MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν η συνάρτηση \[f\] είναι ορισμένη στο \[[\alpha,\beta]\] και συνεχής στο \[(\alpha,\beta]\], τότε η \[f\] παίρνει πάντοτε στο \[[\alpha,\beta]\] μία μέγιστη τιμή.
2. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
3. Αν \[f,g\] είναι δύο συναρτήσεις και ορίζονται οι συνθέσεις \[f\circ g\] και \[g\circ f\], τότε είναι υποχρεωτικά \[f\circ g = g\circ f\].
4. Αν υπάρχει το όριο της \[f\] στο \[x_0\], τότε \[\lim_{x\to x_0}\sqrt[k]{f(x)}=\sqrt[k]{\lim_{x\to x_0}f(x)}\], εφόσον \[f(x)\ge 0\] κοντά στο \[x_0\], µε \[k\in\mathbb{N}\] και \[k\ge 2\].
5. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
6. Αν \[\lim_{x\to x_0} f(x) = +\infty\] ή \[–\infty\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = 0\].
7. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.
8. Για κάθε συνάρτηση \[f: A\to \mathbb{R}\], όταν υπάρχει το όριο της \[f\] καθώς το \[x\] τείνει στο \[x_0 \in A\], τότε αυτό το όριο ισούται με την τιμή της \[f\] στο \[x_0\].
9. Μια συνάρτηση \[f:A\to \mathbb{R}\] είναι 1–1, αν και μόνο αν,για κάθε στοιχείο \[y\] του συνόλου τιμών της η εξίσωση \[f(x)=y\] έχει ακριβώς μία λύση ως προς \[x\].
10. Έστω μια συνάρτηση ορισμένη σ’ ένα σύνολο της μορφής \[(\alpha, x_0)\cup (x_0, \beta)\] και \[l\] ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία:\[\lim_{x\to x_0} f(x) =l \Leftrightarrow \lim_{x\to x_0}(f(x)-l)=0.\]
11. Για δύο οποιεσδήποτε συναρτήσεις \[f, g\] παραγωγίσιμες στο \[x_0\] ισχύει:\[(f\cdot g)' (x_0)= f'(x_0)g(x_0)-f(x_0)g'(x_0).\]
12. Για κάθε ζεύγος συναρτήσεων \[f,g\] για τις οποίες υπάρχουν τα όρια \[\lim_{x\to x_0} ⁡f(x)\], \[\lim_{x\to x_0}g(x)\] και \[f(x)<g(x)\] για κάθε x κοντά στο \[x_0\], ισχύει \[\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)\].
13. Αν μια συνάρτηση \[f\] είναι κοίλη σ’ ένα διάστημα \[\Delta\],τότε η εφαπτομένη της γραφικής παράστασης της \[f\] σε κάθε σημείο του \[\Delta\] βρίσκεται κάτω από τη γραφική της παράσταση, με εξαίρεση το σημείο επαφής τους.
14. Μια συνεχής συνάρτηση \[f\] διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της \[f\] χωρίζουν το πεδίο ορισμού της.
15. \[(\sigma \varphi x)'=\frac{1}{\eta\mu^2 x}\], \[x\in \mathbb{R}-\{x|\eta \mu x \ne 0\}\].
16. Έστω συνάρτηση \[f\], η οποία είναι συνεχής σ'ένα διάστημα \[\Delta\]. Αν \[f'(x)>0\] σε κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι γνησίως φθίνουσα σε όλο το \[\Delta\].
17. \[(\sigma \upsilon \nu x)' = \eta \mu x\], \[x\in \mathbb{R}\].
18. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
19. Αν μία συνάρτηση \[f\] είναι συνεχής στο \[[\alpha,\beta]\], παραγωγίσιμη στο \[(\alpha,\beta)\] και \[f'(x)\ne 0\] για κάθε \[x\in(\alpha, \beta)\], τότε \[f(\alpha)\ne f(\beta)\].
20. Αν μια συνάρτηση \[f\] είναι δύο φορές παραγωγίσιμη στο \[\mathbb{R}\] και στρέφει τα κοίλα προς τα άνω, τότε κατ’ανάγκη θα ισχύει \[f''(x)>0\] για κάθε πραγματικό αριθμό \[x\].
21. Αν μια συνάρτηση \[f\] παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα.
22. Οι γραφικές παραστάσεις \[C\] και \[C'\] των συναρτήσεων \[f\] και \[f^{–1}\] είναι συμμετρικές ως προς την ευθεία \[y = x\] που διχοτομεί τις γωνίες \[xOy\] και \[x΄Oy΄\].
23. Για κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\], που είναι παραγωγίσιμη και δεν παρουσιάζει ακρότατα, ισχύει \[f'(x)\ne 0\] για κάθε \[x\in\mathbb{R}\].
24. Υπάρχει πολυωνυμική συνάρτηση βαθμού μεγαλύτερου ή ίσου του 2, της οποίας η γραφική παράσταση έχει ασύμπτωτη.
25. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)>0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
26. Αν \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)>0\] για κάθε \[x\] κοντά στο \[x_0\].
27. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
28. Δίνεται ότι η συνάρτηση \[f\] παραγωγίζεται στο \[\mathbb{R}\] και ότι η γραφική της παράσταση είναι πάνω από τον άξονα \[x'x\]. Αν υπάρχει κάποιο σημείο \[A(x_0,f(x_0))\] της \[C_f\], του οποίου η απόσταση από τον άξονα \[x'x\] είναι μέγιστη (ή ελάχιστη), τότε σε αυτό το σημείο η εφαπτομένη της \[C_f\] είναι οριζόντια.
29. Έστω συνάρτηση \[f\] ορισμένη και παραγωγίσιμη στο διάστημα \[[\alpha,\beta]\] και \[x_0\in[\alpha,\beta]\] στο οποίο η \[f\] παρουσιάζει τοπικό μέγιστο. Τότε πάντα ισχύει ότι \[f'(x_0)=0\].
30. Η συνάρτηση \[f\] είναι 1-1, αν και μόνο αν, κάθε οριζόντια ευθεία τέμνει τη γραφική παράσταση της \[f\] το πολύ σε ένα σημείο.

    +30

    CONTACT US
    CALL US