προς τον άξονα \[x'x\], της γραφικής παράστασης της \[f\].
21. Αν \[f, g\] είναι δύο συναρτήσεις με πεδία ορισμού \[A,B\] αντίστοιχα, τότε η \[g\circ f\] ορίζεται αν \[f(A)\cap B\ne \emptyset\].
22. Έστω \[f\] μια συνεχής συνάρτηση σ’ ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\beta) - G(\alpha)\].
23. Αν μια συνάρτηση \[f\] είναι κυρτή σε ένα διάστημα \[\Delta\], τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται «πάνω» από τη γραφική της παράσταση.
24. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
25. \[(\sigma \upsilon \nu x)' = \eta \mu x\], \[x\in \mathbb{R}\].
26. Ισχύει ότι \[\lim_{x\to 0}\frac{1-\sigma\upsilon\nu x}{x}=0\].
27. Αν μια συνάρτηση \[f\] είναι συνεχής στο κλειστό διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(x) dx \ge 0\].
28. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και δεν μηδενίζεται σ’ αυτό, τότε η \[f\] διατηρεί πρόσημο στο διάστημα \[\Delta\].
29. Για κάθε ζεύγος συναρτήσεων \[f,g\] για τις οποίες υπάρχουν τα όρια \[\lim_{x\to x_0} ⁡f(x)\], \[\lim_{x\to x_0}g(x)\] και \[f(x)<g(x)\] για κάθε x κοντά στο \[x_0\], ισχύει \[\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)\].
30. Κάθε κατακόρυφη ευθεία έχει το πολύ ένα κοινό σημείο με τη γραφική παράσταση μιας συνάρτησης \[f\].

    +30

    CONTACT US
    CALL US