MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Κάθε συνάρτηση \[f\], για την οποία ισχύει \[f'(x)=0\] για κάθε \[x\in (\alpha,x_0)\cup(x_0,\beta)\] είναι σταθερή στο \[(\alpha,x_0)\cup(x_0,\beta)\].
2. Αν η συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και \[\alpha, \beta, \gamma \in\Delta\], τότε ισχύει \[\int_\alpha^\beta f(x)dx = \int_\alpha^\gamma f(x) dx + \int_\gamma^\beta f(x) dx\].
3. Έστω \[f\] μια συνάρτηση συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε \[f΄(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\].
4. Για οποιαδήποτε αντιστρέψιμη συνάρτηση \[f\] με πεδίο ορισμού \[A\], ισχύει ότι \[f\left( f^{-1}(x) \right) =x\] για κάθε \[x\in A\].
5. Έστω μία συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δύο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν \[f''(x)>0\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι κυρτή στο \[\Delta\].
6. Αν \[\lim_{x\to x_0} f(x) =-\infty\], τότε \[f(x)>0\] κοντά στο \[x_0\].
7. Κάθε συνάρτηση \[f\], η οποία είναι συνεχής στο \[x_0\], είναι παραγωγίσιμη στο σημείο αυτό.
8. Αν οι συναρτήσεις \[f,g\] έχουν όριο στο \[x_0\] και ισχύει \[f(x)\le g(x)\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x)\].
9. Αν η \[f\] έχει αντίστροφη συνάρτηση \[f^{-1}\] και η γραφική παράσταση της \[f\] έχει κοινό σημείο \[A\] με την ευθεία \[y = x\], τότε το σημείο \[A\] ανήκει και στη γραφική παράσταση της \[f^{-1}\].
10. Ισχύει η σχέση \[\int_\alpha^\beta f(x) \cdot g'(x) dx = [f(x)\cdot g(x)]_\alpha^\beta - \int_\alpha^\beta f'(x) \cdot g(x) dx\], όπου \[f', g'\] είναι συνεχείς συναρτήσεις στο \[[\alpha,\beta]\].
11. Ισχύει ότι \[\lim_{x\to 0}\frac{\sigma\upsilon\nu x-1}{x}=1\].
12. Μία συνάρτηση \[f\] λέγεται γνησίως αύξουσα σε ένα διάστημα \[\Delta\] του πεδίου ορισμού της, αν υπάρχουν \[x_1, x_2\in \Delta\] με \[x_1<x_2\], ώστε \[f(x_1)<f(x_2)\].
13. Αν η συνάρτηση \[f\] είναι συνεχής στο \[x_0\] και η συνάρτηση \[g\] είναι συνεχής στο \[x_0\], τότε η \[g\circ f\] είναι συνεχής στο \[x_0\].
14. Έστω μια συνάρτηση ορισμένη σ’ ένα σύνολο της μορφής \[(\alpha, x_0)\cup (x_0, \beta)\] και \[l\] ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία:\[\lim_{x\to x_0} f(x) =l \Leftrightarrow \lim_{x\to x_0}(f(x)-l)=0.\]
15. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως φθίνουσα στο \[\Delta\], τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του \[\Delta\].
16. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
17. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
18. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
19. Αν η \[f\] είναι μια συνεχής συνάρτηση στο \[[\alpha,\beta]\], η οποία δεν είναι παντού μηδέν στο διάστημα αυτό και \[\int_\alpha^\beta f(x) dx =0\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές στο \[[\alpha, \beta]\].
20. Αν είναι \[0<a<1\], τότε \[\lim_{x\to -\infty} a^x=0\].
21. Έστω η συνάρτηση \[f(x)=\varepsilon \varphi x\]. H συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}_1=\mathbb{R}–\{x| \sigma \upsilon \nu x=0\} \] και ισχύει \[f'(x)=-\frac{1}{\sigma\upsilon \nu^2 x}\].
22. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
23. Αν \[f\] είναι μία συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\] είναι ένα σημείο του \[\Delta\], τότε \[\left(\int_a^x f(t) dt\right)' = f(x)\] για κάθε \[x\in\Delta\].
24. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
25. Έστω μια συνάρτηση \[f\] παραγωγίσιμη σ’ ένα διάστημα \[(\alpha,\beta)\] με εξαίρεση ίσως ένα σημείο του \[x_0\]. Αν η \[f\] είναι κυρτή στο \[(\alpha,x_0)\] και κοίλη στο \[(x_0,\beta)\] ή αντιστρόφως, τότε το σημείο \[A(x_0,f(x_0))\] είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της \[f\].
26. Αν η \[f\] έχει δεύτερη παράγωγο στο \[x_0\], τότε η \[f'\] είναι συνεχής στο \[x_0\].
27. Μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1–1, αν και μόνο αν,για κάθε στοιχείο \[y\] του συνόλου τιμών της η εξίσωση \[f(x)=y\] έχει ακριβώς μία λύση ως προς \[x\].
28. Αν μια συνάρτηση \[f\] είναι συνεχής στο κλειστό διάστημα \[[\alpha,\beta]\] και ισχύει \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(x) dx \ge 0\].
29. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)<0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
30. Έστω συνάρτηση \[f\] ορισμένη και παραγωγίσιμη στο διάστημα \[[\alpha,\beta]\] και \[x_0\in[\alpha,\beta]\] στο οποίο η \[f\] παρουσιάζει τοπικό μέγιστο. Τότε πάντα ισχύει ότι \[f'(x_0)=0\].

    +30

    CONTACT US
    CALL US